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 Resumen  

El análisis de confiabilidad de los sistemas críticos en el 

sector industrial es una herramienta de gran utilidad para 

mejorar la toma de decisiones en el departamento de 

mantenimiento. Generalmente, los métodos de análisis de 

confiabilidad tradicionales asumen restauraciones de los 

equipos a su condición original, pero en la práctica esto no 

sucede, pues generalmente se realizan intervenciones para 

corregir únicamente la falla que se presenta en ese momento; 

por este motivo, la presente investigación tuvo como 

objetivo el desarrollo de una metodología para conocer la 

confiabilidad actual de activos reparables en donde se 

ejecutan reparaciones mínimas, y su predicción a 5 años, con 

el cálculo de la intensidad de fallas y el tiempo medio entre 

fallas. La muestra se seleccionó a partir de los registros del 

historial de falla desde enero de 2022 a mayo de 2024 de la 

planta de soldadura de una ensambladora de vehículos, se 

realizó un diagrama Jack Knife para priorizar al análisis de 

los sistemas que más paradas productivas por reparación 

hayan generado. Se realizó un test de tendencia para 

determinar el sesgo que tienen los datos históricos y así 

poder ajustarlos a procesos estocásticos no-homogéneos de 

Poisson, se utilizó el modelo Crow Amsaa y Log-lineal para 

seleccionar aquel que mejor se ajuste a los datos y sea capaz 

de generar pronósticos con el menor error posible. Del 

estudio realizado, se determinó que los sistemas que más 

paradas productivas han ocasionado son las soldadoras SP-

43 y SP-16, y el JIG MB-10. Para el sistema SP-43, el 

modelo que generó el menor error para un pronóstico dentro 

de 5 años fue Crow Amsaa con una estimación de 48 fallas 

y una falla cada 233 horas de trabajo, mientras que para los 

sistemas SP-16 y JIG MB-10, el modelo log-lineal presentó 

el mejor ajuste, pronosticando 19 fallas, una falla cada 987 

horas y 22 fallas, una cada 822 horas de operación 

respectivamente.  
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 Abstract 

The reliability analysis of critical systems in the industrial 

sector is a very useful tool to improve decision making in the 

maintenance department. Generally, traditional reliability 
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Amsaa, Log-linear, 

reliability. 

analysis methods assume restorations of the equipment to its 

original condition, but in practice this does not happen, since 

interventions are generally carried out to correct only the 

failure that occurs at that moment; For this reason, the 

objective of this research was to develop a methodology to 

know the current reliability of repairable assets where 

minimal repairs are carried out, and its prediction for 5 years, 

with the calculation of the intensity of failures and the 

average time between failures . The sample was selected 

from the failure history records from January 2022 to May 

2024 of the welding plant of a vehicle assembler, a Jack 

Knife diagram was made to prioritize the analysis of the 

systems that cause the most productive stops per repair have 

generated. A trend test was carried out to determine the bias 

that the historical data have and thus be able to adjust them 

to non-homogeneous Poisson stochastic processes, the Crow 

Amsaa and Log-linear model was used to select the one that 

best fits the data and is capable of generating forecasts with 

the lowest possible error. From the study carried out, it was 

determined that the systems that have caused the most 

productive stops are the SP-43 and SP-16 welding machines, 

and the MB-10 JIG. For the SP-43 system, the model that 

generated the lowest error for a forecast within 5 years was 

Crow Amsaa with an estimate of 48 failures and one failure 

every 233 work hours, while for the SP-16 and JIG MB 

systems -10, the log-linear model presented the best fit, 

predicting 19 failures, one failure every 987 hours and 22 

failures, one every 822 hours of operation respectively. 

 

 

 

Introduction 

Reliability assessment plays a key role in improving availability and productivity in the 

automotive assembly industry, through the implementation of planned maintenance in the 

right way.(Soltanali et al., 2020). The importance of developing a methodology to 

calculate reliability lies in that it serves to guarantee and improve the performance of the 

systems, allows to evaluate and predict the probability that it will function correctly 

during a given period of time, provides useful information for decision making in 

maintenance management and planning, and is useful when implementing effective 
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strategies that will serve as support for future maintenance plans according to the current 

conditions of the equipment, optimizing the production process, increasing profitability 

and plant safety. For this reason, the present research not only studies the expected 

increase in failures in repairable systems with minimal repairs, but also seeks to highlight 

the importance of proposing more effective and proactive maintenance strategies to 

improve the future situation. 

Reliability analysis is widely used in industrial applications.(Hu et al., 2021)This 

methodology allows to determine and understand the failure behavior and the possible 

estimation of a forecast of the number of failure events, which leads to identifying which 

are the equipment in which new failure events may occur, as well as their long-term 

operational behavior. The exact moment in which a piece of equipment will fail cannot 

be determined with certainty, however, the behavior of the failure history and the help of 

statistics can be used to estimate the probability of the event occurring.(Gasca et al., 

2017)The validity of the results obtained depends on the precision and accuracy of the 

data, although on several occasions there is not enough failure data and confidence 

intervals for the reliability indices cannot be obtained.(Carlos R Batista-Rodriguez, 

2017). 

Reliability, availability and maintainability in the automotive industry are a crucial factor, 

as companies seek efficient production and operational continuity to meet market 

demands, reduce operating and maintenance costs, and increase the competitiveness of 

their organization.(Echeverr, 2018), adopting a culture of continuous improvement(Dias 

et al., 2019). 

Systems are divided into non-repairable and repairable. Where, if a system is non-

repairable it presents a single failure throughout its life.(Brown et al., 2023), while in a 

repairable system there are several failure modes. The most prominent models for the 

analysis of the reliability of repairable systems subject to minimal repairs are the non-

homogeneous Poisson processes(Slimacek & Lindqvist, 2017)and for such systems, 

reliability calculation involves the analysis of operating times and failure rates in failure-

repair cycles. 

The interest in controlling reliability, maintainability and availability in different 

industries arises due to the need to guarantee efficient operations with the least downtime. 

Reliability is the probability that an element can perform its required function during a 

set time interval and under defined conditions; if there are no failures, the equipment is 

totally reliable; if the failure frequency is very low, the reliability of the equipment is still 

acceptable; but if the failure frequency is very high, the equipment is unreliable. This 

analysis is of vital importance when maintaining productivity is required. Maintainability 

plays a fundamental role as it allows for quick and effective repairs. Meanwhile, 

availability refers to the capacity of the equipment to be in operating conditions in a given 
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time. 

The focus of this research is the development of an efficient methodology that is capable 

of improving maintenance management and maximizing the reliability of its equipment, 

contributing to greater operational efficiency. In this study, two non-homogeneous 

Poisson models with different intensity functions were applied, the Crow Amsaa model 

and the log-linear model to estimate or predict the number of failures in a 5-year period, 

so that the company's maintenance area can make decisions based on the results obtained 

regarding the failure rate of the systems and the reduction of the mean time between 

failures; For the calculation, the failures of all the systems of the welding plant of a vehicle 

assembler will be analyzed according to the data obtained from January 2022 to May 

2024. 

State of the art: 

In the automotive industry, a topic of growing interest is the improvement of productivity, 

due to the need to guarantee efficiency and reduce maintenance costs, which is why 

methodologies have been adopted to optimize reliability, availability and 

maintainability.(Soltanali et al., 2019). 

Operational reliability is the ability of a system to perform the required function, within 

a certain operational context, for a specific period of time.(Echeverr, 2018); in 

mathematical terms it corresponds to the inverse function of the probability of 

failure(Cruz et al., 2017), and allows for improved equipment availability, which leads to 

an increase in economic benefits for the organization.(Montalvo et al., 2022). 

The research of Orrantia et al., addresses the development of a methodology to measure 

reliability in assembly lines. This methodology consists of five stages that include the 

identification of the study area, the collection of relevant information such as the start and 

end time of a stop, the reason and the problem that occurred; the application of the 

mathematical model where the calculated variables: delivery capacity, efficiency index, 

quality and availability, are analyzed through probabilistic distributions and the best fit 

distribution is selected, which has the smallest value of the Anderson-Darling statistic; 

the analysis of results, a stage in which the critical indexes that affect reliability are 

considered; and finally, the proposal for improvements.(Orrantia Daniel et al., 2022). 

According to Zuo and Xiao, in the area of reliability, past research assumed that the 

system under analysis returned to its condition as when it was new, but these situations 

are not real in practice, because when the system is in operation, all components are 

affected by the effect of aging.(Zuo & Xiao, 2022). 

For reliability analysis, non-repairable and repairable systems are identified, where 

minimal repairs can be carried out, i.e. maintenance activities to repair only the defective 
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component, and perfect repairs, where the system operates as effectively as when it was 

new.(Wu et al., 2024). 

Whereas, Mun and Kvam propose the use of non-homogeneous Poisson models (NHPP) 

for modeling monotonic failure data for minimal repairs in a repairable system, where the 

performance of this is restored to precisely the same condition as it was before failure, 

i.e., the one that can be recovered to its operational condition without necessarily 

replacing all the components of the system after repair. These models are widely used 

because they are mathematically manageable and flexible due to their ability to model a 

wide variety of real repair processes.(Mun et al., 2021). The NHPP model is characterized 

by its intensity function. The ROCOF or rate of occurrence of failures of the NHPP is 

equivalent to the risk function and the monotonic ways to calculate it are the log-linear 

model analyzed by Cox and Lewis and the power law model studied by Crow.(Krivtsov, 

2007)  

The proportional intensity models based on NHPP, are log-linear and Crow Amsaa which 

is an extension of the power law model, which are characterized by being able to model 

the behavior of a system in its useful life stage.(Bacha & Bellaouar, 2023). 

In situations where it is required to obtain the most probable values of a distribution, the 

maximum likelihood method is used to estimate the parameters of the models using 

numerical methods such as Newton-Raphson. This approach allows to justify the 

selection of the model that best fits the data.(Chávez-Cadena et al., 2020),(Bacha & 

Bellaouar, 2023). 

Regarding the analysis of the performance of NHPP models, research with similar 

objectives has used the mean square error MSE, mean absolute error MAE, mean absolute 

percentage error MAPE(Kim & Kim, 2016),(Chik et al., 2018),(Alsultan & Sulaiman, 

2024)and the calculation of the correlation coefficient R2(NK Srivastava & Mondal, 

2014)to determine the model that best fits the data. 

These studies set a precedent for future research and highlight the importance of reliability 

calculation in the automotive industry to find optimal solutions, obtain maximum 

production and achieve business success.(Paez Advincula, 2022). 

There are simulation methodologies that allow predicting and understanding the 

operational behavior of equipment, which makes it possible to estimate a forecast of 

failure events. Non-parametric estimators are sometimes used to calculate reliability, 

which are useful when there are censored data, small sample sizes, or unknown 

distributions.(Ramírez Montoya et al., 2022). 
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Materials and methods: 

The development of this methodology consists of five stages, and prior to its 

development, the failure records of a vehicle assembly plant whose production areas are: 

welding, painting and assembly were obtained; after an analysis of the frequency of 

failures and repair times, the welding plant was selected as the most critical area. The 

information collected includes the repair times from January 2022 to May 2024 of all the 

plant systems whose operating time is 2880 hours per year and the systems that caused 

the most line stoppages were evaluated. 

Stage 1 consisted of purging the welding plant's maintenance history database, where 

duplicate records, inconsistent information, irrelevant failure modes and recording errors 

were eliminated in order to ensure the usefulness of the data to be analyzed. This was a 

crucial step since the quantity and quality of information is of great importance to 

minimize errors. In this stage, a thorough review and correction of errors in the records 

was carried out manually, which were analyzed individually. 

In stage 2, the study area was identified, where a Jack Knife diagram was made to 

prioritize the analysis of the plant's acute-critical systems, prioritizing those with the 

longest mean repair time (MTTR), which was calculated from the base of the failure 

history. 

The information was organized at the system level as shown in Table 1, where the start 

and end date of each event, the failure mode, the time to repair (TTR) in hours were 

captured. In addition, the time to failure (TTF) was calculated which provides valuable 

information for making future forecasts in a given time interval. 

In stage 3, a statistical study was conducted aimed at repairable equipment, because its 

operational state can be restored with a repair after the occurrence of a failure, it can 

present more than one failure mode during its useful life and the failure rate varies over 

time. A graphical and analytical analysis of the trend of the system data was performed in 

order to detect if the systems have a significant tendency of decreasing the time between 

failures and can be modeled with the Non-Homogeneous Poisson process, which is one 

of the stochastic processes used in reliability engineering for its ability to predict the 

number of events that occur randomly in a time t with a variable event rate.(Alghamdi & 

Qurashi, 2023). 

Stage 4 consists of the application of the Crow Amsaa and Log-linear models to forecast 

the accumulated number of failures in an accumulated operating time, as well as the 

estimated MTBF for the next five years of system operation. 

In the final stage, the accuracy of the models used was evaluated by calculating forecast 

errors, in order to choose the one that guarantees reliable predictions. 
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Nelson Aalen diagram: 

Figure 1 graphically shows the trend in failure time data and reliability degradation over 

time for a repairable system that has had minimal interventions throughout its useful life. 

Laplace trend test 

The Laplace test is a monotonous test that allows verifying whether the data follows a 

stochastic process.(Alghamdi & Qurashi, 2023)and is widely used to identify trends in 

data sets, as it is considered the most appropriate test to infer whether the data set is of 

the NHPP type.(Hou et al., 2022). 

The Laplace trend test when the system has been observed until𝑡0It is represented by 

equation (1). 

𝑼 =

∑ 𝑡𝑖
𝑛
𝑖=1

𝑛 −
𝑡0

2

𝑡0. √ 1
12. 𝑛

, (1) 

Where,𝑡𝑖are the accumulated failure times, is the observation time of the failures and n is 

the number of events that occurred.𝑡0 

In addition, it makes it easier to recognize the growth or decrease in reliability, the 

hypotheses to be tested are: If U = 0 the process is stationary, if U > 0 there is an increasing 

trend (sad system) and if U < 0 there is a decreasing trend (happy system). 

Non-homogeneous Poisson model 

Among the theories for modeling the reliability of repairable systems, there is the non-

homogeneous Poisson process, which is robust and has the advantage of handling discrete 

data such as the number or rate of occurrence of failures, which is why they are applied 

to the analysis of failures and useful life of various engineering systems.(Hashimoto & 

Takizawa, 2021). 

Crow-Amsaa Model:The Crow AMSAA model, also known as power law process (PLP) 

is used and studied for reliability growth analysis.(P.W. Srivastava & Jain, 2011) 

Using maximum likelihood estimation, the parameters�̂�and , can be calculated with the 

equations�̂�(2) and (3) 

�̂� =
𝑛

∑ ln (
𝑡𝑛

𝑡𝑖
)𝑛

𝑖=1

, (2) 
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�̂� =
𝑛

𝑡𝑛
�̂�

, (3) 

Where, is the accumulated time interval for each failure, is the accumulated time until the 

last failure and n is the total failure record.𝑡𝑖𝑡𝑛 

The hypotheses to be tested are: 

If reliability deteriorates𝛽 > 1 

If reliability growth𝛽 < 1 

If failure rate is constant.𝛽 = 1 

The increase or decrease in reliability can be quantified by observing aspects such as 

MTBF or failure rate over time.(P.W. Srivastava & Jain, 2011). 

The fault intensity function is given by equation (4).𝜆(𝑡) 

𝜆(𝑡) = 𝛽𝜆𝑡𝛽−1; 𝑡 ≥ 0;  𝜆, 𝛽 > 0  (4) 

Where,𝛽is the shape parameter, which represents the trend of the failure rate over time 

and is the scale parameter, which shows the intensity of failures in the system.𝜆 

While the calculation of the mean time between failures (MTBF), is defined by equation 

(5) 

𝑀𝑇𝐵𝐹(𝑡) =  
1

𝜆(𝑡)
, (5) 

 

 

Log-Linear Model 

The log-linear model is able to describe processes with a monotonous trend during the 

operating time. 

 

The instantaneous failure rate is given by equation (6). 

𝜆(𝑡) = 𝑒𝛼0+𝛼1𝑡, (6) 



 

 S c i e n c e  &  G e n e t i c s   P a g e  146| 160 

ISSN: 2602-8085 

Vol. 8 No. 3, pp. 137 – 160, July – September 2024 

Where,𝛼0is the scale parameter, is the growth parameter that determines the 

improvement or deterioration of the system over time and t is the operating 

time𝛼1(Hashimoto & Takizawa, 2021). 

The parameters𝛼1and are given by equations (7) and (8).�̂�0 

∑ 𝑡𝑖 +
𝑛

𝛼1
=

𝑛𝑡𝑛

1 − 𝑒−𝛼1𝑡𝑛

𝒏

𝒊=𝟏

, (7) 

�̂�0 = ln (
𝑛�̂�1

𝑒𝛼1𝑡𝑛 − 1
) , (8) 

The calculation of the expected number of failures is defined by equation (9). 

𝐸(𝑁(𝑡2) − 𝑁(𝑡1)) =
𝑒𝛼0

𝛼1

(𝑒𝛼1𝑡2 − 𝑒𝛼1𝑡1), (9) 

Instead, the expected number of failures during the lifetime is obtained with equation (10) 

𝑛(𝑡) =
𝑒𝛼0

𝛼1

(𝑒𝛼1𝑡), (10) 

MTBF is calculated using equation (11). 

𝑀𝑇𝐵𝐹 (𝑡1, 𝑡2) =
𝛼1(𝑡2 − 𝑡1)

𝑒𝛼0(𝑒𝛼1𝑡2 − 𝑒𝛼1𝑡1)
, (11) 

Measuring model error 

There are criteria for selecting the model that best fits the data. The most significant 

criterion is the criterion of determination and quality of fit criteria such as bias, mean 

square error (MSE), mean absolute error (MAE), and mean absolute percentage error 

(MAPE). In addition, the coefficient of determination R2 was measured.(Alghamdi & 

Qurashi, 2023)Below are the expressions to measure each error. 

Coefficient of determination 

The R value is able to measure the successful fit of the model, from the variance of the 

data evaluated(Kim & Kim, 2016). 

𝑹𝟐 = 1 −
∑ (𝑚𝑡 − �̂�𝑡)2𝑛

𝑡=1

∑ (𝑚𝑡 − �̅�)2𝑛
𝑡=1

, (12) 

Where, are the observed values of the dependent variable, are the predictions of the model 

and is the mean of the observed values.𝑚𝑡�̂�𝑡�̅� 
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The model with the highest and closest to 1 is considered the most efficient 

model.𝑅2(Kim & Kim, 2016). 

Mean Square Error (MSE) 

𝑴𝑺𝑬 =
∑ |𝑚(𝑡) − �̂�(𝑡)|𝑛

𝑡=1
2

𝑛 − 𝑘
, (13) 

Where, is the total number of observed data, are the observed values, are the values 

predicted by the model for each observation and k is the number of parameters estimated 

in the model.𝑛𝑚𝑡�̂�𝑡 

Mean absolute error (MAE) 

𝑴𝑨𝑬 =
1

𝑛
∑|𝑚(𝑡) − �̂�(𝑡)|

𝑛

𝑡=1

, (14) 

Where, is the total number of observed data, are the observed values, are the values 

predicted by the model.𝑛𝑚𝑡�̂�𝑡 

Mean absolute percentage error (MAPE) 

To compare the models and determine which is the best, the mean absolute percentage 

error (MAPE) is also used, according to the following formula: 

𝑴𝑨𝑷𝑬 =
1

𝑛
∑

|𝑚(𝑡) − �̂�(𝑡)|

𝑚(𝑡)
 

𝑛

𝑡=1

,         (15) 

Where m(t) represents the actual value, yn the estimated value and the number of 

observations�̂�(𝑡)(Alsultan & Sulaiman, 2024). 

In the final stage, the predictive capacity of each model was evaluated and the one 

showing the lowest possible error rate was selected. 

Results and discussion: 

In the present study, predictive models were analyzed to analyse repairable systems in a 

welding plant of a vehicle assembly plant, with the aim of evaluating reliability by 

predicting the cumulative number of failures and the mean time between failures (MTBF). 

In this section, the results obtained after completing the five stages of the research are 

presented. 

Figure 1 shows a logarithmic scatter graph, called a Jack Knife diagram, used as a 



 

 S c i e n c e  &  G e n e t i c s   P a g e  148| 160 

ISSN: 2602-8085 

Vol. 8 No. 3, pp. 137 – 160, July – September 2024 

prioritization method which allows identifying the systems that have caused the most line 

stoppages in the welding plant, that is, those that have most affected the company's 

productivity according to records from 2022 to 2024. 

The systems were classified into different categories: acute-critical, critical, acute, and 

mild. The result of this prioritization method determined that systems SP-01, SP-09, and 

SP-24 are part of a mild zone; DF01, JIG 02, and SP-04 are considered acute; JIG G01 is 

located in the critical zone; while systems SP-43, SP-16, and JIG MB-10 require greater 

attention from the maintenance department, as they are considered acute-critical because 

they cause more interruptions and occur more frequently than the other systems in the 

plant. 

Figure 1 

Jack Knife Diagram - Prioritization Method 

 
 

Once the acute-critical systems were identified, the data was analyzed and the times until 

failure were calculated. 

Table 1 

SP-43 welder repair times 

SP-43 WELDING MACHINE 

No. START DATE END DATE FAILURE MODE TTR TTF 

1 04/01/2022 11:48 04/01/2022 12:02 Electrical fault of gun 0.23  

2 08/03/2022 11:46 08/03/2022 12:52 SP43B rocker cable broken 1.10 5064.83 

3 10/27/2022 8:35 AM 10/27/2022 8:55 AM Misaligned gun tips 0.33 2036.05 
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4 09/12/2022 14:55 09/12/2022 16:47 Electrical fault of gun 1.87 1039.87 

5 10/04/2023 8:22 10/04/2023 9:30 Electrical fault of gun 1.13 2920.72 

6 12/05/2023 9:45 12/05/2023 10:00 Broken rocker cable 0.25 768.50 

7 06/22/2023 12:00 06/22/2023 1:30 PM Broken welding spiral 1.50 987.50 

8 04/08/2023 12:35 04/08/2023 12:45 Broken secondary cable 0.17 1031.25 

9 07/09/2023 7:55 07/09/2023 8:07 Broken primary cable 0.20 811.37 

 

Table 2 

SP-16 Welder Repair Times 

SP-16 WELDING MACHINE 

No. START DATE END DATE FAILURE MODE TTR TTF 

1 10/31/2022 11:45 10/31/2022 12:20 PM Electrical fault of gun 0.58  

2 01/17/2023 12:57 PM 01/17/2023 1:11 PM Electrical fault of gun 0.23 1872.85 

3 03/27/2023 9:20 AM 03/27/2023 10:00 Broken rocker cable 0.67 1652.82 

4 08/09/2023 8:27 08/09/2023 8:40 Electrical fault of gun 0.22 3238.66 

5 05/09/2023 10:15 05/09/2023 12:15 Electrical fault of gun 2.00 651.58 

6 10/13/2023 8:45 AM 10/13/2023 9:00 AM Broken secondary cable 0.25 908.75 

7 01/15/2024 9:55 01/15/2024 1:15 PM Electrical fault of gun 3.33 2260.25 

8 05/29/2024 11:05 05/29/2024 11:25 Broken rocker cable 0.33 3238.17 

 

Table 3 

Repair times for MB-10 clamping equipment 

MB-10 CLAMPING EQUIPMENT 

No

. START DATE END DATE FAILURE MODE 

TT

R TTF 

1 01/18/2022 7:50 

AM 

01/18/2022 8:30 

AM Broken pin 0.67  

2 02/28/2022 10:35 02/28/2022 10:45 Broken pin 3.22 989.30 

3 03/28/2022 8:43 

AM 

03/28/2022 8:50 

AM Broken pin 0.12 

667.03 

4 

07/22/2022 11:25 07/22/2022 11:45 Broken piston kit 0.33 

2786.9

2 

5 

07/25/2022 14:16 07/25/2022 14:30 

Deregulated dual signal 

sensor 0.23 

74.75 

6 10/17/2022 7:45 

AM 

10/17/2022 7:52 

AM Broken pin 0.12 

2009,3

7 

7 

01/25/2023 9:00 01/25/2023 9:15 Broken control hose 0.25 

2401.3

8 

8 

03/14/2023 10:15 03/14/2023 10:47 Deregulated inductive sensor 0.53 

1153.5

3 

 

Figure 2 presents the survival analysis called Nelson-Aalen diagram, used as a graphical 

method for visualizing the accumulation of times until failure in a time interval. An 

increasing trend is observed, so it is assumed that the failure rate increases with time and 

that these are unstable systems. 
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Figure 2 

Nelson-Aalen diagram 

 

 

 

 

 

 

 

To verify the hypothesis that the failure data satisfy the characteristics of a NHPP, and to 

verify whether it is suitable, a statistical test called the Laplace test was performed using 

equation (1), with a significance level of 0.10. 

Table 4 

Trend test 

SYSTEM STATISTICIAN U 

SP-43 2.16 

SP-16 0.37 

JIG MB-10 0.24 

 

All the values obtained are U>0, so the hypothesis of the existence of an increasing trend 

is accepted and it is assumed that it is a sad system. 

The parameters of the studied models were estimated with the equations obtained with 

the maximum likelihood method, equation (2) and (3) for the Crow Amsaa model and (7) 

and (8) for the parameters of the log-linear model. For this last model, the Newton-

Raphson numerical method was used with the help of the scipy library in Python. 
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Table 5 

Estimation of model parameters 

MODEL PARAMETERS SP-43 SP-16 JIG MB-10 

Crow Amsaa 
𝛽 2,611 1,278 1,110 

𝜆 1.05 x 10-10 3.05 x 10-5 2.51 x 10-4 

Log-linear 
𝛼0 -9,373 -7,842 -7,435 

𝛼1 0.0002056 3.54 x 10-5 3.13 x 10-5 

Once the parameters of the models were calculated, they were used to estimate or forecast 

the number of failures expected in an operating period t for repairable systems, in which 

the minimum repair required to put the equipment into operation again is carried out. The 

number of failures predicted for the next 5 years with the two models studied is shown in 

Table 3. 

Table 6 

Estimated number of failures in 5 years 

Expected number of failures 

Cumulative 

operating time 

(h) 

SP-43 SP-16 JIG MB-10 

Crow 

Amsaa 

Model 

Log-

linear 

model 

Crow 

Amsaa 

Model 

Log-

linear 

model 

Crow 

Amsaa 

Model 

Log-linear 

model 

17545,56 13 8 9 9 9 9 

20425,56 19 13 11 11 12 12 

23305,56 27 23 13 13 14 15 

26185,56 36 41 15 16 16 18 

29065,56 48 74 17 19 19 22 

 

Figures 3, 4 and 5 correspond to the graphs of the accumulated number of failures in a 

cumulative operating time of the SP-43, SP-16 and JIG MB-10 systems respectively. The 

first points comprise the known accumulated failures taken from the maintenance history 

database, while the following ones are part of a forecast zone and are random values 

created from the previously collected information. For these graphs, the forecasts of the 

Crow Amsaa model are presented on the left side (a) and the log-linear model on the right 

side (b). 
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a) Crow Amsaa Model b) Log-linear model 

a) Crow Amsaa Model b) Log-linear model 

Figure 3 

Number of projected failures (SP-43) 

 

 

 

Figure 4 

Number of projected failures (SP-16) 
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Figure 5 

Number of projected failures (JIG MB-10) 

 

For SP-43, the Crow Amsaa model predicted 13 failures in the first year from last 

observation, 19, 27, 36 and 48 for year two, three, four and five respectively, while the 

log-linear model predicted 8, 12, 22, 40 and 73 failures. For SP-16, the Crow Amsaa 

model estimated 9, 11, 13, 15 and 17 failures for the next 5 years of operation; while the 

log-linear model estimated 8, 11, 13, 16 and 19 failures. For JIG MB-10, the Crow Amsaa 

model projected 9, 12, 14, 16 and 19 failures for the next 5 years; on the other hand, the 

log-linear model projected 9, 12, 15, 18 and 21 failures. 

This predicted increase reflects the degradation of the systems analyzed as a whole due 

to the fact that only minimal repairs are made, which can accumulate over time and 

generate failures more frequently. 

For the reliability analysis, the mean time between failures (MTBF) was calculated, in 

order to know the interval in hours that can pass for a failure to occur. Knowing this time 

is significant because it is an indicator of the expected performance of the equipment.(de 

Abreu et al., 2018). 

 

 

 

 

 

b) Log-linear model a) Crow Amsaa Model 



 

 S c i e n c e  &  G e n e t i c s   P a g e  154| 160 

ISSN: 2602-8085 

Vol. 8 No. 3, pp. 137 – 160, July – September 2024 

b) Log-linear model a) Crow Amsaa Model 

a) Crow Amsaa Model b) Log-linear model 

Figure 6 

Projected mean time between failures for the next 5 years 

  

 

Figure 7 

Projected mean time between failures for the next 5 years 
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b) Log-linear model a) Crow Amsaa Model 

Figure 8 

Projected mean time between failures for the next 5 years 

 

 

 

 

 

 

 

 

 

Figures 6, 7 and 8 show the MTBF graphs as a function of time for the SP-43, SP-16 and 

JIG MB-10 systems respectively, the Crow Amsaa model (right) and the log-linear model 

(left). These graphs show a significant reduction in the time between failures, so effective 

maintenance strategies must be proposed to optimize operation over time. 

The quality of the calculated estimates must be validated and incur the least possible error. 

The error measurement was performed to quantify the difference between the predicted 

values and the actual values. 

The performance of the implemented NHPP models was evaluated through the 

measurement of coefficient of determination R2, mean square error (MSE), mean 

absolute error (MAE), and mean absolute percentage error (MAPE) to ensure the 

accuracy of the model proposed in the study. The results are shown in Table 7. 

Table 7 

Measuring model errors 

 SP-43 SP-16 JIG MB-10 

 MODEL MODEL MODEL 

CRITERIA 
Crow-

AMSAA 

Log-

Linear 

Crow-

AMSAA 

Log-

Linear 

Crow-

AMSAA 

Log-

Linear 

𝑹𝟐 0.931 0.080 0.843 0.895 0.889 0.918 

MSE 0.359 4,827 0.628 0.304 0.445 0.238 

MAE 0.455 1,099 0.661 0.479 0.519 0.458 

MAPE 19.11 % 24.24 % 22.26 % 16.22 % 21.35 % 19.79 % 
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The value of the error obtained was taken as the main criterion for selecting the best 

model; the Crow-Amsaa model presented all the errors evaluated with the lowest value. 

In addition, a value of the coefficient of determination R2 equal to 0.932 was determined, 

meaning that 93.2% of the variability in the dependent variable is explained by the 

predictive model, so it is assumed that this is a model whose estimates adequately fit the 

observed data of the SP-43 system. 

In the case of the SP-16 and JIG MB-10 systems, the best-fitting model was log-linear 

according to the observation of the errors and the R2 coefficient of 0.895 and 0.918 

respectively. 

Conclusions 

 In this study, two fundamental models for the reliability assessment of repairable 

systems have been explored: Crow-AMSAA and the Log-linear model, which 

offer powerful tools to analyze and predict the failure rate, and the mean time 

between failures (MTBF), essential parameters for effective asset management 

and maintenance planning. 

 The comparative evaluation carried out has demonstrated the capacity of both 

models to effectively predict the number of failures and estimate the MTBF. The 

accuracy of these predictions was determined using standard metrics such as the 

Mean Square Error (MSE), the Mean Absolute Error (MAE) and the Mean 

Absolute Percentage Error (MAPE), providing a quantitative measure that allows 

observing the best fit of the model in relation to the observed data, in order to 

select and apply it correctly. According to the error measurement, it was 

determined that for the SP-43 system, the Crow Amsaa model has a greater 

forecasting capacity, while for the SP-16 and JIG MB10 systems the log-linear 

model presents a better fit; these models can be used to monitor and improve 

reliability, and optimize plant maintenance management. 

 According to the analysis, it is observed that the repair rate of the systems 

increases over time, and there is a decrease in the mean time between failures 

(MTBF) intervals, which indicates a deterioration in the reliability of these, so it 

is necessary to propose maintenance strategies that allow increasing the mean time 

between failures, reducing production stops, and having a continuous evaluation 

of failures for the planning, programming and execution of maintenance tasks. 
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