MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DA0281.C88420B0" Este documento es una página web de un solo archivo, también conocido como archivo de almacenamiento web. Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos, como Windows® Internet Explorer®. ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Revisión sistemática de las aplicaciones de vanguardia en el campo de la visión por computadora =

Systematic review of state-of-the-art applications in the field of computer vision

 


= 1

Paulo César Torres Abril <= /p>

https://orcid.org/0000-0002-4055-883= X

 

Magister en Gerencia de Sistemas de Información, Universidad Técnica de Ambato, Ambato, Ecuador.

pc.torres@= urta.edu.ec

= 2

Santiago David Jara Moya

https://orcid.org/0000-0002-4360-600= 8

 

Máster en Investigación e Innovación en Tecnologías de la Información y las Comunicaciones, Universidad Técnica de Ambato, Ambat= o, Ecuador.

sd.jara@ut= a.edu.ec

= 3

Leonardo David Torres Valverde

https://orcid.org/0000-0002-1996-324= 0

 

Máster Universitario en Investigación e Innovación en Tecnologías de la Información y las Comunicaciones, Universidad Técnica de Ambato, Ambato, Ecuador.

ld.torres@= uta.edu.ec

= 4

Darwin René Arias Martínez<= /p>

https://orcid.org/0000-00c03-4306-10= 33

 

Magister en Gerencia de Sistemas de Información, Instituto Tecnológico Universitario Vida Nueva, Quito, Ecuador

sistemas@i= stvidanueva.edu.ec

 

 

Artículo de Investigación Científica y Tecnológica

Enviado: 14/07/2023

Revisado: 09/08/2023

Aceptado: 11/09/2023

Publicado:19/10/2023

DOI: http= s://doi.org/10.33262/cienciadigital.v7i4.2710               =

 

 

&nb= sp;

 

 

Cítese:

 

 

Torres Abril = , P. C., Jara Moya, S. D., Torres Valverde, L. D., & Arias Martínez, D. R. (2023). Revisión sistemática de las aplicaciones de vanguardia en el camp= o de la visión por computadora . Ciencia Digital, 7(4), 26-53. https://doi.or= g/10.33262/cienciadigital.v7i4.2710

 

 

 

 

CIENCIA DIGITAL, es una revista multidisciplinaria, trimestral,= que se publicará en soporte electrónico tiene como misión contribuir a la   formación de profesionales competentes con visión humaníst= ica y crítica que sean capaces de exponer sus resultados investigativos y científicos en la misma medida que se promueva mediante su intervención cambios positivos en la sociedad. https://cienciadigital.org<= /a>

La revista es editada por la Editorial Ciencia Digital (Editorial de prestigio registra= da en la Cámara Ecuatoriana de Libro con No de Afiliación 663) www.celibro.org.ec

 

 

 

 

Esta revista está protegida bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 International. Copia de la licencia: https://creativ= ecommons.org/licenses/by-nc-sa/4.0/deed.es

 

Palabras clav= es:

Algoritmos, Artificial, Deep Learning, Metodología SLR, Procesamiento de imágenes, Visión.

 

Resumen

Introducción:  La visión artificial combina inteligencia artificial y robótica pa= ra analizar imágenes capturadas por cámaras. Se basa en la teoría de la percepción del color RGB y considera factores como la iluminación y el ti= po de sensor. Utiliza modelos de color para modificar imágenes con precisión= . Se emplean OpenCV y Python en esta investigación sobre técnicas avanzadas en visión artificial, centrándose en la innovación y algoritmos para mejorar= la precisión en la clasificación de objetos mediante el aprendizaje automáti= co y redes neuronales. Objetivo:  <= /b>El objetivo principal de este estudio es llevar a cabo un examen exhaustivo = de la información disponible acerca de los avances recientes en visión artificial mediante metaanálisis o revisión sistemática, con el fin de abordar de manera más precisa la investigación en este ámbito. Metodol= ogía:  La investigación se enfoca en la = visión artificial, priorizando fuentes científicas recientes en inglés, aunque se incluyen libros y fuentes web confiables en menor medida. Se utiliza un enfoque cualitativo a través de la metodología de Revisión Sistemática de= la Literatura (SLR), que abarca la formulación de preguntas, exploración de documentos, selección rigurosa de obras y adquisición de datos relevantes= . Resultados: El análisis destaca que la visión por computadora es un campo avanzado con diversas aplicaciones en sistemas de dispositivos inteligentes; también se realizó un análisis de palabras clave para identificar tendencias clave en los artículos seleccionados. Conclusión: La mayoría de los estudios relevantes sobre el tema se hallaron en bases de datos en inglés como IEE= E y Springer, con limitadas referencias en Scopus debido a sus costos asociad= os; el enfoque de este estudio se centra en sistemas inteligentes y su aplica= ción en la detección de objetos en tiempo real mediante redes neuronales convolucionales. Área de estudio general: Tecnologías de la Información y Comunicación (Tic). Área de estudio específica: Inte= ligencia artificial.

 

 

Keywords:

Algorithms, Artificial, Deep Learning, = SLR Methodology, Image Processing, Vision.

 

Ab= stract

Introduction:=   Computer vision combines artificial intelligence and robotics to analyze images captured by cameras. It is based on the theory of RGB color perception and considers factors such as illumination and sensor type. It uses color models to accurately modify images. OpenCV and Python are used= in this research on advanced techniques in computer vision, focusing on innovation and algorithms to improve object classification accuracy using machine learning and neural networks. Objective:  The main objective of this study = is to conduct a comprehensive review of the available information on recent advances in machine vision by means of meta-analysis or systematic review= , to address research more accurately in this field. Methodology:  The research focuses on computer vision, prioritizing recent scientific sources in English, although relia= ble books and web sources are included to a lesser extent. A qualitative appr= oach is used through the Systematic Literature Review (SLR) methodology, which encompasses the formulation of questions, exploration of documents, rigor= ous selection of works and acquisition of relevant data. Results:  The analysis highlights that computer = vision is an advanced field with diverse applications in intelligent device syst= ems; a keyword analysis was also performed to identify key trends in the selec= ted articles. Conclusion:  Mos= t of the relevant studies on the subject were found in English databases such = as IEEE and Springer, with limited references in Scopus due to their associa= ted costs; the focus of this study is on intelligent systems and their application in real-time object detection using convolutional neural networks.

 

<= o:p> 

<= o:p> 

Introducción

La visión artificial, también conocida como visión por computadora, se encuent= ra en la intersección de diversos campos, incluyendo la inteligencia artificia= l y la robótica (Lee et al., 2023). Esta disciplina integra y combina principio= s y conceptos de programación, informática, mecatrónica, álgebra lineal, estadísticas y probabilidad, entre otros, con el propósito de analizar, procesar y manipular imágenes capturadas por sensores ópticos, comúnmente c= onocidos como cámaras, que buscan replicar la capacidad visual humana. Esto posibili= ta que los sistemas de visión puedan identificar y comprender las característi= cas del entorno que están observando.

El procesamiento de imágenes se sustenta principalmente en teorías de la percepción del color, como la tricromía RGB. Esto se debe a que una imagen = se compone en realidad de una matriz de colores con tres capas: Rojo, Verde y = Azul (RGB). Cada píxel de la imagen puede ser interpretado como una combinación = de estos tres colores, y el cerebro humano, al procesar esta información, gene= ra la percepción de color que observamos (Shubham et al., 2022).

Para lograr una correcta interpretación de las características de una imagen, es esencial considerar variables físicas como la distancia focal y, por supues= to, las condiciones de iluminación, el entorno y, especialmente, el tipo de sen= sor utilizado. Esto se debe a que la composición matricial de las imágenes puede ser influenciada por factores naturales o físicos, como la reflexión de la = luz o el deslumbramiento, que tienden a causar distorsiones hacia tonos más cla= ros (Khaliluzzaman et al., 2018).

Asimismo, la temperatura y la humedad ambiental son condiciones para tener en cuenta,= ya que las condiciones extremas, como las olas de calor, pueden afectar la cal= idad de la imagen. En este contexto, el tratamiento óptico de las imágenes se ba= sa en la explotación consciente de esta teoría matricial o modelo RGB (Bhattacharya & Chatterjee, 2017).

Un modelo de color se utiliza con el propósito de intencionadamente alterar las características de una imagen, permitiendo la aplicación de diversas modificaciones como desenfoque, binarización, aplicación de texturas, así c= omo técnicas tales como el uso de filtros gaussianos, segmentación de color, y ajustes de profundidad, entre otros. De esta manera, se logra modificar la imagen de manera precisa y efectiva (Mostafi et al., 2022).

Este trabajo se basa en la información proporcionada por artículos científicos r= elacionados con el procesamiento de imágenes mediante visión artificial utilizando las herramientas OpenCV (Kulkarni et al., 2020; Sriratana et al., 2018). En consecuencia, se abordan las técnicas más destacadas, incluyendo los filtro= s de color basados en estadísticas, así como las aplicaciones más avanzadas relacionadas con el procesamiento de imágenes (Ho et al., 2022).=

Este estudio tiene como objetivo examinar la información disponible sobre los recientes avances en visión artificial. Para lograr esto, se optó por utili= zar un enfoque distinto en lugar de las revisiones bibliográficas subjetivas, q= ue a veces se denominan narrativas (Moreno et al., 2023). En su lugar, se empleó= un metaanálisis o revisión sistemática, que se considera una metodología más o= bjetiva y rigurosa para llevar a cabo la revisión de la investigación en este campo (Sánchez et al., 2010).

De acuerdo con la información examinada, la comunidad de investigadores se enf= oca en la innovación y la creación de aplicaciones que demandan una respuesta instantánea. En este contexto, resulta esencial el desarrollo de algoritmos diseñados para optimizar el procesamiento de imágenes, al mismo tiempo que perfeccionan la eficiencia y precisión en procesos considerados inteligente= s, como la clasificación e identificación de objetos. Esto se logra mediante la aplicación de técnicas como el aprendizaje automático, redes neuronales y, = por supuesto, la convolución.

Metodología

Dado que el tema de la visión artificial y sus aplicaciones se encuentra en la vanguardia de la investigación, se ha dado prioridad a los artículos científicos publicados en los últimos siete años (a partir de 2015) como fuentes principales de información, tanto en revistas como en conferencias, preferiblemente en inglés. Sin embargo, también se ha hecho referencia a li= bros y fuentes web confiables y actualizadas, aunque en menor cantidad. Este tra= bajo se basa en un enfoque cualitativo, ya que se utilizará la metodología de Revisión Sistemática de la Literatura (SLR), que comprende las siguientes etapas:

A.    Preguntas de investigación.=

B.     Exploración de documentos.<= /span>

C.     Selección rigurosa de obras.

= D.    Adquisición de datos significativos y contribuciones pertinentes.

A. Preguntas de investigación (RQ)

Basándonos en el enfoque de partida (Ho et al., 2022), se sugiere dirigir de manera estructurada la indagación hacia cuatro interrogantes que se detallan a continuación:

·         RQ1: ¿Cuáles son las técnicas de procesamiento de imágenes más avanzadas en la actualidad?=

·         RQ1-Objetivo: Identificar las técnicas= que tienen un mayor nivel de adopción en la actualidad.

·         RQ2: ¿Cuáles son las aplicaciones más destacadas en la actualidad?

·         RQ2-Objetivo: Resumir de manera concisa las áreas de aplicación más vanguardistas de la visión por computadora en l= os últimos años.

·         RQ3: ¿Cuáles son los ejemplos de aplicaciones que están influyendo en la investigación en el ámbito del procesamiento de imágenes?

·         RQ3-Objetivo: Evaluar cómo la visión artificial está aportando innovación a diversas aplicaciones.

·         RQ4: ¿Cuál es el panorama futuro de la visión artificial dentro de los Sistemas Inteligentes?

·      =    RQ4-Objetivo: Reconocer las áreas potenciales para la creación de sistemas inteligentes que aprovechen la vis= ión artificial.

B. Exploración de documentos

Para obtener información de vanguardia sobre las aplicaciones del procesamiento = de imágenes, hemos realizado una exhaustiva búsqueda y recopilación de datos procedentes de fuentes ampliamente respetadas en la comunidad de investigac= ión. Nuestro enfoque se basa en rigurosas prácticas científicas para garantizar = la calidad de la información recabada.

A continuación, se presentan las bases de datos científicas utilizadas para recopilar información en el estudio de los artículos que serán revisados en bases de datos en línea, tal como se detalla en la tabla 1.

Tabla 1

Base de Datos científicas en línea

Base de Datos

URLs

IEEE Xplorer

http://ieeexplore.ieee.org/

Scopus

https://www.scopus.com

Google scholar

https://scholar.google.es/

Springer

http://link.springer.com/

 

Figura 1

Exploración inicial de artículos

<= /o:p>

Según la ilustración 1 y tomando en consideración las bases de datos utilizadas, se obtuvieron los siguientes resultados: IEEE Xplore (50), ScienceDirect (20), Scopus (5), Google Académico (60) y Springer (10).

Realizando una búsqueda inicial de información, se evidencia un claro interés en la comuni= dad científica por el campo de la visión por computadora. En este sentido, se considera apropiado llevar a cabo un análisis exhaustivo de la literatura y documentación relevante, abarcando no solo textos en inglés, sino también en español. Sin embargo, es importante destacar que este estudio se centrará exclusivamente en artículos escritos en inglés.

C. Selección rigurosa de obras

El inicio de e= sta fase destaca la amplia gama de documentos y artículos disponibles para el investigador. Sin embargo, es esencial realizar un proceso de filtrado de la información y centrarse en la selección, teniendo en cuenta ciertos aspecto= s o criterios (Ho et al., 2022).

Tabla 2

Resultados de la búsqueda de información sobre criterios = de selección (SLR)

Fuente

CS1

CS2

CS3

IEEE Xplorer

50

40

18

Science Direct

10

5

0

Scopus

15

7

1

Google scholar

60

20

4

Springer

10

10

9

Total

145

82

32

 

La tabla 2 presenta los resultados de la búsqueda de información en varias bas= es de datos seleccionadas. Se identificaron un total de 145 papers que cumplen= con el Criterio de selección 1 “CS1”,= 82 papers que cumplen con el criterio de selección 2 “CS2” y 32 papers que cumplen con el criterio de selección 3 “CS3” en relación con el tema de estudio. L= os criterios usados fueron los siguientes:

·         C1: Criterios de Selección (CS1). - Se consideró la actualidad en función del período de publicación o indexación = del artículo científico o conferencia, limitándose a los años 2015-2022.

·         C2: Criterios de Selección (CS2). - Se aplicó un filtro de idioma, priorizando los artículos escritos en inglés.

·         C3: Criterios de Selección (CS3). - La selección se basó en la relevancia con respecto al tema. Siguiendo los criterios establecidos, se generó la tabla 3 de resultados:

En resumen, el enfoque que se usó para la selección de Artículos fue:

·         CS1: Actualidad (2015-2020).

·         CS2: Idioma (inglés).

·         CS3: Relevancia Temática.

Tabla 3

Resultados finales de la selecció= n de artículos

Fuente

IEEE Xplorer<= /span>

Scopus

Google scholar

Springer

Total

En la tabla 3 que se muestra previamente, al analizar la transición a la que se sometieron los documentos, se observa que la selección de material para esta revisión de investigación consta de 32 artículos, la mayoría de los cuales provienen de fuentes como IEEE y Springer. Además, a partir del gráfico ant= erior, se destaca la diversidad en el proceso de búsqueda de información, ya que, según el segundo criterio de filtrado, se aprecia que el investigador cuenta con una proporción casi equivalente de fuentes tanto en inglés como en espa= ñol.

D. Adquisición de datos significativos y contribuciones pertinentes=

Para llevar a cabo la aplicación de los criterios de selección, se dispone de un equipo compuesto por tres profesionales. Este equipo realiza un proceso de filtrado de la información, y como resultado de esta fase de revisión y análisis, se identificaron un total de 32 trabajos que serán sometidos a un análisis detallado en relación con las preguntas de investigación planteada= s. Estos análisis contribuirán a la formulación de las conclusiones del estudi= o. A continuación, se detallan las características más destacadas de cada una de= las fuentes utilizadas en esta revisión.

= ·&nb= sp;        Código: A1 (Berjon et al., 2020)

Título: FVV Live: Real-Time, Low-Cost, Free Viewpoint Video

Base de Datos: IEEE Xplorer

Año: 2020

Autores: Daniel Berjón; Pablo Carballeira; Julián Cabrera; Carlos Carmona; Daniel Corregidor; César Díaz<= o:p>

Objetivo: Se introduce un sist= ema de Flujo de Video Visual (FVV) en tiempo real de bajo costo que coordina múltiples nodos para las etapas de adquisición, transmisión, síntesis y presentación, con la capacidad de generar un modelo detallado de la profund= idad del fondo durante la calibración.

= ·&nb= sp;        Código: A2 (Swain, Dhariwal, & Kumar, 2018)<= /span>

Título: A Python (Open CV) based automatic to= ol for parasitemia calculation in peripheral blood smear.

Base de Datos: IEEE Xplo= rer

Año: 2018

Autores: Mahendra Swain; Sandeep Dhariwal; Gau= rav Kumar

Objetivo: Crear un proceso utilizando Python (OpenCV) para simplificar el procesamiento de imágenes, calcular el tamaño de las células, realizar transformaciones morfológicas y determinar la parasitemia.

 

= ·&nb= sp;        Código: A3 (Mohanasundaram et al., 2019)

Título: Vehicle Theft Tracking, Detecting And Locking System Using Open CV

Using Open CV

Base de Datos: IEEE Xplorer

Año: 2018

Autores: S. Mohanasundaram; V. Krishnan; V. Madhubala

Objetivo: Implementar un siste= ma innovador que permita la apertura de vehículos a través del reconocimiento facial, aprovechando la potencia y versatilidad de OpenCV en su desarrollo. Este enfoque promete ofrecer una mayor comodidad y seguridad en el acceso a= los vehículos.

= ·&nb= sp;        Código: A4 (Jain et al., 2018)

Título: Visual Assistance for Blind Using Ima= ge Processing

Processing

Base de Datos: IEEE Xplorer

Año: 2018

Autor: B Deepthi Jain; Shwetha M Thakur; K V Suresh

Objetivo: Este artículo presen= ta una propuesta de sistema destinado a asistir a individuos con discapacidad visual. El propósito fundamental de este sistema es desarrollar una herrami= enta visual portátil que sea capaz de responder a comandos de voz emitidos por el usuario.

= ·&nb= sp;        Código: A5 (Pavithra & S= uresh, 2019)

Título: Fingerprint Image Identification for Crime Detection

Base de Datos: IEEE Xplorer

Año: 2019

Autor: Pavithra R.; K.V. Suresh

Objetivo: Se busca desarrollar= un sistema de aprendizaje automático profundo (CNN) para identificar huellas dactilares en escenas del crimen, incluso en imágenes difíciles. El objetiv= o es lograr una alta precisión (alrededor del 80%) en la identificación de huell= as, beneficiando la resolución de casos en serie en una base de datos criminal.=

= ·&nb= sp;        Código: A6 (Chandan et al., 2021)

Título: Real Time Object Detection and Tracki= ng Using Deep Learning and OpenCV.

Base de Datos: IEEE Xplorer

Año: 2018

Autor: Chandan G, Ayush Jain, Harsh Jain, Mo= hana

Objetivo: Implementar un algor= itmo de detección de objetos que combine características de varios enfoques de aprendizaje profundo, priorizando la eficiencia en la detección y seguimien= to sin comprometer la precisión, especialmente útil en situaciones donde se requiere velocidad.

= ·&nb= sp;        Código: A7 (Guo et al., 2019)

Título: Geosr: A Computer Vision Package for = Deep Learning Based Single-Frame Remote Sensing Imagery Super-Resolution

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Zhiling Guo, Guangming W= u, Xiaodan Shi, Mingzhou Sui, Xiaoya Song, Yongwei Xu, Xiaowei Shao, Ryosuke Shibasaki.

Objetivo: Introducir GeoSR es un paquete de visión por computadora de código abierto que utiliza técnicas de aprendizaje profundo para mejorar la resolución de imágenes de teledetecció= n. Ofrece herramientas y modelos preentrenados para simplificar el desarrollo y evaluación de métodos de superresolución, lo que puede beneficiar a otras á= reas de procesamiento de imágenes.

= ·&nb= sp;        Código: A8 (Sasaki et al., 2017)

Título: A study on vision-based mobile robot learning by deep Q-network.

Base de Datos: IEEE Xplorer

Año: 2017

Autores: Hikaru Sasaki, Tadashi Horiuchi and Satoru Kato.

Objetivo: Se busca guiar a un robot móvil con comportamientos adecuados utilizando información visual compleja. El método aprovecha éxitos previos en situaciones de bajo rendimi= ento y acelera el aprendizaje mediante la técnica "Profit Sharing" en = DQN (D= eep Q-Network).

= ·&nb= sp;        Código: A9 (Bellemo et al., 2019)

Título: Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopath= y in Africa: a clinical validation study.

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Valentina Bellemo, Zhan W Lim, Gilbert Lim, Quang D Nguyen, Yuchen Xie, Michelle Y T Yip, Haslina Ham= zah, Jinyi Ho, Xin Q Lee, Wynne Hsu, Mong L Lee, Lillian Musonda, Manju Chandran, Grace Chipalo-Mutati, Mulenga Muma, Gavin S W Tan, Sobha Sivaprasad, Geeta Menon, Tien Y Wong, Daniel S W Ting.

Objetivo: Examinar la exactitu= d de un modelo de inteligencia artificial (IA) basado en aprendizaje profundo en= un sistema de detección de retinopatía diabética dentro de un contexto poblaci= onal en Zambia, una nación con ingresos en el rango de media-baja.

= ·&nb= sp;        Código: A10 (Yudin et al., 2019)

Título: Detection of Big Animals on Images wi= th Road Scenes using Deep Learning

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Dmitry Yudin Anton Sotnikov Andrey Krishtopik

Objetivo: Se desarrolla un software utilizando Keras, PyTorch y librerías de NVidia con CUDA para identificar animales grandes en imágenes, este enfoque eficaz tiene posibles aplicaciones en sistemas de visión para vehículos autónomos y asistencia al conductor.

= ·&nb= sp;        Código: A11 (Kusuma et al., 2019)

Título: Driver Distraction Detection using De= ep Learning and Computer Vision.

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Kusuma.S, Divya Udayan.J, Aashay Sachdeva.

Objetivo: Fue creado un sistema que emplea aprendizaje profundo y visión por computadora para identificar la somnolencia del conductor. Se implementó un avanzado modelo que estima la posición de la cara y los ojos con el propósito de mejorar la precisión de = la detección y minimizar los errores de detección falsos tanto positivos como negativos.

= ·&nb= sp;        Código: A12 (Deep & Zheng, 2019)

Título: Leveraging CNN and Transfer Learning = for Vision-based Human Activity Recognition

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Samundra Deep, Xi Zheng

Objetivo: Aplicar un modelo de aprendizaje profundo (CNN) para predecir actividades humanas utilizando el conjunto de datos Wiezmann. Los resultados demuestran una alta precisión del 96,95% con el modelo VGG-16, lo que sugiere su utilidad en aplicaciones de reconocimiento de actividad humana.

 

= ·&nb= sp;        Código: A13 (Akbar et al., 2019)

Título: Runway Detection and Localization in Aerial Images using Deep Learning

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Javeria Akbar, Muhammad Shahzad, Muhammad Imran Malik, Adnan Ul-Hasan, Fasial Shafait.

Objetivo: Mejorar el aterrizaje automático de plataformas aéreas, como drones, mediante la detección y localización precisa de pistas de aterrizaje en imágenes aéreas complejas. = Se emplea un enfoque innovador que combina arquitecturas de aprendizaje profun= do y métodos tradicionales de procesamiento de imágenes.

= ·&nb= sp;        Código: A14 (Nassif et al., 2019)

Título: Speech Recognition Using Deep Neural Networks: A Systematic Review

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, Khaled Shaalan.

Objetivo: Revisar y analizar exhaustivamente los avances en el uso del aprendizaje profundo en aplicacio= nes de procesamiento del habla desde 2006 hasta 2018. Se examinan 174 artículos para identificar tendencias de investigación y destacar posibles áreas de interés futuro en este campo en constante evolución.

= ·&nb= sp;        Código: A15 (Harikrishnan et al., 2019)

Título: Vision-face recognition attend= ance monitoring system for surveillance using deep learning technology and compu= ter vision

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Harikrishnan J Arya, Suda= rsan Remya Ajai, A S Aravind Sadashiv.

Objetivo: Describir un sistema= de vigilancia y asistencia en tiempo real que utiliza redes neuronales artificiales para detectar rostros con aplicaciones en la asistencia universitaria y la seguridad laboral. Destaca una interfaz de usuario intui= tiva y logra una precisión del 74% en la detección de rostros en tiempo real, abordando la necesidad de un sistema fácil de usar para el reconocimiento facial.

= ·&nb= sp;        Código: A16 (Mantegazza et al., 2019)

Título: Learning Vision-Based Quadrotor Contr= ol in User Proximity.

Base de Datos: IEEE Xplorer

Año: 2019

Autores: Dario Mantegazza, Jerome Guzzi, Luca M. Gambardella, Alessandro Giusti.

Objetivo:= Describir el proceso de la capacitación de una red neuronal profunda para anticipar las instrucciones de vuelo del dron utilizando la información capturada por la cámara. Para lograr esto, se recopilan datos de entrenamiento al ejecutar un controlador básico creado manualmente, que se = basa en datos visuales de seguimiento de movimientos.

= ·&nb= sp;        Código: A17 (Yu et al., 2018)

Título:  The Design of Single Moving Object Detection and Recognition System Based on OpenCV.

Base de Datos: IEEE Xplorer

Año: 2018

Autores: Lijun Yu, Weijie Sun, Hui Wang, Qiang Wang and Chaoda Liu.

Objetivo: Proponer un algoritmo llamado FT para detectar y reconocer objetos en movimiento en visión por computadora, mejorando la precisión y eficiencia mediante métricas de distancia, gráficos de características y un clasificador en cascada Haar de baja complejidad. Los resultados experimentales indican su alta precisión y= su potencial en aplicaciones de ingeniería.

= ·&nb= sp;        Código: A18 (O’Mahony et al., 2020)

Título: Deep Learning vs. Traditional Computer Vision

Base de Datos: IEEE Xplorer.

Año: 2019

Autores: Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco Hernández, Lenka Krpalkova, Daniel Riordan, Joseph Walsh.

Objetivo: Generar una discusió= n en torno a la pertinencia de preservar el conocimiento de las técnicas tradicionales de visión por computadora. Además, el documento examinará la = posibilidad de fusionar las dos corrientes de la visión por computadora.

= ·&nb= sp;        Código: A19 (Manju & Valarmathie, 2021)

Título: Video analytics for semantic substance extraction using OpenCV in python

Base de Datos: Scopus

Año: 2021

Autor: A. Manju. P. Valarmathie<= o:p>

Objetivo: Establecer un marco = para la identificación de objetos en datos de video. Se presenta un enfoque que emplea OpenCV para estructurar los recursos de video con el propósito de extraer información semántica.

= ·&nb= sp;        Código: A20 (Sravya et al., 2021)

Título: Automate the fingerprint identificati= on process by image processing with Otsu thresholding.

Base de Datos: Google Scholar<= /o:p>

Año: 2021

Autor: Luis, Barba-Guaman; Carlo= s, Calderon-Cordova; Pablo Alejandro, Quezada-Sarmiento

Objetivo: Explorar fundamentos= teóricos para reconocer objetos por color a través de la umbralización en los tonos rojo, amarillo y verde. Se utiliza Python y OpenCV para mejorar la precisió= n de la detección de objetos de forma gratuita.

= ·&nb= sp;        Código: A21 (Estarita et al., 2017)

Título: Sistema de Reconocimiento = de objetos en tiempo real

Base de Datos: Google Scholar<= /o:p>

Año: 2019

Autor: Jorge Estarita, Andrés Jiménez, Jaime Brochero, Hugo Escobar, Silvia Moreno

Objetivo: Utilizar la tecnolog= ía de visión artificial para llevar a cabo el reconocimiento de un objeto. Este proceso implica la detección del objeto a través de una cámara web y, posteriormente, el software del sistema realiza un análisis de patrones para determinar si coincide con alguno de los objetos almacenados previamente en= una base de datos.

= ·&nb= sp;        Código: A22 (Rodríguez et al., 2015)

Título: Detection of fishes in turbulent wate= rs based on image analysis.

Base de Datos: Google Scholar<= /o:p>

Año: 2018

Autor: Rodríguez, Alvaro; Rabuña= l, Juan R.; Bermudez, Maria; Puertas, Jeronimo

Objetivo: Abordar la cuestión = de la segmentación automática de peces en ambientes acuáticos agitados, se emp= lea una red neuronal de tipo SOM (Mapas Autoorganizados) con el objetivo de identificar peces en imágenes capturadas por un sistema de cámara submarina instalado en una ranura vertical utilizada para el paso de peces en estruct= uras hidráulicas construidas en ríos con el fin de facilitar la migración de los peces río arriba.

= ·&nb= sp;        Código: A23 (Cadena et al., 2019)

Título: Facial recognition techniques using S= VM: A comparative analysis

Base de Datos: Google scholar<= /o:p>

Año: 2019

Autor: José Augusto Cadena Morea= no, Nora Bertha La Serna Palomino, Alex Christian Llano Casa.

Objetivo: Revisar el reconocimiento facial en 2D, destacando su relevancia en la seguridad y el ámbito laboral. Se analizan los resultados de investigaciones que emplean técnicas de extracción de características, clasificación de patrones y base= s de datos, con el fin de determinar las técnicas más eficientes para un reconocimiento facial óptimo en 2D, considerando la calidad de las bases de datos y las herramientas utilizadas.

= ·&nb= sp;        Código: A24 (Gadi et al., 2020)

Título: A Novel Python Program to Automate So= il Colour Analysis and Interpret Surface Moisture Content

Base de Datos: Springer<= /span>

Año: 2020

Autor: Vinay Kumar Gadi, Dastan Alybaev, Priyanshu Raj, Akhil Garg, Guoxiong Mei, Sekharan Sreedeep, Lingar= aj Sahoo

Objetivo:= Crear un script Python adicional con el propósito de automati= zar el proceso de análisis de color del suelo, con el fin de comprender mejor el nivel de humedad presente en la superficie.

= ·&nb= sp;        Código: A25 (Xia et al., 2020)

Título: Design and implementation of tunnel i= mage mosaic system based on Open CV.

Base de Datos: Springer<= /span>

Año: 2019

Autor: Yanhui Xia, Baisheng Nie, Yanan Zhang, Zhengyou Wang, Zhiqiang Wang, Shibo Liu, Baoyue Zhang

Objetivo: Desarrollar un enfoq= ue de mosaico de imágenes utilizando el algoritmo ORB en el campo de la visión artificial para abordar la limitación de ángulo de adquisición de la cámara= en túneles estrechos.

= ·&nb= sp;        Código: A26 (Khuushi et al., 2018)

Título: Real Time Mixing Index Measurement of Microchannels Using OpenCV.

Base de Datos: Springer<= /span>

Año: 2019

Autor: Khuushi, Vanadana Jain, Rajendra Patrikar, and Raghavendra Deshmukh.

Objetivo: Lograr cálculos en tiempo real del Índice de Masa (IM) para optimizar el sistema de microfluid= os, mediante la utilización de una herramienta de procesamiento de imágenes de código abierto, como OpenCV, basada en visión por computadora.

= ·&nb= sp;        Código: A27 (De Lima et al., 2021)

Título: Parallel hashing-based matching for real-time aerial image mosaicing.

Base de Datos: Springer<= /span>

Año: 2021

Autor: Roberto de Lima, Aldrich = A. Cabrera Ponce, José Martínez Carranza.

Objetivo: Desarrollar un emparejador de características eficiente basado en el descriptor ORB (Orien= ted FAST and Rotated BRIEF) y su implementación en tablas hash. Este enfoque ti= ene como finalidad ampliar las aplicaciones de generación de mosaicos aéreos, permitiendo la creación de panorámicas de alta resolución en áreas extensas= y la recopilación de datos detallados de manera simultánea.=

= ·&nb= sp;        Código: A28 (Buzzin et al., 2019)

Título: Advances in Intelligent Systems and Computing.

Base de Datos: Springer<= /span>

Año: 2018

Autor: Alessio, Buzzin; Rita, Asquini; Domenico, Caputo; Giampiero, De

Objetivo: Respaldar y fomentar= investigaciones innovadoras realizadas por estudiantes, investigadores, académicos, científ= icos y profesionales de la industria de la próxima generación. Esto se llevó a c= abo en un entorno compartido con el fin de promover el beneficio mutuo y la colaboración en el intercambio de conocimientos.

= ·&nb= sp;        Código: A29 (Rao et al., 2021)

Título: Artificial intelligence a= nd robotics.

Base de Datos: Springer<= /span>

Año: 2018

Autor: Javier Andreu Perez, Fani Deligianni, Daniele Ravi and Guang-Zhong Yang

Objetivo: Definir una máquina = con inteligencia, es esencial considerar sus implicaciones tanto en el ámbito operativo como en el social. Dado que se estima que el mercado de la Inteligencia Artificial (IA) llegará a los 3 billones de dólares en 2024, t= anto la industria como los organismos gubernamentales de financiación están realizando inversiones significativas en IA y robótica. <= /p>

 

= ·&nb= sp;        Código: A30 (Díaz-Toro et al., 2018)

Título: Dense tracking, mapping and scene labeling using a depth camera.

Base de Datos: Springer<= /span>

Año: 2018

Autor: Andrés Alejandro Díaz-Tor= o; Lina María Paz-Pérez; Pedro Piniés-Rodríguez; Eduardo Francisco Caicedo-Bra= vo

Objetivo: Introducir un sistema que emplea una cámara de profundidad, específicamente el sensor Kinect, con= el propósito de realizar el seguimiento detallado, la reconstrucción tridimensional y la detección de objetos en ambientes que se asemejan a entornos de escritorio.

= ·&nb= sp;        Código: A31 (Auysakul et al., 2019)

Título: Development of Multi-process for Video Stitching in the AVM Applications Based on OpenCV.

Base de Datos: Springer<= /span>

Año: 2019

Autor: Jutamanee Auysakul, He Xu, and Vishwa= nath Pooneeth.

Objetivo: Desarrollar un algor= itmo de multiproceso que permita unir vistas panorámicas completas capturadas de= sde múltiples cámaras de visión periférica en tiempo real, el propósito es mejo= rar la eficiencia y la calidad de la transmisión en vivo en aplicaciones de monitorización automovilística, evitando la necesidad de recalcular parámet= ros constantemente.

= ·&nb= sp;        Código: A32 (Johnston & Chazal, 2018)

Título: A review of image-based automatic fac= ial landmark identification techniques.

Base de Datos: Springer<= /span>

Año: 2018

Autor: Benjamin Johnston, Philip= de Chazal.

Objetivo: Este artículo tiene = como propósito realizar una revisión de la literatura actual relacionada con la = señalización facial, resaltando los notables progresos alcanzados en este ámbito. <= /o:p>

Resultados

Siguiendo la metodología sugerida, que involucra la implementa= ción de cuatro etapas específicas, se aplicaron tres criterios o filtros para la selección de artículos académicos. En la fase inicial, se identificaron aproximadamente 145 trabajos en español e inglés. En esta etapa, se observó= que la mayoría de los trabajos se encontraban en Google Scholar (41%) y en IEEE (34%), como se puede apreciar en la figura 2.

Figura 2

Resultados de la búsqueda según los criterios de selecció= n

Posteriormente, al aplicar el primer filtro que abarcó el perí= odo de publicación de 2015 a 2022, se logró descartar aproximadamente el 40% de= los artículos (63 en total), resultando en 82 artículos relacionados. De estos,= el 49% pertenecen a IEEE Xplorer, el 24% a Google Académico y el 12% a Springe= r.

Tras aplicar los criterios de selección, se obtuvo un total de= 32 artículos. Es relevante mencionar que el 56% de estos artículos se recupera= ron de la base de datos IEEE Xplorer, mientras que el 28% proviene de Springer.=

Figura 3

Total de artículos encontrados según la base de datos

<= /o:p>

 

 

Figura 4

Análisis de los artículos publicados por año

<= /o:p>

Después de organizar la documentación de acuerdo con la metodología SLR (Kulkarni et al., 2020), procedimos a realizar una revisión sistemática de los contenido= s y contribuciones de los 32 artículos, centrándonos en las preguntas de investigación definidas. El filtro utilizado se demostró eficiente al seleccionar los artículos relevantes, como se muestra en la ilustración 3, = que indica que la mayoría de estos artículos provienen de fuentes publicadas en IEEE Xplore. También se realizó un análisis breve basado en el año de publicación, como se presenta en la ilustración 4, donde se observa un aume= nto en la cantidad de publicaciones en el año 2019, y se nota que la mayoría de ellas son relevantes para los últimos cuatro años. La siguiente fase involu= cra el análisis de los resultados obtenidos en respuesta a las cuatro preguntas orientadoras, y a continuación, enumeramos los resultados más destacados.

RQ1: ¿Cuáles son las técnicas de procesamiento de imágenes más avanzadas en la actualidad?

La visión por computadora se basa en técnicas fundamentales como la inversión, umbralización, binarización, transformaciones, filtrado, histogramas, segmentación, entre otras no obstante, en= los últimos cinco años, han surgido nuevas técnicas en el campo de la visión por computadora o visión artificial, ejemplificadas por:

·      =    Aprendizaje profundo:= El aprendizaje profundo representa una técnica de vanguardia en el ámbito del procesamiento de imágenes, como se puede observar en los artículos que abar= can desde Estarita et al. (2017) hasta Rao et al. (2021= ). Esta disciplina del aprendizaje automático desempeña un papel fundamental y sirve como base para diversos campos, incluyendo la Inteligencia Artificial= , la Minería de Datos y la Visión por Computador, tal como se menciona en Rao et al., (2021). Su capacidad para aprender funciones complejas, especialmente cuando la información es intrincada, es notoria. L= os sistemas neuronales simulados, a menudo denominados aproximadores universal= es, tienen la capacidad de modelar cualquier función, independientemente de su complejidad, con tan solo una capa oculta, como se describe en (Khuushi et al., 2018). Además, el aprendizaje profundo= ha experimentado mejoras significativas gracias al aumento en la capacidad de cómputo de los dispositivos, lo que incluye un mayor poder de procesamiento= y memoria.

·      =    Redes neuronales de convolución: = En un total de 7 artículos, se resalta el uso de la detección de imágenes a tr= avés de una red neuronal convolucional conocida como CNN, como se describe en los artículos (Khuushi et al., 2018; De Lima et al., 2021). Además, en el artículo (Xia et al= ., 2020), se menciona la arquitectura de una red neuronal denominada YOLOv3, que se utiliza para el reconocimiento de animales con un alto grado= de certeza.

·      =    Vectores de máquinas de soporte (SM= V): Esta técnica de clasificación de vectores se utiliza para el reconocimiento faci= al (Khuushi et al., 2018; Yu et al., 2018).

RQ2: ¿Cuáles son las aplicaciones más destacadas en la actualidad?

Según los datos recopilados, es posible resaltar diversas áreas de aplicación, siendo la Inteligencia Artificial una de las más relevantes. Es= ta se encuentra estrechamente ligada al aprendizaje profundo y las redes neuronales. Por ejemplo, en el estudio de Cadena et al. (2019), se emplea la Inteligencia Artificial en el proceso de detección de la evolución de la diabetes en niños. En este contexto, la inteligencia artificial se utiliza = para analizar imágenes y se aplican dos métodos de redes convolucionales, como la arquitectura VGGNET y ResNet. Estas redes se emplean para la extracción de características de las imágenes oculares y para establecer conexiones residuales en el proceso (Johnston & Chazal, 2018).

·         Redes Neuronales:= Según los autores Xia et al. (2020), De Lima et al. (2021) y Díaz-Toro et al. (2= 018), se sugiere la implementación de sistemas de clasificación y reconocimiento de imágenes en tiempo real con alta confiabilidad utilizando algoritmos neuronales, como e= n el caso del reconocimiento de actividad humana (HAR). Esto es relevante dado q= ue los métodos convencionales requieren sensores corporales para registrar la actividad humana (Auysakul et al., 2019). En esta líne= a, se aprovecha la información de color RGB y se aplican tres redes neuronales convolucionales (CNN) basadas en aprendizaje profundo (De Lim= a et al., 2021). Se enfrenta el desafío del sobreajuste, que ocurre cuando el modelo se ajus= ta demasiado a los datos de entrenamiento, disminuyendo su capacidad de generalización en datos nuevos y afectando el rendimiento predictivo. Para abordar esto, se exploran estrategias como la agrupación, que regula las re= des neuronales para evitar la selección de valores extremos o mínimos (Rao et al., 2021).

·      =    Visión en robótica: En el campo de la robótica, las técnicas de visión artificial de última genera= ción están transformando la percepción y la interacción de los robots con su entorno. Estas técnicas permiten a los robots reconocer objetos, sortear obstáculos y colaborar de manera segura con humanos (Harikrishnan et al., 2019). Su integración está revolucionando aplicaciones como = la navegación autónoma de vehículos y drones, así como la asistencia en cirugí= as precisas. Esta convergencia de robótica y visión artificial representa una frontera tecnológica en constante evolución con vastas aplicaciones y poten= cial para mejorar nuestra vida cotidiana.

·         Aplicaciones relacionadas con la Medicina: En el estudio de Cadena et al. (2019), se propone = la aplicación de deep learning para diagnosticar la retinopatía diabética en pacientes mediante la evaluación de imágenes de sus ojos. Además, en Swain = et al. (2018), se presenta una herramienta automatizada que utiliza Python y OpenCV para calcular la parasitemia en frotis de sangre periférica, emplean= do técnicas de procesamiento de imágenes como el filtro de Gauss y el análisis= de histogramas de color.

RQ3: ¿Cuáles son los ejemplos de aplicaciones que están influyendo en la investigación en el ámbito del procesamiento de imágenes?=

·      =    El aprendizaje profundo a través de re= des neuronales ofrece un vasto abanico de posibilidades en el ámbito de la investigación, = un ejemplo concreto de esto es el desarrollo de redes neuronales pre entrenadas como YOLO (Cadena et al., 2019; Xia et al., 2020; De Lima et al., 2021), las cuales permiten a los investigadores enfocarse en los resultados específico= s de sus estudios correspondientes.<= /span>

·         CNN, que significa "red neuronal convolucional", es el pionero entre los métodos de aprendizaje profund= o y consta de tres componentes fundamentales. Por otro lado, IF-CNN se refiere = a un método diseñado para permitir una inferencia rápida al reducir la carga computacional. En este marco, se inicia construyendo un conjunto de modelos= que incluyen diferentes niveles de complejidad en las redes neuronales convoluc= ionales (CNN). Este enfoque se describe en detalle en Rao et al. (2021)= .

RQ4: ¿Cuál es el panorama futuro de la visión artificial dentro de los Sistemas Inteligentes?

·      =    La visión por computadora y el aprendi= zaje automático han generado un nuevo panorama tecnológico que abarca diversas industrias, desde la salud hasta la realidad virtual y la automatización de vehículos, con aplicaciones que incluyen la identificación de enfermedades y experiencias de inversión. IEC se ha interesado en cuestiones de seguridad = y rendimiento en robots aspiradores y cortacésped para el hogar y se utiliza en industrias como la informática y la automatización industrial (Pavithra & Suresh, 2019).

·         La visión artificial se ha vuelto efic= az en la detección de retinopatía diabética en países con recursos limitados, = lo que complementa la estrategia VISIÓN 2020 para mejorar la atención oftalmológica, los sistemas de inteligencia artificial pueden identificar riesgos sistémicos y ofrecen resultados más rápidos que los evaluadores humanos. Esto se refleja en áreas verdes en imágenes de fondo de retina, que indican las contribuciones del modelo de IA en casos de retinopatía diabéti= ca referible (Rao et al., 2021).=

Durante la selección de los 32 artículos, se observó que la mayoría de las fuentes = sobre técnicas de procesamiento de imágenes provienen de IEEE y Springer. Aunque = hay una abundancia de información sobre visión artificial y redes neuronales, la investigación se enfoca en artículos en inglés seleccionados de fuentes confiables, siendo más del 50% de IEEE y el resto en su mayoría disponibles= en Springer,= además, la mayo= ría de los artículos o congresos se han indexado en 2019, con un análisis leve = que incluye datos hasta el último trimestre de 2021.

El análisis de las dos fuentes, IEEE y Springer revela que las aplicaciones de visión por computadora se consideran un campo de vanguardia; el examen de l= as preguntas de investigación también destaca la diversidad de aplicaciones en visión por computadora y la estrecha relación entre las redes neuronales y = el aprendizaje profundo, especialmente en sistemas de dispositivos inteligentes utilizados para clasificación, predicción y detección de imágenes procesada= s.

Finalmente, se llevó a cabo un análisis en relación con las palabras clave empleadas en= la revisión, lo que implicó la creación de una tabla que muestra la frecuencia= de repetición de estas palabras clave en las obras seleccionadas durante la fa= se final del proceso, como se muestra a continuación:

Figura 5

Resultados de las palabras usadas en la búsqueda

<= /o:p>

 

Conclusiones

·      =    La mayoría de los artículos relevantes relacionados con el tema en cuestión fueron escritos en inglés y se localiz= aron en bases de datos como IEEE y Springer. No se logró obtener una cantidad significativa de información de Scopus debido a los costos asociados a su utilización.

·      =    Los sistemas inteligentes tienen aplicaciones en una amplia variedad de campos, pero en este estudio en particular, se enfocan principalmente en la implementación de una técnica q= ue involucra la clasificación y detección de objetos en tiempo real mediante el uso de redes neuronales convolucionales.

·      =    Se puede concluir que la mayoría de las aplicaciones de vanguardia en visión artificial han sido concebidas, desarrolladas y registradas principalmente a partir de 2017, esto sugiere q= ue los investigadores ecuatorianos podrían encontrar oportunidades valiosas pa= ra explorar y contribuir en este ámbito, ya que existen numerosas aplicaciones potenciales que podrían ser desarrolladas en beneficio de Ecuador.

·      =    Como dato relevante para futuros traba= jos, es importante destacar que una parte significativa de los algoritmos de pun= ta en el campo de la visión artificial se crean utilizando Python y OpenCV como sus principales herramientas de desarrollo.

Conflicto de intereses

Los autores declararan que no existe c= onflicto de intereses en relación con el artículo presentado.

Referencias Bibliográficas

Akbar, J., Shahzad, M., Malik, M. I., Ul-Hasan, = A., & Shafait, F. (2019). Runway Detection and Localization in Aerial Ima= ges using Deep Learning. Digital Image Computing: Techniques and Applicati= ons, DICTA, 1(1), 1-8.=

Auysakul, J., Xu, H., & Pooneeth, V. (2019). Development of Multi-process for Video Stitching in the AVM Applications Based on OpenCV. Proceedings of International Conference on Mechatroni= cs and Intelligent Robotics, 1(1), 1013-1020.

Bellemo, V., Lim, Z. W., Lim, G., Nguyen, Q. D., Xie, Y., Yip, M. Y., &. Tan, G. S. (2019). Artificial intelligence us= ing deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health, 1(1), 35-44.

Berjon, D., Carballeira, P., Cabrera, J., Carmona, C., Corregidor, D., Diaz, C., &. García, N. (2020). FVV Live: Real-Time, Low-Cost, Free Viewpoint Video. 2020 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2020, 1<= /i>(1), 1-2.

Bhattacharya, T., & Chatterjee, A. (2017). Evaluating performance of some common filtering techniques for removal of Gaussian noise in images. 2017 IEEE International Conference on Power, Control, Signals, and Instrumentation Engineering (ICPCSI), 1(1), 1981–1984.

Buzzin, A., Asquini, R., Caputo, D., & De, G. (2019). Sensors and Image Processing. En Advances in Intelligent Systems and Computing (Vol. 651, pp. 137-142). Singapore: Springer Nature Singapore Pte Ltd. 2018.

Cadena Moreano, J. A., La Serna Palomino, N. B., & Llano Casa, A. C. (2019).= Facial recognition techniques using SVM: A comparative analysis. Enfoque UTE, 3(98-111), 10.

Chandan, G., Jain, A., & Jain, H. (2021). Re= al Time Object Detection and Tracking Using Deep Learning and OpenCV. Pro= ceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, 1(1), 1305-1308.

De Lima, R., Cabrera-Ponce, A. A., & Martinez-Carranza, J. (2021). Parallel hashing-based matching for real-time ae= rial image mosaicing. Journal of Real-Time Image Processing, 18(1), 143-156.

Deep, S., & Zheng, X. (2019). Leveraging CNN= and Transfer Learning for Vision-based Human Activity Recognition. 29th International Telecommunication Networks and Applications Conference (ITN= AC), 1(1), 1-4.

Díaz-Toro, A. A., Paz Pérez, L. M., Piniés Rodrí= guez, P., & Caicedo Bravo, E. F. (2018). Dense tracking, mapping and scene labeling using a depth camera. Revista Facultad de Ingeniería Universidad de Antioqui, 86(1), 54-69.

Estarita, J., Jim, A. B., J., E., & Moreno, S. (2017). Sistema de Reconocimient= o de objetos en tiempo real. Investigación y desarrollo en TIC, 8(2), 41-45.

Gadi, V. K., Alybaev, D., Raj, P., Garg, A., Mei, G., Sreedeep, S., & Sahoo= , L. (2020). A Novel Pyth= on Program to Automate Soil Color Analysis and Interpret Surface Moisture Content. International Journal of Geosynthetics and Ground Engineering= , 6(2), 1-8.

Guo, Z., Wu, G., Shi, X., Sui, M., Song, X., Xu,= Y., & Shibasaki, R. (2019). Geosr: A Computer Vision Package for Deep Learning Based Single-Frame Remote Sensing Imagery Super-Resolution. I= nternational Geoscience and Remote Sensing Symposium, 1(1), 3376-3379.<= /span>

Harikrishnan, J., Sudarsan, A., Sadashiv, A., &a= mp; Ajai, R. A. (2019). Vision-face recognition attendance monitoring system = for surveillance using deep learning technology and computer vision. Inter= national Conference on Vision Towards Emerging Trends in Communication and Network= ing (ViTECoN), 1(1), 1-5.

Ho, P. T., Albajez, J. A., Santolaria, J., & Yagüe-Fabra, J. A. (2022). <= /span>Study of Augmented Reality Based Manufacturing f= or Further Integration of Quality Control 4.0: A Systematic Literature Revie= w. Applied Sciences (Switzerland), 12(4), 1-51.

Jain, B. D., Thakur, S. M., & Suresh, K. V. (2018). Visual Assistance for Blind Using Image Processing. Internatio= nal Conference on Communication and Signal Processing (ICCSP), 1(1), 0499-0503.

Johnston, B., & Chazal, P. (2018). A review = of image-based automatic facial landmark identification techniques. Euras= ip Journal on Image and Video Processing, 1(1), 1-23.<= /p>

Khaliluzzaman, M., Yakub, M., & Chakraborty,= N. (2018). Comparative Analysis of Stairways Detection Based on RGB and RGB-D Image. International Conference on Innovations in Science, Engineering= and Technology (ICISET), 1(1), 519–524.

Khuushi, J. V., Patrikar, R., & Deshmukh, R. (2018). Real Time Mixing Index Measurement of Microchannels Using OpenCV.= In VLSI Design and Test: 22nd International Symposium, 1(1), 278-284.

Kulkarni, B. P., Krishna, S. S., Meenakshi, K., Kora, P., & Swaraja, K. (2020). Performance Analysis of Optimization Algorithms GA, PSO, and ABC based on DWT-SVD watermarking in OpenCV Pytho= n Environment, 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 1(1), 1-5.

Kusuma, S., Udayan, J. D., & Sachdeva, A. (2019). Driver distraction detection using deep learning= and computer vision. 2nd International Conference on Intelligent Computing= , 1(1), 289-292.

Lee, H. L., Kang, J., Lim, J., Kim, S. C., Jeon,= S. O., & Lee, J. Y. (2023). Hybridization of short-range and long-range charge transfer excited states in multiple resonance emitter. Nature communications, 14(1), 1-8.

Manju, A., & Valarmathie, P. (2021). Video analytics for semantic substance extraction using OpenCV in python. Jo= urnal of Ambient Intelligence and Humanized Computing, 12(3), 4057-4066.

Mantegazza, D., Guzzi, J., Gambardella, L. M., &= amp; Giusti, A. (2019). Learning Vision-Based Quadrotor Control in User Proxim= ity. 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI= ), 1(1), 369-369.

Mohanasundaram, S., Krishnan, V., & Madhubal= a, V. (2019). Vehicle Theft Tracking, Detecting and Locking System Using Open CV. 5th International Conference on Advanced Computing & Communica= tion Systems (ICACCS), 1(1), 1075-1078.

Moreno Ligero, M., Lucena Anton, D., Salazar, A., Failde, I., & Moral Muñoz, J. A. (2023). mHealth Impact on Gait and Dynamic Balance Outcomes in Neurorehabilitation: Systematic Review and Meta-analysis. Journal of Medical Systems, 47(1), 1-19.=

Mostafi, S., Zhao, W., Sukreep, S., Elgazzar, K., & Azim, A. (2022). Real-Time Jaywalking Detection and Notification Sy= stem using Deep Learning and Multi-Object Tracking. GLOBECOM 2022 - 2022 IE= EE Global Communications Conference, 1(1), 1164-1168.<= /p>

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access, 7(1), 19143-19165.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., & Hernandez, G. V. (2020). Deep Learning vs. Traditional Computer Vision. Advances in Intelligent Systems and Computing, 943(105), 128-144.

Pavithra, R., & Suresh, K. (2019). Fingerpri= nt Image Identification for Crime Detection. International Conference on Communication and Signal Processing (ICCSP), 1(1), 0797-0800.

Rao, T. V., Gaddam, A., Kurni, M., & Saritha= , K. (2021). Reliance on artificial intelligence, machine learning and deep learning in the era of industry 4.0. Smart Healthcare System Design: Security and Privacy Aspects, 1(1), 281-300.

Rodríguez, A., Rabuñal, J. R., Bermudez, M., &am= p; Puertas, J. (2015). Detection of fishes in turbulent waters based on image analysis. Lecture Notes in Computer Science (including subseries Lectu= re Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 79= 31(2), 404-412.

Sravya, C., Niharika, C. S., Sai, D., & Redd= y, D. R. (2021). Turkish Journal of Computer and Mathematics Education Fingerprint Image Recognition for Crime Detection Research Article Turkish Journal of Computer and Mathematics Education Research Article. Computer and Mathematics Education, 12(12), 2230-2237.

Sánchez Meca, J., Sánchez, J., & Estrada Lorenzo, J. (2010). Cómo realizar una revisión sistemática. REDINED - Red de Información Educativa, 38(1= 666), 53-64.

Sasaki, H., Horiuchi, T., & Kato, S. (2017). A study on vision-based mobile robot learning by deep Q-network. 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 1(1), 799-804.

Shubham, M., Verma, V., Akhtar, N., Chaturvedi, = S., & Perwej, Y. (2022). An Intelligent Motion Detection Using OpenCV. International Journal of Scientific Research in Science, Engineering and Technology, 40= 99(1), 51-63.

Sriratana, W., Mukma, S., Tammarugwattana, N., & Sirisantisamrid, K. (2018). Application of the OpenCV-Python for Personal Identifier Statement. 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), 1(1), 1-4.

Swain, M., Dhariwal, S., & Kumar, G. (2018).= A Python (Open CV) Based Automatic Tool for Parasitemia Calculation in Peripheral Blood Smear. Proceedings - 2nd International Conference on Intelligent Circuits and Systems, ICICS 2018, 1(1), 445-448.

Xia, Y., Nie, B., Zhang, Y., Wang, Z., Wang, Z., Liu, S., & Zhang, B. (2020). Design and implementation of tunnel image mosaic system based on open CV. International Journal of System Assura= nce Engineering and Management, 11(4), 792-797.

Yu, L., Sun, W., Wang, H., Wang, Q., & Liu, = C. (2018). The Design of Single Moving Object Detection and Recognition Syst= em Based on OpenCV. IEEE International Conference on Mechatronics and Automation (ICMA), 1(1), 1163-1168.

Yudin, D., Sotnikov, A., & Krishtopik, A. (2019). Detection of Big Animals on Images with Road Scenes using Deep Learning. Proceedings - 2019 International Conference on Artificial Intelligence: Applications and Innovations, IC-AIAI, 1(1), 100-103.

 

 

 

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la Revista Ciencia Digital.

&nbs= p;


 

 

El artículo queda en propiedad de la revista y, por tanto, su publicación parcial y/o total en otro medio tiene que ser autoriz= ado por el director de la Revista Cien= cia Digital.

 

 

 

 

 


 

------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/preview.wmf Content-Transfer-Encoding: base64 Content-Type: image/x-wmf AQAJAAADMhABAAAAIRABAAAABQAAAAwCAAG1ACEQAQBBCyAAzAAAAbUAAAAAAAABtQAAAAAAKAAA ALUAAAAAAQAAAQAYAAAAAAAAIAIAAAAAAAAAAAAAAAAAAAAAAP///wAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAD///8AAAD///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////8AAAAA////AAAA//////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////7/Dwj5GRhYeHiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLAAAAAP///wAAAP////////////////////////////////////////////// ///////////////////////////////////////////////////////////////+/v////////// /////////////////////////////////////////////////////////////////////8vLy3+A gImLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLiwAAAAD///8AAAD///// ///////////////////////////////////////////////////////////////////////+/v7/ ///////////////////////////////X08XQyrPy6dvy7d/07+Hu59nu6uL///7///////////// ///////////////////////////////////9/f2foKCCg4OJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uys5+Jn5+Ji4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4udn5+Ji5+Ji4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4sAAAAA////AAAA///////////////////////////////////////+ ///9///6+Pfw8fPx8vPs8/Dn6+XX29TE29fM+vr3////////////////6enp4+Tk+fv7////08q3 sJRjso9VmnQ7wKV0r5RksJl28Ovi//////////////////////////////////////////////// ////4+PjhoaGiYmJiouLnYuL2ceznbPHnYuLnbOfnYufsrOfiZ+znYuLsrOfiZ+fnYuLxseznZ+z xrOznbOziZ+fnYuLnbOznYuLsrOfiZ+ziYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLnYuLsrOziYuLnYuLsrOfnZ+zsseziZ+fnYuLsrOzsrOziZ+fnYuLsrOfiZ+ziYuLsrOfnYuf srOziZ+zsrOfiYufsp+LibOzxp+fibOziYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLAAAAAP///wAA AP////////////////////////////////7//////87BpKV/QcWyjsW1ksu2f7igbauWaMi4mvLv 7P3+/vv+/v///////////6CgoGpqaoOFhvn6+/79+Ozm1O3p2dfPv/Du5Pb28PDt6PDu6/////// //////////////////////////////////////////39/f///7m5uYODg4uMjImLi8azn4mfs4mL i52fn4mLn52fn4mLn4mLi7Kfn4mfs4mLi7Kfn4mLn7Kzn52fn4mLn52Li52fn4mLi52fn4mLn4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi52Li8bHs4mfs4mLi7Kfn4mLn7Kfn4mf n52Li52fn7Kzn4mLn4mLi52fn4mLn4mLi8azn4mfs7Kzs4mLn7Kzn52Ln7LHs4mLn7Kfn4mfs4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4mLi4mLi4mLi4mLiwAAAAD///8AAAD////////////////////////////////9 ///////GroCWVwDk2ruvjFKdZhO+o2/r6N7///+5ucJjYmlmamCoqafDw8Ojo6Orq6tpaWdnaWeH i4zO0NGhoaGLjIqbm5x8fX2HiYmIiozT09X///////////////////////////////////////// ///////+/v7////29vaTk5OEhoaJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4sAAAAA ////AAAA////////////////////////////////////////x7GGkl4S3ti+rH86n2EE5dm7//// ////n6CffXt4zczIZGNiiYmKc3Nzb29v19jXfoB+cnJwvLy8en5/0dLSfn2Ad3Z4aGloa2ppx8fH ////////////////////////////////////////////////////////////09PTfn9/gIODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYODgYOD gYODgYODgYODgYODgYODgYODgYODgYODgYODAAAAAP///wAAAP////////////////////////// /////////////8yzhZFeE93XvbSDPqRiBeDOu////////5+fm5qZlf///3V0dXNzc4yMjHp6eoWF hW1tbH59e5SUk2NlZaqrrKGipGJiZHh6enp5ecjHx/////////////////////////////////// /////////////////////////////729vaqrq66urq6urq6urq6urq6urq6urq6urq6urq6urq6u rq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6u rq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6u rq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6u rq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6u rq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6u rq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6urq6u rgAAAAD///8AAAD////////////////////////////////+///////QtYOYXxDd172zg0CjYAbg zr7///////+enp9lZWacnJxdXV2YmJinp6fn5+esrKzDw8OWlpadnZ1fX1+tra3AwMCysrLk4+Nz c3PAwMD///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////8AAAAA////AAAA//////////////////// /////////////v//////z7WDl18R3de9tINApGEG4M69/////v7+1NTUmpqamJiYzMzM6urq2dnZ ////////////19fX6+vrvLy8////////////////vLy86enp//////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////AAAAAP///wAAAP////////////////////////////////7//////9C1g5dfEd3XvbOD QKRiBuDOvv////////v7+9bW1tHR0eXl5evr6/X19cbGxtLS0uPj4/X19evr6/Hx8cLCwtHR0eXl 5eLi4s7OztjY2P7+/v////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////wAAAAD///8AAAD///////////// ///////////////////////////LsoiTXxLe2L61gUKiYQffz7z////7+/t9fX1iYmKCgoKPj4+D g4N6enpycnKIiIiMjIy3t7d8fHx4eHiFhYWNjY15eXltbW1qampoaGj6+vr///////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////8AAAAA////AAAA////////////////////////////////////////y7GDlFoG 3da4voA/pmEF39K2////4ODgV1dX5eXl////u7u7ampqXV1deXl5kJCQhISErq6uX19fcHBw+vr6 vr6+enp6mJiYcnJyZ2dn+fn5//////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////AAAAAP///wAAAP////// /////////////////////////////////8SvhZdsKeXgzLt/NKBXANzNsv///+Li4lRUVN3d3f// /729vZOTk56ennd3d5aWlnNzc3Fxcbq6upWVlXZ2doqKipWVlZycnHJycpqamv7+/v////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////wAAAAD///8AAAD////////////////////////////////////9///s 7erz8ev6+PSefEKqg07r4tb+/v/8/P2RkZFcXFx1dXWZmZmrq6v////29vb4+Pj4+Pj4+Pj///// ///19fXGxsadnZ319fX09PT///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////8AAAAA////AAAA /////////////////////////////////////v//////////+/v77+/e/////v///v79////+/v7 2dnZ1NTU7e3t9fX1////////////////////////////////+/v79PT0//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////AAAAAP///wAAAP////////////////////////////////// ///////+/v/+/v////////////7+//////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////wAAAAD/ //8AAAD///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////8AAAAA////AAAA//////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// AAAAAP///wAAAP////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////wAAAAD///8AAAD///////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////8AAAAA////AAAA//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////AAAAAP///wAAAP////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////wAAAAD///8AAAD///////////////////////////////////////////////// //////////////////////////////////////////////////////9HR0cRERBQU1Bpa2hRU1AO Dg0ODg9sbGwgICAAAABBQEFkZGQFBQUAAABgYGA8PDwAAAD///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////8AAAAA////AAAA//////// //////////////////////////////////////////////////////////////////////////// ////////////////////jI+NZ2pmra2t3Nzcq6uraW1pc3dzX2BeYmVhe4B8Y2ZjYGJfcnZzd3x3 YWJgYGFfcXVx//////////////////////////////////////////////////////////////// ////////////////////////////2////9vb//////////////////////////////////////// ////////////////////////////////9f///+fb//////////////////////////////////// ////////////////////////////////////////////////////9f//687b/+fb//////////// ////////////////////////9f///+fb//////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////AAAAAP///wAAAP////////////////////////////////////////// /////////////////////////////////////////////////////////////66xroaIhqOio4KC gry7vIyPjKOmo5SUlKGioJWalLO1s56enoCDgJqfmZubm5KSkpebl/////////////////////// /7bb27a227bbtmY6Zrbbtra229vbtpC225CQZpBmkNvb25C225CQkNuQZtv//5C2traQttvb22a2 25A6OtvbtraQttvbtpCQtra2kJC227aQZra2trbb25CQkJC2ttu2kLb/25BmkPXbtuvO2+vnt+Gb Z+vO2//nt+HOt+vnt/XOt+v/2+GbkfX/29bO2+ubBNbOt+G1kevnt+vOt/Xn2+HOt9aAZ+G1keHO t+u1t+u1Z/X/2+HO2/XOt9a1t/Xnt+HOt+G1keG1kevOt//nt+HOt+u1kdbOkeu1kf/n29a9nevO vPXnt/Xn29u9h+vOt+vnt+G1t/Xnt+HO2/XOkeG1t+GbZ+G1keu1kfXnt+u1t+vOkf//2/////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////wAAAAD///8AAAD/ //////////////////////////////////////////////////////////////////////////// //////////////////////////+xs7B3enezsrPR0dG7u7trbmq3uLaNjI24uLhzdHKVlZWOjY6X mJd9f3yura6SkZKGiIb///////////////////////+2tv/b29v/29u229vb29vb29v/29vb2//b 27a2ttv//9vb2//bttvb27b///+229ucttv/25zb2/+2trb//9u82/+dnZzb29vb27bb2//b27bb 29vb//+829vb27zb29v//9u2ttv//9vrztv/59vrzrf15////9v15//159vr59v//7fr5////7f1 5//rzpH1///1///1/9v159v//9v15//rztv159v15//159v1ztv//9v15//159v159v159v157fr 59v1/9v159v/59v15//1/9v159vhtbf//7f1///15///59v1///159v159v//9vhzv//zpHrztvr zrf159vr57f1/9v159v157f1///159v//9vb////29v////////////////b//+2ttv/29v///// //////////////////////////////////////////////////////////////////////////// //////////////////////////8AAAAA////AAAA//////////////////////////////////// ////////////////////////////////////////////////////////////////////qaupn6We fYB9mpqZe358o6milpmVlJSTjpCOl56Xen16mpqZmZ2Zl52XhIWEiImIk5iT//////////////// ////////trbb29vbZra2kGZm29u2ttvbtpC2ZraQ27aQkLa2traQkLbbtmZm2//bZmZmtra229u2 kLbbtraQtrbbttvbkDpmkJCQtv/bkDpm29u2kLbbtpCQ29vbtrbbtraQkLbbkGaQ29u2kLbbtpCQ ttu2kGZmttvbkJCQkLa2traQtraQtrbb29u2kLa2tra2kJC2tra2ttu2tmZmZra2tpCQ2//bkLa2 tpC229vbkLa2ZjpmkJCQkLa2tpC2/9u2tra2Zra2tpBmttvbtra2kLbbZmaQtraQvLaQkLbbtpC2 27yd29vbtra2kLbbtpCQ29vbkLbbtpCQkJC2kJCQttu2kNvbkGZm29u2oZ2dkLa2tpC229vbtra2 kJC2kLa2kJCQkLaQkGZm29vb29vbZpC2ZpCQkJCQtpBmkLbb29u2trbb/9u2//////////////// ////////////////////////////////////////////////////////////////////AAAAAP// /wAAAP////////////////////////////////////////////////////////////////////// /////////////////////////////////8HEwsHFwb/Dv6GjoL/Dv8TIxL/Dv6SnorG0sMnNyLq+ uqGkn73BvMXKxqyvq62wrMHEwf///////////////////////7a2/9u2ttvb27a2tv//29vb/9v/ 29v/29vb29vb/9vbttvb/9v/2///27a229vb2//b29vb/9vb29vb2///27bb29vb2///27a229vb ttvb/7a2tv//29vb/9vbttvb/9vbtv///9vb/9u22///27a2ttv//9v/29vb29vb29vbttvb//// 27bb27a229v/ttvb2///27a2ttv//9v/////27bb27a22///ttvb/7a229vb29vb/9vb2//b29vb /9v/27aQkNvb/9vbtra229vbttv//9vbttvb/9vb2//b27a229vbttvb27bbttvb29vb29vb29vb 29v//9vb29v/27a2tv//29vb27bb27a22///ttvb/9vb29vb/9vb29vb27a2kNvb/7a229vb29vb ttvb/9vbtrbb//+2tra229vbtv////////////////////////////////////////////////// /////////////////////////////////wAAAAD///8AAAD///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////8A AAAA////AAAA//////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////AAAAAP///wAAAP////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////wAAAAD///8AAAD///////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////VvaDe1sjl 49na08Tt7Ob9/f7///////+8ubra2Nn29e7e2Mjj3tDo5t3///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////8AAAAA////AAAA//////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////p1kIzLaUsolU6N7N6enrkIyMraururm5lpOTj4uMxsTG uLa4nZudp6an//////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////AAAAAP///wAAAP////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////7Jn HNG6mLeDSf///NrZ3L27vJ6am4aEhJ2am5eSk5OPkK+srJOPkIiEhP////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////wAAAAD///8AAAD///////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////+vaBrRu5q3hk38+vTp6OqVkZKopaXZ2Njt7Ozd 3Nyxr6/My8vu7u7W1dX///////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////29v///////////////////////////////////////////////////// ///////1///rztv/59v///////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////8AAAAA////AAAA//////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////sGca0buat4ZN+Pbw+/v7vLm629ra6unp397e7u3t6ejo2NbX6Ofn2djY////////////2/// ZrbbtmZm///btra2ttvbZpCQttvbkGaQ29vbtrbbtrbb29vbkLa2/7a2kNvbZjqQ29u2ZrbbtmZm ///btrbbtra2tra2tra2ttvbZpDb25CQttvbkLbbZpCQtmZm29vbtra227bb27bb4c68686R4c7b 686R4c7b4c6R687b68636+e31rWR9efb6863687b9efb4c7b9bWR68639efb4c639c63//////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////AAAAAP///wAAAP// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////6tdDNC4lbmGTP/++ru6vLays727u3l0 dZCMjaWjpISAgbi1tqOgoYWBgv///////////////5Db/9uQZv//27a2ttv//5CQtv//27a22/// ttvb/9vb2///29vb2///25CQtra22///tpDb/9uQZv//27bb///btpCQtrbbttv//9vb29vb29v/ 27bb/9vbtra2kP//27a2tra229a2kPXn2+vn2/Xnt+vn2/Xnt/Xn2/Xn2/Xnt+vnt+G1t///2/Xn 2/Xn2///2/Xn//Xnt/Xn2///2/Xn2/Xn2///2/////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////wAAAAD///8AAAD///////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////+9jlvbybC1g0r///q1s7XMysrR0NCuq6y1s7Oqp6i9u7y9u7u4tre3trb///////// //////////////////////////////////////////////////////////////////////////// ///////////b///bttv///////////////////////////////////////////////////////// ///////////////////////////////////////b//+2ttv/29v////////b2/////////////// ///////////////////////////////b///bttv////////////////b//+2ttv/29v////////b //+2ttv/29v///////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////8AAAAA//// AAAA//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////8/Dq0L2e///+6enpcGts q6mp////////////////////2NjY////////////////////tra2ttvbZpDbtpBmtra2tra2//+2 ZpC2traQkJDb29u2tra2kLa2kLaQkLa227a2kJCQZpDbZpCQkDqQ29u2kLa2tpC229vb27a2ttvb kJDbkGZmttu2kLbbnJCQkGaQ29vbkJCQkJDbtraQtra229vbkJCQ2//bZra2tpCQZma2/9u2tra2 trbb29uQkLa2kGZmkJDbtraQ/9vbkJC2ttu2kLbbkJCQkGaQ29vbkJCQkJDbtraQZrbbtmZm2//b kLa2tpCQtra2kLa227aQ29vbkLa2kGaQ29vbtra2tra2traQ27a2kLbbkLaQOjqQZpCQkDqQ29u2 kLa2kLaQ/7a2ttvbZpDbtpBm29vbZpDbkJBmkJC2ZmaQtpBmkJDbkGZmttu2trbbZra2ZjqQtpBm kLbbtpCQOma2ZpBmkDqQ/9u2//////////////////////////////////////////////////// ////////////////////////////////AAAAAP///wAAAP////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////+7i1fHn2/////////////////////////////////////////////// /////////////7a2tv///9vb29vbtrbbttvbtv/b25Db29u2kNvb2///29vb29vbttvbtpDb29u2 kLa2ttvb25Db29uQZv//29vb29vb2///29vb29vbttvb25C2kNvb25Db/7y2kLaQtv//27bb29vb trbbtra2ttvb27bb2///29vb29vb27bbtv//27a2tra229v/trbb/7a2kNvb29vbttvb25C2ttvb 25Db/7a2kLaQtv//27bb29vbttvbtpDb/9uQZv//29vb29vbttvbtrbbttu2kNv//9vb/7bb2/// 29vb29vbttvb29v/27bb29u2kLa2tpDbttuQZv//29vb29vbtv//29vb27bb27a2kNvb29u229vb ttvb29vbttvbttvbtpC2kNvb27bb/9vbtra2ttu2kNvb/9vbtrbbttvbttvbtv//2/////////// /////////////////////////////////////////////////////////////////////////wAA AAD///8AAAD///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////28OjCik2xYA6yYxHIlV/1 7+b///////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////b ///bttv///////////////////////////////////////////////////////////////////// ///////////////////////////////1///1ztv///////////////////////////////////// ///1///rztv/59v////////////////1///rztv/59v///////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////8AAAAA////AAAA//////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////8ejcuncxxo5T5Myy06p9sV0JvHs19O7k//////////////////////////// ////////////////////kLbbkLaQ/7a2ttvbZra2tpBmkLa227aQkLbbkLZmkLaQ27a2trbbZpC2 kJCQ27a2trbbZpDbkJBmkJC2kJBmtra2trbb/9vbkLbbkLaQtpC2tpC2ttu227a2ZpC2traQ/9vb kLbbkLaQkLaQ/7a2ttvbkJDbkJCQtra229vbtrbbZpCQkLa227a2ZpDbkJCQ9ba21s6367Vn6863 68634bW39ee39efb9c7b4efbzJtn9c6R9c7b6+fb1rXb4bWR4YA7686368634bXb686R687b9efb 4Ztn/+fb//////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////AAAAAP///wAAAP////////////////////////////////////////////////////////// //////////////////////////////////////////////////////Ps4rh0Lb6EQ9W7mv////// /+LJrrFfCsiWYP///////////////////////////////////////////////7bb29vbttvb27y2 27bb29u2kNvb27bbttvbttu2ttvbtv//29vb/3vb27ydnP//29vb/9vbttvbtrbb27aQkNv/29vb ////29vb29vbttvb29vbtrb/27a2trbb29u22///29vb29vbttvbtv//29vb29vb29vbtrzb27a2 vNu827bbtpDb2/+2kNvb25Db2/W2kM+hnevOkfXOt/Xn2/Xnt+vnt/Xn2/Xn//X/2+vOt///t/Xn //X/2/Xn2+Hn2+u1kev/2/XOt/Xn2/Xnt/Xn////2+vO2///t/////////////////////////// /////9v////b2////////////////9v//9u22/////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////wAAAAD///8AAAD///////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////69/LZu5jDl2Lm077+/v7////////Pn222ax3///////////////////// ///////////////////////b//+2ttuQkNvb27aQtrZmZra8kJC2tra2trbb/9tmttuQZma2tpC2 trbb/7aQtra2kLbb29tmtraQZmbbtpCQttuQtpC2ZpDb/9u2tra2traQtrZmtpCQZjqQkNvb27Zm ttu2ZpC2kLa227aQtra2ZpDb/7a2traQtrbbtpBmkJCQZrbb27a2kJCQttu2tpC2kLb//9uQttvb tpC229uQtraQtpDbtrbbtraQkJC229u2ttu2ttuQkLaQtpCQtpD/tra229tmkNuQkGa2kLbbtpCQ ttuQtpCQkLaQZpDb27aQtraQkLaQkGaQtra2kJBmtttmOpBmkJBmZma2Zmb//9uQttu2tpDb/9uQ tra2kJC2ttvb29uQtraQkLZmkGa2ZmaQtraQkJDb27aQtraQkLaQkGZmtrY6AGZmkGa2kGa2trb/ /9v///////////////////////////////////////////////////////////////////////// //////////8AAAAA////AAAA//////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////5dC4xJBZ//// ////8efb8+7my5devHs3////////////////////////////////////////////////29v/29u2 ///b29vb29u229vb29u829u2///bkNv/25Bmttu2tra2/9vb29vb29vb///b29vb29u229u2ttu2 29u227a2///b29vb29u2ttu2ttu2tmZm29vb///bkNv/25CQ29u22//bttvb29u2/9vb29vbttu2 27aQttv/29u22//bkLa229vb27bb29u22//b29vb27bb2//b29vb29u22//b27a2ZmaQ2//b29v/ 29vb29u229u229u2///b29vb29vb29u229vb2//b29vb29u229vb29u2///b29vb29vb29u2kNvb 27aQkNv/25Bmttvb29u227a2///b29vb29u2///b29vb29u229vb///b29vbttvb29u2tra229u2 27a2///b29vb29vb29u2kNvbtpBmttu227aQ29vb///b//////////////////////////////// ////////////////////////////////////////////////////AAAAAP///wAAAP////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////fx6r2CRNawiOPMscaaZsSRV7VtIevcyf////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////9v//9u22/////////////////////// /////////////////////////////////////////9v//9u22/////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////9vb2////////////////////////////9v////b2/////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////wAAAAD///8AAAD///////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////2 7+fKnWzLo3XDkVi2byPs3cz////////////////////////////////////////////////b//+2 ttu2ttvb29uQtraQkLa2kJDb29uQtra2kLaQZma227aQttuQkJDbtra2ttuQtttmkJC2kGbbtra2 29tmtraQkJC2kJC2traQkNvb27ZmZrb/27b///+QtraQttu2kJCQtraQkLZmZpDbkJC229uQttuQ kJDbtrZmttuQZma2tpC229uQZpDb29tmZmb//9uQtttmkJCQkJDbtrZmkNuQZjq2trbb/9u2ttuQ ttuQkJCQkLaQkGaQkJC2tpCQtrZmtpC2kGa2traQtra2tra2ttvb29uQtra2ZpD//7aQkLa227aQ ttuQkJDbtrZmtrZmZmaQZmaQkLZmZpCQkGbbkJCQttu2tpC2kLbb//+QkNu2kJDb/7a2ttu2tra2 kJC229u2tttmkNuQkJDbtrZmtra2ZmaQtraQtpBmkLaQkGb/trb///////////////////////// //////////////////////////////////////////////////////////8AAAAA////AAAA//// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////4Mmu7d/O//////////////// ////////////////////////////////////////29v/29vb///b29vb29vb29vb///b29vb29vb ttu22//bttv/29u2///b29v/29vbttu227aQ29vbtv/bkJC229u229vb29vb29u2///btra2///b ////kJC229vb29u229u229vb29u229vb2//bttv/29u2///bkNv/25Bm29u2///btrbb//+2ZmaQ //+229vbttvb29u2///b29vbtraQ29u2///b29v/29vb29u229vb29u2ttu227aQ29vbttu227aQ 29vb29u229vb29vb///bttvb29u2/9vbttvb2//bttv/29u22//bkJC229u227a229vb29u229u2 29u2ttvb27aQttv////bttvb29u2/9vb29v/ttu2tpBm2///29v/29u229vb2//b29vb27a229u2 29u229u229u2///b//////////////////////////////////////////////////////////// ////////////////////////AAAAAP///wAAAP////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////9v/////2/////////////////////////////////////////////////////////////// /////////////////////////////9v//9u22//////////////////////////////b2/////// ///////////////////////////////b29v////b2////////////////9v//9u22/////////// /////////////////////////////////////////9v//9u22/////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////wAAAAD///8A AAD///////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////b//+2trb/29vb29u2ttu2tra2tra2trbb traQttv/tra2trbb29u227a2tra2ttvb27a2tv+Qtrb/tra2trbb27y2kLa2trzb/9tmtrZmZmaQ OpDb27a2tra2tra2trbb25CQttu2tpBmkNuQkGaQkLaQkGa2kJDbtra229uQtttmOmbbtra229u2 trb/29uQtrZmtrZmOpC2kGZmZrb/27bb//+2traQkJCQtraQkLa2kGaQtraQtpBmOpD/27a229tm ttuQZmbbtra2traQtra2tpDb/9uQtrZmkJCQZmbbtra229u2tttmkNu2kGZmkNuQkGaQtpD/traQ ttu2trbb29uQtraQkLa2kJC2tra2trbb/9uQtraQkGbb/9uQttuQZmaQttuQkJDbtraQkLa2ttvb 29u2trZmkJBmtpC2Zmb//9v///////////////////////////////////////////////////// //////////////////////////////8AAAAA////AAAA//////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////ttvb29vbtrbbtrbbkGaQ29uQttu2kJDb2/+227a2ttv/trbbtra2tra229vbtrbb ttvbtra227aQ29v////b29v/27y82//b29vb27a229u2///b29vbttu229u229vbttvb27aQ29vb 29u2ttvb29u2tra227a22///kNv/tpBm29vb2//b29vb///bttvb29vb29u229u2ttu2///b2/// 27a2ttvb29u229vb29u2ttu227aQtra2//+229vbttv/29u2/9vb29vb29u229u2///bttvbttu2 tmaQ29u22///29v/29u229u227a229u229u2///b29vb29vb///b29vb29vbttu227aQ29vb///b 29vbtraQ///bttv/tpBmttvb29u2///bttv/29vb2//b27a2ttvb29u229u2///b//////////// ////////////////////////////////////////////////////////////////////////AAAA AP///wAAAP////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////wAAAAD///8AAAD///////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //8AAAAA////AAAA//////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////AAAAAP///wAAAP////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AP////////////////////////////////////////////////////////////////////////// /////////wAAAAD///8AAAD///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////8AAAAA////AAAA//////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////AAAAAP///wAAAP////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////wAAAAD///8AAAD///// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////BYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXB YwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXB YwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXB YwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwX///////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////8AAAAA////AAAA//////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// 9f//4c639c6368636863686367W39f/b9efb9efb4c7b9c63687b9c639f//4c7b9bWR68639efb /+fb6+f/6863/+fb9ef/9c7b/+fb4efb686R68639f/b9efb9c7b6+fb4c634c6R9c639c7b6+fb 1rXb4bWR/8634bWR9efb4bWR4bXb/+e39efb687b//+39ef/6+e34c7b/+eR6+fb///b9ef/9efb 9f/b687b/+fb//////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////AAAAAP///wAA AP////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////X//+u1t/X/2+vOt/XOt/Xn2/Xnt///2+vn 2/Xn2+Hn///OkfXn//X/2/////Xn//Xnt/Xn2///2/Xn2+vn/+vOt//n2+vO/+u1t//nt+vn/+u1 Z+vn2//nt/Xn2/Xn//X/2/Xn2/Xnt///2/Xn//X/2/Xn2+Hn2//Okevn//X/2+vOt/Xn2///2+vn 2/Xn2//n2+vn//Xn2+HO2//nt+vn///nt+vn//XO2/X/2+vO2//n2/////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////wAAAAD///8AAAD///////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////b///bttv///////////////////////////////////////////////////////////// ///b///bttv///////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////b//+2ttv/29v///////// ////29v////////////////////////////////////////////b2///////29v/29v///////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////8AAAAA ////AAAA//////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////2///tra229vbkLbb25CQ//////// ////////////////////////2///27bb2///kLbbkJCQkJC2tpBm29vbZra2tpBmkJDb29u2Zrbb tmaQ29vbtra2kJDb/9u2//////////////////////////////////////////////////////// ////////////2///tra2/9vbttvbkLa2ZraQ25CQ////ttvbkJDb/9u2//////////////////// ////////////tra2trbb29uQtra229vbkJCQkJDb/9u229vb//////////////////////////// ////////////ttv/29u2kLbb27aQ///b////////////////////////////////////ttvb2//b tra227y8ttv//9vb29v//9vb//////////////////////////////////////////////////// ////////////////////////////////////AAAAAP///wAAAP////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////9vb2///29vb/9vbtv//2////////////////////////////////9vb//// 29vb/9vbttvb29vbttv/27bb29uQkNvb2///25Db/9uQkP//29vb29vbtv//2/////////////// /////////////////////////////////////////////////////9v//7a2ttvb29v//9vb29vb ttvb2///29v//9vb2///2////////////////////////////////7a2tra229v/ttvb/9v/27a2 ttvb2///29vb2////////////////////////////////////////7bb/9u2tpC229u2kP////// /////////////////////////////////7bb///btra2tv//27a22///27a2///btv////////// //////////////////////////////////////////////////////////////////////////// /wAAAAD///8AAAD///////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////8AAAAA////AAAA//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////29v//////////////////////////9vb//////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////2///27bb//////////////////// ////////////////////////////////////////////////////////////////2///trbb/9vb ////////////////////////////////////////////////////////////////////////2/// 27bb//////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////AAAAAP///wAAAP////////////////////////////////////////////////////// /////////////////////////////////////////////////5CQttvb2//b22aQkLaQtrbb22a2 27ZmOtvb29vb2////////////////////////////////////////////////9v////b27bb29v/ 27a227a2ttvb2//b29vb////2////5C2tra2tra2tra2tv//tpCQttv/25CQttvb25C2tv+2tv// /7a229vbtpC227a2kJC2tpC2kJCQtpBmkNvbtpCQkLa225CQ2//bttv//2a227ZmZv//29v//2Zm tv/btra229v/22aQ27aQZv/b25C2tra225CQ29vbttu227bb25C225CQkNu2tra2tra2ttv/25C2 29u2tra2tv//27a229v/tmaQ25CQZv+2tpC2tpCQkNu2tmaQ27aQZpC229u2tmZmttvbtra2ttv/ 25C2ttu2tra2tv//27bb29u229v//2aQ25CQZpCQtraQZtvb27a229vb25C229u2tra2ttv/22Zm tv/btv///7a22///tpCQttv/25CQttvb25C2tv+2tv////////////////////////////////// /////////////////////////////////////////////////wAAAAD///8AAAD///////////// //////////////////////////////////////////////////////////////////////////// ///////////b//+2kJD////b//9mZmaQtra2tpCQkLaQkJDbtpDb29v///////////////////// ///////////////////////////////b29u22//b27a2ttu2ttu2kLb/27bb29v///////+Qtrbb tra229vb27b/29u229v//9uQ2////9vb29v//9v////b29vb/9u229vbtpDb29vb27bb29vbtrbb /9u2trbb2//b27b//9v///+Q2//bkGb//9v///+2trb//9vb29v//9vb29vb27b//9u229vb2//b 27b//9vb2//b/9vb2//b27b//9vb29vb27b//9uQ2///tpDb29vb/9vb29v/29vb29vb27b//9u2 2//b27b/29vb29vb27aQ29v/tpC229v//9vb29v//9vb29v//9vb29v//9vb29vb2////9vb29vb 27bb29vb27b//9vb2////9uQ2///tpDb29v//9u2trb//9vb///b29v/29u229v//9uQ2////9vb 29v//9v///////////////////////////////////////////////////////////////////// //////////////8AAAAA////AAAA//////////////////////////////////////////////// ////////////////////////////////////////////////////////ttv/tra229u2trbb///b //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////9vb//////////// /////////////////9vb////////////////////////////////////////////29vb//////// /9vb/////////////////////////9vb//////////////////////////////////////////// /////////////////////////////////////9vb/////////////////////////////////9vb //////////////////////////////////////////////////////////////////////////// /////////////9vb//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////AAAAAP///wAAAP////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////9vb/9v/27a229vb25C2tpBmZv//27a22///27a2 25C2tpC2ttvb29u2tra2tv///////////7a2tv///9v//7a2tv/b2////////////5C2tmaQtraQ ZpCQ2//btpDb25C2kNu2tra22//b25C225CQkP/bttv//7bb29u2kP///7a2tra22///tv////// /9vb/9v/25C227aQkLa2tra2tra2tv//2////5Db/5A6kP/btpCQttv/tpC2tra2kJC229u2tra2 tv//2////7a2ttvb2////////7a2tra22///ttv//5C2traQkP//2////7a225C2ttu2trbb25CQ 27aQkP//25Db25C2kNu2tmaQ27aQZtu2trbb22a2trZmZv//27a22///2////7a2tra22///tpC2 ttu2tv////////////////////////////////////////////////////////////////////// /////////////////////wAAAAD///8AAAD///////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //+22///27bb2////9vb29u2tpD//7bb29v//9u22//b27a2kLb//9vb29u227b///////////+Q trbbtrbb//+2trbb29v///////////+2ttvb27bb27bb27b//9uQkLaQ29v/tpDb2//b/9vb29vb trb//9vb//+2kLb//9v///+2tra2ttv//7b///////+22///27bb2//b27bb27bb27bb27b//9v/ //+2ttu2trbb/7a2trb/29vb29vb27aQ29v/tpDb29v//9v///+2trb///////////+2tra2ttv/ /7b///+22//b25D///////+22///27bb29vb/9vb29vb27b//9uQkLaQ29v/tpDb29u227bbtpDb 29vb29vb27b//9u229v/29v///+2tra2ttv//7aQtrbbtrb///////////////////////////// //////////////////////////////////////////////////////////////8AAAAA////AAAA //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////AAAAAP///wAAAP////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////wAAAAD/ //8AAAD///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////8AAAAA////AAAA//////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// AAAAAP///wAAAP////////////////////////////////////////////////////////////// /////////////////////////////////////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP////////////////////////////////// /////////////////////////////////////////wAAAAD///8AAAD///////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////8AAAAA////AAAA//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////AAAAAP///wAAAP////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////wAAAAD///8AAAD///////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////8AAAAA////AAAA//////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////9f//9c63////////////////////////////////////////////9f//4c7b/+e3//// //////////////////////////////////////////////////////////////////////////// ////////////9f//4c7b/+e3//////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////AAAAAP///wAAAP////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////7a2tpC227a2Zra227a2Zv////X//8y1kdaABOG1kda1kfXOt+G1t+vnkfXn2/Xn 29bOt8yAO+ubO+vn2+HOt+ubZ/X//9a1t//OkeG12/X/t+HOt+u1kevO2/XOt+vO2+GbkfXnt+HO t+GbkfXnt/Xn2+G1keG1Z9a1kda1Z+u1keG1keG1Z9a1t/XOkdbOt9aABNa1t+GbO+G1kda1t/XO keGbZ+G12/Xnt/X/2+G1kdabt/W1Z+HO2//nt/Xn/+G1t/X/t+HOt//Ot/////////////////// /////////////////////////////////////////////////////////////wAAAAD///8AAAD/ //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////+2traQttu2tma2ttu2tmbb ///1///htZHrtZHrzpHrzrf/59v159v159v159v159vh59vWmzv1zpH////r59vr57f/59vr59v1 zpHhtdv1/7fhzrf/zrfhzv//57fhzv/htZH/55Hrzrfhzrf/55H159vh59v1zpH159vr57f/59vh 59v1zpHr59v//9vh59vrmwTh59v1tWfrzrfr57f1/9vhtZHr59vhztv1zrf1zrfhzv//57fhztv1 55HhztvhgJH1/7fhzrf/zrf///////////////////////////////////////////////////// //////////////////////////8AAAAA////AAAA//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////AAAAAP// /wAAAP////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /5C2tpC2ttu2tpC2tv/b25C2tra225CQ29vbtma227ZmkP/b29vb////23y2//+8nbbb/7a2ttvb 2//b25Db27a2tra2tv//29vb///b2/////////////////////////////////////////////// /////////////////////////////////wAAAAD///8AAAD///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////9mtra2kJDb29u2kLb//9u229vb2//b27b/ /9uQ2//bkJD//9u82//b/9u229vbvJ222/+2trb/29vb29uQ2/+2kJC2ttv/27a2tv//27b///// //////////////////////////////////////////////////////////////////////////8A AAAA////AAAA//////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////AAAAAP///wAAAP////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////9v//9u22/// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////wAAAAD///8AAAD///////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////+2ttuQtra2ttu2trbb/9uQtra2kJBmkNuQkJDbtra2ttv/29v////b2/+829vb 27y2ttv/29tmtv//tpCQ29u2trb/29u229vb29v/29v///////////////////////////////// //////////////////////////////////////////////8AAAAA////AAAA//////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////ttv//9u229v/29u2///b ttvb27aQ29vbkNvb/7aQ29v////b2///29v/29vbttu8trbb29vbttvb27aQkNv/tpCQ/9vbttv/ tpC2/9u2//////////////////////////////////////////////////////////////////// ////////////AAAAAP///wAAAP////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////wAAAAD///8AAAD///////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////+Qtra2tra2tra2 trb//7aQkLbb/9tmkNuQkJDbtra2ttv/29vb//+2ttt8nNvbvJ22ttvb29tmttv/tpCQ29u2trb/ 29u229vb29v/29v///////////////////////////////////////////////////////////// //////////////////8AAAAA////AAAA//////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////kLa227a2ttvb29u2/9vbttvb///b29vbkNvb/7aQ29v/2//b 2///nbbbtry8trydtrbb29vbkLa227aQkNv/tpCQ/9vbttv/tpC2/9u2//////////////////// ////////////////////////////////////////////////////////////AAAAAP///wAAAP// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////wAAAAD///8AAAD///////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////8AAAAA//// AAAA//////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////kJC2ttu2kLa2tmaQ//+2ttvbZpDbZpCQtmaQ/9vb////////vNv/fLa827x8trbb/9vbttv/ /9u2kNvbtra2/9vbttvb29vb/9vb//////////////////////////////////////////////// ////////////////////////////////AAAAAP///wAAAP////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////5C2ttvb27bb29vbtv/b29v//9vb25Db 29uQkP//29v//////9vb/5C2vLa8nba22//b27bb/9u2tpDb/7aQkP/b27bb/7aQtv/btv////// /////////////////////////////////////////////////////////////////////////wAA AAD///8AAAD///////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////b//+2ttv/29v///////////////////////////////////// ///////////////////////////////////////b29v///////////////////////////////// ///////b//+2ttv/29v///////////////////////////////////////////////////////// //////////////////////////////////////8AAAAA////AAAA//////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////trbbkLa2tra227a2ttvb trbbkLa2/7a2ttvbtrbb29vbkLbb27a2tra2///bkLa2kLa2tmaQ2/+2tra2kLa227aQ29vbtra2 29vbZpDb25CQttvbtrbb29vbkLa227a2tra2tra2kLa2kLaQ27a227a229vbZpCQtrbbkJDb/9u2 ////trbb//+229v/2//btra22//btrbbZra2tmaQ/9vbttvbtrbbtpCQ/9vbttvbtrbbkJDb/9u2 //////////////////////////////////////////////////////////////////////////// ////AAAAAP///wAAAP////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////7bb///btrbb29u2kNvb27bb/9vbtv/b29vb29vb////25Db//+2kNvb 2///27a2trbb29vbtv/b29vb27bbttu2kNv//9vb////29vb29vb29v/27bb////29vb29v/27a2 trbb29vb29vbttv/29u2ttvb22aQttvb29vbtv//29v//9vb2//b27bb///bttvb2///29vb/9vb ttvb2///29vb27bb/9vb2///29v//9vb/9vbtv//2/////////////////////////////////// /////////////////////////////////////////////wAAAAD///8AAAD///////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////8AAAAA////AAAA//////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////AAAAAP///wAAAP////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////wAAAAD///8AAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////8AAAAA////AAAA//// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////AAAAAP///wAAAP////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////wAAAAD///8A AAD///////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////8AAAAA////AAAA//////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////AAAA AP///wAAAP////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////wAAAAD///8AAAD///////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //8AAAAA////AAAA//////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////AAAAAP///wAAAP////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////wAAAAD///8AAAD///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////8AAAAA////AAAA//////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////AAAAAP///wAAAP////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////wAAAAD///8AAAD///// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////8AAAAA////AAAA//////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////AAAAAP///wAA AP////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////wAAAAD///8AAAD///////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////8AAAAA ////AAAA//////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////AAAAAP///wAAAP////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /wAAAAD///8AAAD///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////BYwXBYwXBYwXBYwXB YwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXB YwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwXBYwX///////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////8AAAAA////AAAA//////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////687b///b4bW39f/b68634c634c6R4bW34ZuR67WR9f/b67Xb686R 686R4c7b9c6R687b//+36+fb1s7b4YCR9ee31s634Ztn9c63686368639f+34bXb9ee34c634c63 9c634c639c634c639c63//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////AAAAAP///wAAAP////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////Xn2///2+vn 2/X/2/XOt/Xn2/Xnt/Xn2/Xnt/Xnt///2+vn2+vOt+vnt+vn2+vOkfXn2//n2/X//+Hn//W1Z/// 2+vn2/Xnt//n2+vn2/Xnt//n2/Xn2///2/Xn2+Hn2/XOkfXn2//n2/Xn2/Xn2///2/////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////wAAAAD///8AAAD///////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////29v////b///b 29v/////////////////29v///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////8AAAAA////AAAA//////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////ttvb kJC2kLaQ27a2tra2tra22/+2kJDb/9u22///27a2kLb/kLZmtpCQtra2trbb/9vb////kJC2ttu2 trbbkLa227a2ZpDbkJCQ27a2kLbb25CQ//////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////AAAAAP///wAAAP////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////5CQtrbb29vbtv/b27bb29vbtv/b29vb2///29v/ /7a2tpC229vbkLbb29u2ttvb////2////5C2ttvb27bb/9vbtv/b29vb25Db2/+2kNvb/9vbtv// 2/////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////wAAAAD///8AAAD///////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////8AAAAA////AAAA //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////2///trbb/9vb//////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////9vb//////////// ////////////////////////////////////////////////////////////////////2///trbb /9vb//////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////AAAAAP///wAAAP////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////5Db25C2kNu2tpCQ27aQZv/b29vb25C227a2kJC2ttu2kNv//5C2tpC2kNu2tra2tra2 27a2kNv/27a2tpC2tma2kNuQkNv//2Zmtv/bttv//5C229u2tra2ttv/27bb29u2kJCQttv/27a2 tpC2tpC2kJCQtpBmkLaQkP//29v//2a227ZmZv//25C2tpC2ttu2tmZmkNvb27a2tpC2tpCQtmZm kNuQkNv//5CQttvb25C2tv+2tv///9v//zpmZv+2tpC229u2kLbb27a2tma2traQZra22//b29vb /9v/27a2ttv/27a222a2trZmkP/b27bb27a227aQkP/b27bb27a227a22//b27a2trbb25C2kP+2 tpCQttv/tpC2ttu2kLa229v/25CQkJCQ29vbtpCQkLa22//b2////7bb//+2trbb22a225A6kP/b tv////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////wAAAAD/ //8AAAD///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////+QkLaQ29v/tpDb29vb29v//9vb //+229vbtpDb29vb27b//9vb29vb27b//9u2trbb29vb29v//9vb29vb27bb27bb29v//9u229v/ /9v///+Q2///tpDb29vb/9u2kLb//9u229vb/9vbtrbb29vb27bb29vb27bb27b//9v///+Q2//b kGb//9u2trbb29v//9tmZrb//7bb29vb27bb29vb27bb29v//9uQ2////9vb29v//9v///////+Q kJD//9u229vbtpC2//+2tra229vbkJDb2////9u22///27bb29v//9vb2//b27bb29v//9vb29u2 2//b29v//9vb///b2//b29v//9u2trbb2//b27bb/9u229v/29vb29vb27bb27bb/9u2trbb29v/ /9u229vb29v//9v///+2ttvb29vb/9uQ2//bkGb//9v///////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////8AAAAA////AAAA//////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////su7eS9SvYNe3Xde2WNe1////////////////2///27bb//////////////////////// ////////////////////////////2///trbb/9vb//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// AAAAAP///wAAAP////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////7a2tpC225CQkNvbttu2 tpC225C2kGaQkP+2tv///5C2tra2tpC2tpC2kNu2tra2tv//27a225C2ttu2trbb25CQ27aQkP// 25Db25C2kNu2tmaQ27aQZtu2trbb22a2trZmZv//27a22///2/////////////////////////// /////////////////////////////////////////////////0XVr0zSrqLn1XLbv2XZuv///9v/ /2a2traQZra2tra2tv/b27a229v/29vb29vb25C227yQkNu227bb25C229u2tra229vb29u2tpC2 ttu2tra229vb25C225CQtraQtv/b27zb25C225CQttuQttv//7a229u227y8vJC22//bkLbb/7aQ ttvb27a2ttu8vNvb/9v/27a229u22//b29vb///b2/////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////wAAAAD///8AAAD///////////////////// //////////////////////////////////////////////////////////////////////////// ///b//+QZpD//7b///////+2tra2ttvb25D//9u229vb27bb29u227b//9v///+Qtrbbtrbb29vb 27b//9u2ttv//9u22///27bb29vb/9vb29vb27b//9uQkLaQ29v/tpDb29u227bbtpDb29vb29vb 27b//9u229v/29v///////////////////////////////////////////////////////////// //////////////+98ONa2LZb17VV1bNQ1bH////b//+QkLa2tpDbtrbb29v//9vb29vb/9vb29vb 29vb2//b27bb29vb/9uQ2///tpDb2////9vb29vb29u227a2ttvb29uQttuQkLa2kLb/29vb//+Q ttu2kLbbttvb/9u2ttu2kNv/27aQttv/27aQtv+2kJD/29u2trb//9vb2//b/9u2ttu2kNv/27a2 tv//27b///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////8AAAAA////AAAA//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////3vnxW9u4SNex2/jw //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////AAAAAP///wAAAP////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////Xn/+vO t//n2/////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////wAAAAD///8AAAD///////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////r59vh ztv1zrfrzrfrztv159vrzrfrzrfrzrfhzrfrtbfrzpHr57fhzrfrzrfWgJH157frzrf1/9vWztvh m2f/zrf1///hzrf1zrf///////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////8AAAAA////AAAA//////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////9efb4ef/9c6R9c639ef////b9efb9ee39ee39ee3 6+e368636+e39efb9efb67WR///b9efb///b4ef/9bVn/+fb////9efb9efb///b//////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////AAAAAP///wAAAP////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////b2/////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////b2//////////////////////////////////////////b2/////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////wAAAAD///8AAAD/ //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////b//+2trbb29u2ttvb29uQtraQkLZmkGaQZmb/ tra229u2tttmkNvbkJDb//+QkLbb29tmtra2Zmb//9u2ttv//9v///+2tra229uQtpD/traQkLbb /7aQtrbbtpC2ttu227aQttvbtrZmkNuQkJD/trbb2//b/9u2trbb/9u2ttuQtra2kJC2ttuQkNv/ 27bb//9mttu2Zmb//9u2ttu2trbb//+QtraQkLZmkGaQZra227aQZpD/29v///+2ttu2trbb//+Q traQkLZmkGaQZrbb27a2tra2ttv/29v///9mkLa2kJDb//9mtraQOpDb27Zmttu2ZpDb29vbtrb/ //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////8AAAAA////AAAA//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////2///tra229vb29v////b29vbttvb29u227a2///b2///29v/29u229vb///bttv////b29vb 29u2///b29vb///b////tra229v/29u22//bttvb/9vb29vb29u229u22//bkNv//7aQ29vbkNvb /7aQttv//9u2trbb///b29v/29u22//b29v/29u2///b////kNv/25Bm///bttv//9u2////29vb ttvbtpCQ29u22//btpC2///b////ttv//9u2////29vbttvbtpCQ29u22//b27a229v////b//// kLa2trbb2//b29vb27a2///bkNv/25CQ///b29vb///b//////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////AAAAAP// /wAAAP////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////wAAAAD///8AAAD///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////b//+2ttv/29v///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////b//+2ttv/29v///////////////////////////////////////////// ///////////////////////////////////////////////////////////b29v///////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////8A AAAA////AAAA//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////kNvbkLaQ27a2kJDbtpCQ 2//btra2nba227ac////tra2ttvbkLaQ25CQkLbbtrZm2//b27a2trbbttu2tra2ZpDb25Bmttvb trbb/9vb2///kLa2kLaQ/7a2kLa2kLa2/7a2kLbbtrZm///bkLbb27aQkJCQ29vbZpDb25CQ2/// kJC229vbkLa227a2tra2///bkLa2kLa227a2kLa227a2trbbtpC22/+2ZpDb25CQttvbtrbb29vb kLa227a2tra22//bkLa2/7a229v/2//bkLa2tra2kLa227a2trbb29vbkJC2/9vbtra2tra2kJDb /9u2trbb2//bZrbbtmZm///b2///Zma2/9u22///OmZm/7a2kLa2kLbbtpCQkLa2kJC2kGaQ29u2 27bbttvbkLbbkJCQ/7a2////trbb//+22///Zma2/9u2trbb///b//////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////AAAAAP///wAAAP////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////5CQtpDb2/+2kNu229vbttv/29u2ttvb29vbvP//27a2ttvb/9vbtrb/ 29vb29u2tv//29vb29vbtrb/29u2ttvb29vbttv/29vb////2////9vb29vbtv//27a2ttvb29v/ 29vb29u2tv//27bb29u2kLbb////29vb29vb2///25Db////29vb2///29vb2///27a2ttvb2/// 29vb2///27bb/9LSpE3VsUfSrFHUsVjYkrbb////29vb2///29vb2///29vb2///27bb///bttvb 29vb29vbtv//29vb////27a22///29vb/9vbttvb2///29vb2///25Db/9uQZv//2////7a2tv// 2////5CQkP//25CQttvb29vbttvbttvb29vbtv//29vb/9v/27bb/9vbtv//29v//9vb2//b2/// /7a2tv//29vb2///2/////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////wAAAAD///8AAAD///////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////9W2bZO06+a5tFr2rxk2br/ ///////////////b///bttv////////////////////////////////////////////////////b //+2ttv/29v///////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////8AAAAA////AAAA//////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////tra2ttvbkLa2tra229vbZra2kDqQ29u2tra2ZrbbtmaQ/9vb ////tra2kLbbkJCQtpCQttuQkLbb/7a2////ttv/tra229vbtra2tra2tra2tra2///bttv/27a2 kJDb/9u2kJC22/+2kLa2traQkLbb27a2tra2///b//////////////////////////////////// ////////////////////Xtu6SdKtkuTOdNzAWda1////2///Zra2tpBmtra2tra2/9vbtrbb2//b 29vb29vbkLbbtpCQ27bbttvbkLbb27a2trbb29vb27a2kLa227a2trbb29vbkLbbkJC2tpC2/9vb vNvbkLbbkJC2tpC2/9vbttvb29u829v/kLbb/9u2Zrb/tpBm/9vb29vb29v/tra22//bZrbbtpBm /9vb//////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////AAAAAP///wAAAP////////////////////////////////////////////////// /////////////////////////////////////////////////////7a22///2////////7a2tv// /9vb29vb2///29vb29vbtv//29vb25Db29uQkP//2////7a2tra227bbkNvbttvb25Db//+2kP// /7bb/9u2tv//29vb29vbttvbttvbtv//27a229vb29vbttv/27a2tv/b29vb29vbtpDb2/+2kNvb 2///2////////////////////////////////////////////////////////+H58mXcvEXRqz/Q qVTXtP///9v//5CQtra2kNu2ttvb2///29vb29v/29vb29vb29vb/9vbttvb29v/25Db//+2kNvb ////29vb29vb27bbtra229vb25C225CQtraQtv/b29v//5C225CQtraQtv/b27bb///btrbb/7bb ttvbtrbb27aQZv//2////7a2/7a2tv/btma227aQkP/b2/////////////////////////////// /8XJysfMzcTJya6ztLO3ube7vLW5ure7vLa7u8TJycfLzP////////////////////////////// /////////////////////////////////////////////////////wAAAAD///8AAAD///////// //////////////////////////////////////////////////////////////////////////// ///////////////////b29v///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////v/flr38Ba3bnx/fr///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////Jzc3R1tbIzM6hpaWkp6icnp+cn6Cdn6Cj pqfM0NHQ1NX///////////////////////////////////////////////////////////////// //////////////////8AAAAA////AAAA//////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////9f///+fb////////////9ef/6863/+fb//////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////ztHR1dvbuL2+sbW2p6qsp6qrrrCxv8LDpqmrur6/2d7e//////////////////////// ////////////////////////////////////////////////////////////AAAAAP///wAAAP// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////+vO2/X/2+HO2//Ot+vn29a12+u1Z9a12+ub kevOkevnt+HOt+vOt9aAkfXnt+vOt/X/29bO2+GbZ//Ot/X//+HOt/XOt/////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////9HW1tzi4sDFxra6usvHxMnKycbG xc/Mybm+vsrPzt7j4/////////////////////////////////////////////////////////// /////////////////////////wAAAAD///8AAAD///////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////159v//9vh5///zpH////159v157f157fr57frzrfr57f159v159vrtZH//9v159v//9vh 5//1tWf/59v////159v159v//9v///////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////W2dnj6Ojm6+vv7uuw5vWB3vuC3fqt5PXs8PPo7Ovi5+j///////////////// //////////////////////////////////////////////////////////////////8AAAAA//// AAAA//////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////9vb//////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////9vb//////// /////////////////////////////////9vb//////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////2tze6u7v9PHvrOP2bMv6 0+rx0ev6jcnX19/C7/L26u7v//////////////////////////////////////////////////// ////////////////////////////////AAAAAP///wAAAP////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////9v//7a2ttvb27a229vb25C2tpCQtmaQZpBmZv+2trbb27a222aQ29uQkNv//5CQttvb 22a2trZmZv//27a22///2////7a2trbb25C2kP+2tpCQttv/tpC2ttu2kLa227bbtpC229u2tmaQ 25CQkP+2ttvb/9v/27a2ttv/27a225C2traQkLa225CQ2//bttv//2a227ZmZv//27a227a2ttv/ /5C2tpCQtmaQZpBmtrbbtpBmkP/b2////7a227a2ttv//5C2tpCQtmaQZpBmttvbtra2tra22//b 2////2aQtraQkNv//2a2tpA6kNvbtma227ZmkNvb29u2tv////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////97g4PL09fL19Yfm/6O38GFi53Vt/8W749zakfL2+PD09v////////// /////////////////////////////////////////////////////////////////////////wAA AAD///8AAAD///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////b//+2trbb29vb2////9vb29u2 29vb27bbtrb//9vb///b2//b27bb29v//9u22////9vb29vb27b//9vb29v//9v///+2trbb2//b 27bb/9u229v/29vb29vb27bb27bb/9uQ2///tpDb29uQ29v/tpC22///27a2ttv//9vb2//b27bb /9vb2//b27b//9v///+Q2//bkGb//9u22///27b////b29u229u2kJDb27bb/9u2kLb//9v///+2 2///27b////b29u229u2kJDb27bb/9vbtrbb2////9v///+Qtra2ttvb/9vb29vbtrb//9uQ2//b kJD//9vb29v//9v///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////i5OX6+/v3+/uV 5vC3wvg5M/87Nv/Dw/He3JP5+/r4+/z///////////////////////////////////////////// //////////////////////////////////////8AAAAA////AAAA//////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////5+fo////////5+7HsK2cTEftS0fssK2a7u3A//////////// //////////////////////////////////////////////////////////////////////////// ////AAAAAP///wAAAP////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////9v//7a22//b2/////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////9v//7a22//b2/////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////9vb2////////////////////////////////////////+jn6P7+ /v7+/v///uflv8PAmcO/mefmwf////7+/v7+/v////////////////////////////////////// /////////////////////////////////////////////wAAAAD///8AAAD///////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////+Q29uQtpDbtraQkNu2kJDb/9u2traQtrbbtpD////b//+2trbb /9uQtrb/trb///+QtraQtrb/traQttu2tmb//9uQttvbtpDb29uQtraQZrbb27bbttu229uQttuQ kJD/trb////b//+2trb//9v///////+QtrZmtraQZmbbtra2ttv/29uQtttmkJDbkJD///+229uQ ttuQkJD/trb////b//+QtraQtpD/trb////////b2//b/9uQtrbbtrbb//9mtra2ZpDb29uQkLb/ 29u2trbb29tmZrb/27a2ttv//9vb//+Qttvbtra2trb//9v///////+229uQkNv/27b///+QtraQ trb/traQtraQttu2kJCQtraQkLaQZpDb27bbttu229uQttuQkJD/trb///////////+2ttv//7b/ ///b//9mZrb/27a2ttv//9v////////////t7O3x8fHx8fHx8fP5+f////z///z5+f/x8fLx8fHx 8fH///////////////////////////////////////////////////////////////////////// //////////8AAAAA////AAAA//////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////kJC2kNvb /7aQ27bb29u22//b27a229vb29u2///b////29vb///b29vb///b////tra229vb2//b29vb27a2 ///bttvb27aQ2///29v/29u2///b29v/2//bttv/29u2///b////////29vb///b////////tra2 29vb29u2///b29v/2//b29vb27a229vb///b2///ttv/29u2///b////////0tLJTdWxR9KsUdSx WNi2ttv//9u229vb29vb///b29vb29vb///btrbb///b29v////btra2///b29vb///b////kNv/ /7aQ29vb///b////////29vb29vb///b////tra229vb///bkJC229vb29u229u229vb29u2///b 29v/2//bttv/29u2///b////////2///29vb/9vb////////tra2///b29vb///b//////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////AAAAAP///wAAAP////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////9v//7a22//b2/// //////////////////////////////////////////////////////////////////////////// /9vb2/////////////////////////////////////////////////////////////////////// /////////////////////////1bZtk7Tr5rm0WvavGTZuv///////////////9v//9u22/////// /////////////////////////////////////////////9v//7a22//b2/////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////wAAAAD///8AAAD///////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////b//+2 29u2tpBmkNuQkGbbtra2trZmZrb/27aQtra2kLb/29v///+2traQttuQkJC2kJDb/7ZmkLb/trb/ //+QtrZmkLa2kGaQkNv/27aQ29uQtpDbtra2ttv/29uQttuQkJD/27b///////////////////// //////////////////////////////////////////////////////////////////9e27pJ0q2S 5M503MBZ1rX////b//9mtra2kGa2tra2trb/29u2ttvb/9vb29vb29uQttu2kJDbttu229uQttvb tra2ttvb29vbtraQtrbbtra2ttvb29uQttuQkLa2kLb/29u829uQttuQkLa2kLb/29u229u827yQ ttvbtpDb29uQtra2kLb/29u829uQtra2kLbb29uQttuQkLb/27b///////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////8AAAAA////AAAA//// //////////////////////////////////////////////////////////////////////////// ////////////////////////29vb////////2///tpC2///b29vb29u22//b27a2ttvb///b29v/ 29vb///b////tra2trbbttuQ29u2/9vbkNv//7aQ////trbb29u229u229u2///bkJC2kNvb/7aQ 29v/2//b29vb27a2///b//////////////////////////////////////////////////////// ////////////////////////////////4fnyZdy8RdGrP9CpVNe0////2///kJC2traQ27a229vb ///b29vb2//b29vb29vb29v/29u229vb2//bkNv//7aQ29v////b29vb29vbttu2trbb29vbkLbb kJC2tpC2/9vb2///kLbbkJC2tpC2/9vbttv//9u2kLbbtpC2/9u2kLa2tra2/9vb////kLa2tra2 29vbkLbbkJCQ/9u2//////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////AAAAAP///wAAAP////////////////////////////////////// /////////////////////////////////////////////////////////////////9vb2/////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /+/9+WvfwFrdufH9+v////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////wAAAAD///8A AAD///////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////1///1ztv///////////////////////// ///////////////15//rzrf/59v///////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////8AAAAA////AAAA//////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////9f//68639efb9c7b9f//68634c7b67WR68636863///b4c7b67W3686R6+e31s6367Vn 68634bXb9ee34c634c639c634c639c6368639f/b9c7b//////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////AAAA AP///wAAAP////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////Xn2///2/Xn//X/2/XOt/Xn //Xnt/Xnt/Xnt///2/Xn2+vnt+vOt+vnt/Xn2+vOt/XOkfXn2///2/Xn2+Hn2/XOkfXn2//n2/Xn 2///2/Xn////2/////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////wAAAAD///8AAAD///////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //8AAAAA////AAAA//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////kJC2ttu2trbbkLa2 27a2ZpDbkJCQ27a2kLbb25CQ//////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////AAAAAP///wAAAP////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////5C2ttvb27bb/9vbtv/b29vb25Db2/+2kNvb/9vbtv//2/////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////wAAAAD///8AAAD///////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///b//+2ttv/29v///////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// 29v///////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////29v/////////////////////////////////////////29v///////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////8AAAAA////AAAA//////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////kNvbkLaQ27a2kJDbtpBm/9vb29vbkLbbtraQkLa227aQ 2///kLa2kLaQ27a2tra2trbbkLaQtraQtra22//bZra225CQ2///Zma2/9u22///ZrbbtmZm2//b ttvb27aQkJC22//btra2kLa2kLaQkJC2kGaQtpCQ///b2///ZrbbtmZm///bkLa2kLa2kGZmtrbb 29vbtra2kLa2kJC2ZmaQ25CQ2///kJC229vbkLa2/7a2////tra2ttvbkLaQ/7a229vbkLbbkLZm 27aQtrbb2//bZpC227a2ZpDbkJCQ/7a2////ttv/traQ2//btrbbkLa227a2tpC22///kJDb29u2 ZrbbtmZm///btrbbtra22///kLa2kJC2ZpBmkGa2ttu2kGaQ/9vb////trbbtra22///kLa2kJC2 ZpBmkGa2ttu2kGaQ/9vb//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////AAAAAP///wAAAP////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////5CQ tpDb2/+2kNvb29vb2///29v//7bb29u2kNvb29vbtv//29vb29vbtv//27a2ttvb29vb29vbttvb tv//29vb29vb2///27bb2///2////5Db/9uQZtv/27aQtv//27bb29v/29u2ttvb29vbttvb29vb ttvbtv//2////5Db/9uQZv//27a2ttvb25CQkNvb2///29vb29vbttvb29vbttvb2///25Db//// 29vb2///2////7a2ttvb/9vbtv//27b//9vb29u2ttvbttvbtv//25Db//+2kNvb25Db2/+2kP// /7bb/7aQkP//29vb/9vbtv//27bb////29vb2///25Db/9uQZv//27bb///btv///9vb27bb27aQ kNvbttv/27aQtv//2////7bb///btv///9vb27bb27aQkNvbttv/27aQtv//2/////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////wAAAAD///8AAAD///// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////+y7t5L1K9g17dd17ZY17X///////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////8AAAAA////AAAA//////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////RdWv TNKuoufVctu/Zdm6////////////////2///27bb//////////////////////////////////// ////////////////2///trbb/9vb//////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////AAAAAP///wAA AP////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////7a2ttv//2aQ25CQZv+2trbb27a229vb 27a2ttvb27a2tra2ttv/22aQ29uQZtvb/9v/27a229vb27a2tra2tra2tra2tv//27a225C2tpC2 ttvb29u2ttvb29vb2/////////////////////////////////////////////////////////// /////////////////////////////////////73w41rYtlvXtVXVs1DVsf///9v//2a2traQZra2 tra2tv/b27a229v/29vb29vb25C227aQkNu227bb25C229u2tra229vb29u2tpC2ttu2tra229vb 25C225CQtraQtv/b27zb25C225CQtraQtv/b27bb27zbvGa227aQZv/b27bb/7a22//b27zb22a2 25CQkP/bttvb/7a2tra2tv////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////wAAAAD///8AAAD///////////////////////////////// //////////////////////////////////////////////////////////////////////+2trb/ //////////+Qtrbbtra229vb27b/29vb29vb2//b/9u2trbb29u2ttvb27b//9vb29vb27a229v/ 27bb2////9vb29vb27bb27bb27b//9u22//b27a2kLb//9vb29vb/9vb29v///////////////// //////////////////////////////////////////////////////////////////////////// ///////e+fFb27hI17Hb+PD////b//+QkLa2tpDbtrbb29v//9vb29vb/9vb29vb29vb2//b27bb 29vb/9uQ2///tpDb2////9vb29vb29u227a2ttvb29uQttuQkLa2kLb/29vb//+QttuQkLa2kLb/ 29u22///27Zmttu2kJD/29u2ttu2trb//9vb//9mtraQkGb/27a2tv+2kJDb25D///////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////8AAAAA ////AAAA//////////////////////////////////////////////////////////////////// /////////////////////////////////////9vb//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////AAAAAP///wAAAP////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /wAAAAD///8AAAD///////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////8AAAAA////AAAA//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////AAAAAP///wAAAP////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////wAAAAD///8AAAD///////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////8AAAAA////AAAA//////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////AAAAAP///wAAAP////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////wAAAAD///8AAAD///////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////8AAAAA////AAAA //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////AAAAAP///wAAAP////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////wAAAAD/ //8AAAD///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////8AAAAA////AAAA//////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// kLbb/9u2kLa2kJDb/9u2kLa2tra2kLa2tra227a2//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// AAAAAP///wAAAP////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////7a229vb27a227a2tv/b27a227a2tra2tpC2 tra2kP////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////wAAAAD///8AAAD///////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////b2////9v////b2////9v///////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////8AAAAA////AAAA//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////AAAAAP///wAAAP////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////wAAAAD///8AAAD///////////////////////////////////////////////// ///////////////////////////////////////////////////////////////b2///29v///// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////+229v/29v///////////////////////////////// //////////+229v/29v///////////////////////////////////////////////////////// //////+22///tra22///trb///////////////////////////////////////////////////// //////////////////////////////////////////////////+229v/29v///////////////// //////////////////+229v/29v///////////////////////////+22///trb///////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////8AAAAA////AAAA//////// //////////////////////////////////////////////////////////////////////////// ////////////////////2///27a2tra2kLa229u2ZpDbkJBmtpC229vbkLa2tra2tra2tra225CQ 2///tra2kLa2tra2///b2///tra2tpC2/9vbkLbb/9u2kLa2tpC2/9vbkLbbkLaQ/9u22///tra2 tra2tra22///kJDb29u2kLa2tra2tpCQkLa2tpC2/9vbvNv/tra2tra2tra2////vNv/kLa2tra2 tra2tpC2/9vbvNv/tra225CQ2///tra2tra2////2///tra2tpCQ27a2tra227a227a22///tra2 kLa2tra22//btra2tpCQtra2kLa2tra2kLa2tra2tra2kJDb/9u2////kLa2tra227a22///kLa2 tra2tra2tpC2/9vb////tra2kLa2tpC229vbkLa2tra225CQ////2///tra2tra2tra22///tra2 2//btra2kLa2kLa2tra2tra227a2tra2kLa2tpCQ2///kLa2tpC229vb27a2//////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////AAAAAP///wAAAP////////////////////////////////////////// /////////////////////////////////////////////////////////////////5Db/9u2kLa2 29vbtra225Bmtrbbttu2kJC225CQkLa2kNvb/7a2tv//25CQ27a2kLbbttu2tv///5C225CQkNu2 kLa229vb27a227bb29u2kLa2ttvb29vb2////7a227a2tpCQtv//tra22//b25CQ29vbtra2tpCQ trbbttu2kP///7a227a2tpCQtv//tv///5CQ25C2kLa2kLbb/9u2kP///9vb/7a2tv//25C222Y6 Zv//tv///9vb/7a2tpC2tra2kJC2tra2kP//27a227a2trbbttu2ttvb/7a2tpCQtra2kLa2tra2 tpC2tra2kLa22//b2////7a225C2tra2kP///5CQ25C2kLa2kLbb/9u2kP///5CQ27a2kLbb29u2 kLa229vb27a2tv//2////7a227a2tpCQtv//trbb29u2tra227a2tpC2tpCQkLa2kJC227a2kLa2 kLa2tv//25CQ27bbttu2kJC229u2kP////////////////////////////////////////////// /////////////////////////////////////////////////////////////wAAAAD///8AAAD/ //////////////////////////////////////////////////////////////////////////// //////////////////////////////+22/+2trb//9v///////////////////////////////// ///////////////b2////9v////////////////////////////b2////9v///////////////// ///////////b///btrb//9v////////////////////////////////////////b///btrb//9v/ //+2tv//27b///////////////////////////////////////////////////////////////// //+22//btrb//9v////////////////b2////9v////////////////////////b2////9v///// //////+2tv//27b////////////b//+2kLb//7b///+22///27a2tv//27b////////////b///b trb//9v///////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////8AAAAA////AAAA//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////AAAAAP// /wAAAP////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////wAAAAD///8AAAD///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////8A AAAA////AAAA//////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////AAAAAP///wAAAP////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////2Zm tv//tv////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////2Zmtv//tv////////// /////////////////////////////////////////////////////////2Zmtv//tv////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////wAAAAD///8AAAD///////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////9mZrbbtmb//9tmkNtmkJD/tmb///9mZrbbtmb//9tmZrb//7Y6 Zra2tmbb/9tmZrY6ZmZmZmaQtpC2kGaQZpD//9tmZraQtpDbkGaQkLZmkJD/25D///9mZrZmkJD/ tmZmZrbbtmb//9v///86ZrZmZmY6Zmb/25D///+2///bkGb///86ZraQtma2ZmZmZrb//7aQkLZm kJD/25BmkNtmkJD/tmb///9mZraQtpDbkGaQkLZmkJD/25BmkNv/25D///////86Zra2tmaQkJBm kJD/25BmkNuQtpC2kGaQZpBmZpCQtpDbkGZmkNtmkJD/tmZmZrbb25BmZrY6ZmZmOjpmkJD/tmaQ kLZmkJD/25BmkNv/25Db//9mZrY6Zmb/25D///////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////8AAAAA////AAAA//////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////2///ZmaQkJCQ //+2ZpDbZpCQ/7Zm2///ZmaQkJCQ//+2Zma22/+2kGaQ29vb///bkLbbZmaQZmZmkLaQtpBmkGaQ ///bZma2kNu2tpBmkGaQZrbb/7Zm2///kGaQZrbb27ZmZmaQkJCQ//+2////Zma2kLaQZmaQ/9uQ ////ZpDb27aQ///bOma2ZmY627aQZma22/+2kGaQZrbb/7ZmZpDbZpCQ/7Zm////Zma2kNu2tpBm kGaQZrbb/7ZmZpDb27aQ///b2///kGaQttvbkGZmZrbb/7ZmZpDbkLaQtpBmkGaQZmaQkNu225Bm Zma2Zra2/7ZmZma2//+2kLbbOmaQkDoAZrbb27ZmkGaQZrbb/7ZmZpDb27aQ///bkLbbZmaQ/9uQ //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////AAAAAP///wAAAP////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////9v//9vb2////9v//9vb2///2////9v//9vb2////2Zm tv//ttv//9vb2////9v//9vb29v//9vb29vb2//btv///9v//9vb2///29v//9vb2////////9vb /2aQ2/+2Ztv//9vb2////////2Zmttv/ttvb2////////9vb/////////7a229vb2//b27a22/// 29v//9u2tv///9v//9vb2///2////9v//9vb2///29v//9vb2////9v//9vb2///2////9v//9vb 29v//9vb2////9v//9vb29vb2//bttv//9vb2///2////////////5CQ2///ttv//9vb29vb/2aQ 2/+2Ztv//9vb2////9v//9vb2///29v//9vb2/////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////wAAAAD///8AAAD///////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////bttv//9v///////////////////////////// //////////////////////////////////////////+229v/29v////////////////bttv//9v/ ///////////////////////b2////9v////b2////9v////b29v///////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////+229v/29v///////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////8AAAAA////AAAA//////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////v7+/v7+//////////////////////////// ////////////////////////////////////////////////////////////AAAAAP///wAAAP// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////7+/v7+/v7+/v7+/v////////////////////////////////////////7+/v7+/v////// //////////////////////7+/gAAAAD///8AAAD///////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////9mZrb//7b///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////b//9mkLZmkJD/tpD///////////////////////// ///////////////////////////////+/v7+/v7+/v7+/v7+/v7+/v79/f37+/v+/v7///////// ///////////////////////////////////////////////////+/v7+/v7+/v7+/v4AAAAA//// AAAA//////////////////////////////////////////////////////////////////////// ////////////////////////////////OpDb27ZmOma2/9uQZma227Zmtv/b25Bm////Oma2kLZm tmZmZma2//+2kJC2ZpCQ/9uQZpDbZpCQ/7Zm2///kLa2tmZmZma22/+2kLa2tmZmZma2Zjo627Zm ///bZpDbkLaQtpBmZmaQZmaQOmZm/9uQZma2/9uQZma2OmZmtrZm2//bZma2OmZm/9uQ////Zma2 ZpCQ/7ZmZma227Zm///b////Oma2ZmZmOmZm29uQkLa2tmZm2///Zma2OmZm/9uQZma2kLaQ25Bm Zma2//+2Zma2OmZmtrZm2//bZma2OmZmOjo6trZm///bZma2kJBmZpCQ/9uQZpDbZpCQ/7ZmZma2 trZmkLaQtmZm////////Zma2ZpCQ/7ZmZma227Zm///b////tv//tpBmZma2OmZm/9uQZpDbZpCQ /7ZmkJDb27a2ZpDbZpCQ27ZmZma2OmZm/9uQZpDb/9uQ////Zma2ZpCQZgAA2/+2Zma2OmZm/tuP /v7+/v7+/v7+/f39/Pz8/Pz8+/v7+/v7/////////////////v7+/v7+/v7+//////////////// /////////v7+/v7+/v7+/v7+/v7+/v7+AAAAAP///wAAAP////////////////////////////// /////////////////////////////////////////////////////////////////////////zqQ 22ZmOrZmOtv//2ZmkJCQkGaQkNu2kP//2zpmtmZmOtu2kGZmttv/tpBmkGa22/+2ZmaQ22aQkP+2 Ztv//2ZmkNu2kGZmttv/tmZmkNu2kDpmtmZmOpCQkP//tmaQ25C2kLaQZpBmkJC2tmZmkP/bkGZm tv//tjpmtpBmOtvb2///25C222ZmkP/bkNv//5BmkGa229u2ZmZmkJCQkP//tv///2ZmtpC2kGZm kNvbkGZmkNu2kP///5C222ZmkP/bkGZmtpDbttuQZmZmtv//tjpmtpBmOtvb2///25C22zpmkJA6 ANvb2///2zpmtpBmOma22/+2ZmaQ22aQkNu2ZmZmkGaQkGZmOtu2kP///9v//5BmkGa229u2ZmZm kJCQkP//tv///2aQ29u2kJC2tmZmkP/bkGaQ22aQkNu2ZpBmkGaQtmY6Oma2tv+2ZpC222ZmkP/b kGaQ29u2kNv/25BmkGa222YAAP//to+122Zmj//bkP7+/v39/f39/fz8/Pz8/Pz8/Pv7+/v7+/39 /f////////////////////////////////////////7+/v7+/v7+/v7+/v7+/v7+/v7+/v7+/gAA AAD///8AAAD///////////////////////////////////////////////////////////////// //////////////////////////////////////86kNv/tmY6Zrb/25Db///b29vb2/////////+2 ttvb29v/29u2ttv//9vb///btrb////b///b29v//9v////b2///29u2ttv//9vb2///29uQkNvb /7bb29v////b///b29vb29v/27bb///btrb///+QkNv//7a2ttvb/9vb29v////b///b29v///// ///b2/9mkNv/tmbb///b29v///////9mZrbb/7bb29v////b2///29v////b///b29v////b///b 29v//9tmZrb//7a2ttvb/9vb29v////b///b29vb///b29v///+2ttvb/9vb29v////b///b29v/ /9vb///b29vb2///29v////////b2/9mkNv/tmbb///b29v////////b2//////b///b29v////b ///b29v//9vb2//b29v////////////b///b29v////b///b29v//9vb2/9mkNu2Zjr//9vb///a 2tr9/f39/f38/Pz7+/v7+/v6+vr6+vr7+/v7+/v7+/v///////////////////////////////// ///////+/v7+/v7+/v7+/v7+/v7+/v7+/v78/PwAAAAA////AAAA//////////////////////// //////////////////////////////////////////////////////////////////////////// ////trbb27a2/9vb////////////////////////29v////b////29v////b////29vb//////// ////////////////////29v////b////////////////////////////////////////////29vb ////////////29v////b////////////////////////////ttvb/9vb////////////////27bb ///b////////////////////////////////////////////27bb///b29v////b//////////// ////////////////29v////b////////////////////////////////////////////////ttvb /9vb//////////////////////////////////////////////////////////////////////// ////////////////////////ttvb27bb///b/////Pz8/Pz8/Pz8+/v7+/v7+vr6+vr6+/v7+/v7 +/v7+fn5/Pz8/////////////////v7+/v7+/v7+/v7+/v7+/v7+/v7+/v7+/////v7+/f39/f39 /Pz8AAAAAP///wAAAP////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////39/fz8/Pz8/Pv7+/v7+/v7+/v7+/v7+/n5+fn5+fj4+Pj4+P39/f////////////7+/v7+ /v7+/v7+/v7+/v7+/v7+/v39/f39/f39/fz8/Pz8/Pz8/AAAAAD///8AAACzs7Ozs7Ozs7Ozs7Oz s7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Oz s7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Oz s7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Oz s7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OysrK9vb3+/v7///////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////+/v79/f38/Pz7+/v7+/v6+vr6+vr6 +vr5+fn5+fn5+fn4+Pj6+vr+/v7+/v7+/v7+/v7+/v7+/v7+/v7+/v7+/v7+/v79/f38/Pz8/Pz8 /Pz8/Pz9/f0AAAAA////AAAAg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4OD g4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4OD g4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4OD g4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODgoKCfX19 zMzM//////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ////////////////////+/v7+vr6+vr6+fn5+fn5+fn5+fn5+fn5+Pj4+Pj49/f3+vr6/v7+/v7+ /v7+/v7+/v7+/v7+/v7+/f39/f39/Pz8/Pz8/Pz8/Pz8/Pz8/Pz8AAAAAP///wAAAIqLi4qLi4qL i4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qL i4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qKiouL i4mJiYiIiIqLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4uLi4iKioeIiIqLi4qLi4qLi4qL i4qLi4qLi4qLi4qLi4qLi4qLi4qLi4qLi4uMjIaHh46OjvHw8P////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////v7+/f39/j4+Pn5 +fn5+fn5+fn5+fj4+Pf39/f39/b29vj4+P7+/v7+/v7+/v7+/v7+/v39/f39/fz8/Pz8/Pz8/Pz8 /Pz8/Pv7+/v7+/v7+wAAAAD///8AAACJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uIioqIioqIioqIioqIioqIioqIioqIioqIioqIioqIioqHiYmIioqIioqHiYmIioqI ioqIi4uIioqHiYmIioqIioqHiYmIioqHiYmJi4uIiYmUlpaVl5eHiYmIioqHioqHiYmHiYmIioqI ioqIioqHiYmIi4uHiIiPkZGXmJiHioqIi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uAgYGysbH///////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////+/v7////+/v74+Pj4+Pj6+vr5+fn5+fn4+Pj4+Pj39/f39/f39/f39/f5 +fn+/v79/f39/f39/f38/Pz8/Pz8/Pz8/Pz8/Pz8/Pz8/Pz7+/v7+/v7+/sAAAAA////AAAAiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiIuLioyMiYyMiYuLiYuLiYuLiouL iYuLiYuLiouLjpCQioyMk5WVjI6OiIqKkZKSioyMioyMiYqKi46Ok5WVioyMjY+PjpCQiIqKlJeX jpCQiYqKpaenwcPDnqCghYeHj5GRj5GRjo+PioyMjpCQi4yMlJaWiIyMhomJnqCgvsDAqqurhIaG iYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuLhISE3d3d//////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////Pz8 9/f3+Pj4+Pj49/f39/f39/f39/f39/f39vb29vb29fX1/Pz8/Pz8/Pz8/Pz8/Pz8/Pz8/Pz8/Pz8 /Pz8/Pz8+/v7+/v7+/v7+/v7AAAAAP///wAAAImLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4SFhbi6usLExLa3t7GyssHDw7i5uayursLExL/Cwp+hobS1taenp66wsLe5ub/A wLe3t6CgoKqsrLW3t6SmprCysre5ucjKyru7u7Cysru8vK2vr6+vr7Kzs7y+vqytra2urry9vcHD w7CysqGjo7S1tbCysrm8vKChoaanp7Gysri6uoKEhImLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mL i4mLi4mLi4mLi4qLi4WEhJmZmfv7+/////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////7+/vn5+ff39/f39/j4+Pj4+Pf39/b29vb29vb2 9vX19fX19ff39/z8/Pz8/Pz8/Pz8/Pz8/Pv7+/v7+/v7+/v7+/v7+/z8/Pv7+/r6+gAAAAD///8A AACJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJjIyIioqQkZG1trbDxMS7vb28vb3C w8O5u7u6u7vAwsK7vr6RkpKvsbGpqamrrq64urrBw8O6vLy9v7+zs7O0tLSnqamusrKoqqrEx8e3 ubmztLS/wMCsra2ys7O0tbW0t7fBwsK0trarra2+wMC1traIi4utr6+ys7O5ubm4urq1traxtLSx srKEhYWJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uLi4uCgoLGxsb///// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////8/Pz39/f39/f29vb29vb29vb29vb19fX09PT09PTz8/Py8vL5+fn9/f38/Pz8/Pz8/Pz7 +/v7+/v7+/v7+/v7+/v6+vr6+vr6+voAAAAA////AAAAiYuLiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiIuLi42NioyMiYuLjI6OjI6OiYqKi42NjY+PiYuLioyMio2NiYyMk5WVl5qa jI2NkJKSiIuLk5WVjI2Nio2NlZeXmZqakJGRj5GRhoiIm52dtbe3lJeXjI6OlJWVkJKSpKamn6Gh jY+PjI2Ns7W1j5GRiIqKlZeXiIqKkJKSjpCQlZeXjI6OiIqKiYuLiYuLiYuLiYuLiYuLiYuLiYuL iYuLiYuLiYuLiYuLiYuLiYuLiYuLh4mJio2N7e7u//////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////v7++Pj49vb29vb29vb29fX19PT0 8/Pz8vLy8vLy8vLy8vLy8/Pz+/v7+/v7+/v7+/v7+/v7+/v7+/v7+vr6+vr6+vr6+vr6+fn5AAAA AP///wAAAImLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4iKioiKioiK ioiKioiKioiKioiKioiKioiKiomLi4iKioeIiIuMjIiKioeJiYiKioeJiYiKiomLi4aIiImLi4iJ iYiKioiKioeKioyOjoyNjYiKioaIiIqMjIeKioSFhYeJiYeKipSWlouMjIeKioeJiYiKioeJiYiK ioeJiYiKiomLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4mLi4GD g6qqqv////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////7+/vz8/PX19fX19fT09PT09PPz8/Ly8vLy8vLy8vLy8vLy8vDw8Pb29vv7+/v7 +/v7+/v7+/v7+/r6+vr6+vr6+vr6+vr6+vn5+QAAAAD///8AAACJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJioqJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uHiYmJioqJi4uJi4uJi4uI ioqJi4uJi4uJi4uHiYmJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJ i4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uJi4uBg4PY2dn////+/v7///////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////+/v7+/v7+/v7+/v7////4+Pjz8/Pz8/Pz 8/Py8vLy8vHy8vLy8vLx8fHw8PDw8PDx8fH7+/v8/Pz7+/v6+vr6+vr5+fn5+fn5+fn5+fn6+vr6 +voAAAAA////AAAAiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuL iIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuMiIuMiIuLiIuMiIuLiIuLiIuLiIuLiIuL iIuLiIuLiIuLiIuLiIuLiIuMiIuMiIuLiIuLiIuLiYuMiIuMiIuMiIuLiIuLiIuLiIuLiIuLiIuL iIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuLiIuL iIuLiIuLg4aGlpeX+Pn5//////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////v7+/v7+/v7+/v7+/v7//Pz98fHx8fHx8fLy8vLy8vLy8PHx8PHx8PDw7/Dw7/Dw7u/v 9PX1+vr6+vr6+vr6+vr6+fr6+fn5+fn5+fn5+fn5+Pn5AAAAAP///wAAAImNkImNkImNkImNkImN kImNkImNkImNkImNkImNkImNkImOkImOjomOjomOjomOjomOj4mNkImNkImNkImNkImNkImNkImN kImNkImNkImNkImNkIqOkIqOkIqPkYqPkYqPkYqPkYqPkYqPkYqPkYqPkYmOkYmOkImOkImOkYmO kYmOkYmOkYmOkYmOkYmOkYmOkYmOkYmOkYmOkYmOkImOkImPkYqOkoqOkoqOkoqOkYqOkYqOkYqO kYqOkYqPkYqOkYqOkYqOkYqOkYqOkYqOkYqOkYqOkYqOkYqOkYqOkn+FhrvAwv////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////3/ //j7/ff7/vf6/vf5//j6/Pj6+/j5+vf5+vb4+fb3+fb4+f7///////////////////////////// //////7//wAAAAD///8AAACagGyagGyagGyagGyagGyagGyagGyagGyagGyagGyagGyagGyagGua gGuagGuagGuagGuagG2agG2agG2agG2agGyagGyagGyagGyagGyagG2agW2agGyagG2Zf22ZgGyZ gGyZgGyZgGyZgG2ZgGyZgG2Zf2yZfmuZfmuZfmuZf2yZf2yZf2uZf2uZf2uZf2uZf2yZf2yZf2yZ f2uZfmyZfm2Zfm2afW6afW6ZfWyYfWyYfWyYfWyYfWyYfWyYfWyYfWyYfWyYfWyYfWyYfWyYfWyY fWyYfWyYfWyYfWyYfWyTfGqVfm3TxLbZz8Xc0sPf1cHf1cHe1MDe1MDe1MHe1MHe1MHe1MHe1MHe 1MDe1MDe1MDe1MDe1MDe1MHe1MHe1MHe1MDe1MLe1MLe1MLe1MLe1MLe1MLe1MLe1MLe1MLe1MDe 1MHe1MHe1MDe1MDe1MDe1MDd08Hd08Hd08Hd08Hd08Dd08Dd08Ld08Hd08Hd08Hd08Hd08Ld08Ld 08Lc0r/c0r/d0sDd08Dd0sDd0r/d0sDd0sDd0sHd0sHd0sHd07/d0r/d0r/c0r/c0sDc0sDc0sDd 0sDc0cDb0b/b0b/b0b/b0b7b0L3b0L3a0L3a0L3b0L3ayrbZyLbaxrfaxbnaxbXaxbTaxbXaxrXa xbTZxLPZw7LayLnczr/bzbvbzbvbzbrbzbrbzbvbzbvbzbvbzLsAAAAA////AAAAqF8rqF8sqF8s qF8rqF8rqF8rqF8rqF8sqF8sqF8sqF8sqF8rqF8sqF8sqF8tqF8tqF8tqF4uqF4uqF4uqF8up18s p18rp14rp14rp14sp10tp14tpl0sp10spl0splwsplwsplwsplwsplwsplwsplwspVwspVsspVwr pFsqo1oqo1oqo1oqo1oqo1oro1oqpFkqo1oqo1kqo1oqo1kro1kso1gso1grolcqolcrolcrolcr o1cro1cro1crolcqoFUooFUooFUooFUooFUooFUooFUooFUooFUooFUnoFUnm1YomFQmkk8gkE8g mVclp2QppGUjo2Uho2Qjo2Qjo2Uio2Uio2UipGQhpWMhpWMhpWMhpWMhpWMhpGMhpGMhpGMhpGIi pGEipGEipGEipGEio2IiomMiomIiomIjomIiomIiomIiomIiomIiomIiomIiomAioWAioWAioWAi oWAioWAioWAioWAioV8joV8joV8joV8jnV8mnl8mnl8mnV0lnVwlnlwmnV0mnV0mnFwmnlwnnlwn nlsnnlsnnVwnnVsnnVsnnFsnnVsnnFsmnFsmnFsmnFsmm1wmmVwnmVsnmVommVommVommVommFol mFolmFsnl1onlVcnlFcplVYrlFQqk1MqlFQrlFUrlFQrlFQqlFQrlFQsllYullYnllgml1cnl1cn l1cnl1cnl1gnllYmAAAAAP///wAAALNiJ7RjJ7RjJ7VjJ7VjJ7VjJ7VjJ7VjJ7VjJ7VjJ7VjJ7Vi KLViKbViKbViKbViKbViKrVhK7VgK7VgK7RhKrJiJ7NiJ7NhJ7NiJ7NhKbNgKrNhKrNhKrNhKrNg KbJfKbJfKbFfKbJfKbJgKbFfKbJfKbJfKbJfKbJgKbBfKbBeKbFeKbBeKbBfKbFeKa5cJq9cKLBd KLBdKLBeKLBdKLBbKLBbKbBbKa5aKK9aKK9aKa9aKa9aKa9aKa9bKa9aKK5ZJ65ZJ65ZJ65ZJ65Z J65ZJ65ZJ65ZJ65ZJ65YJq5YJq1YJa1YJqxYJaxXJaxYJrZnKrpwJblwILltJbltJLluI7luI7lu I7ptI7tsIrtsIrtsIrtsIrtsIrtsIrtsIrtsIrtsI7trJLtrJLtrJLtrJLlrJLhrJLdrJLdqI7dq JLdqJbdqJbdqJbdqJbdqJLdqJLdpJLdpI7dpI7dpI7dpI7dpI7dpI7dpJbdpJbdpJbdpJbdpJbVp JrVpJrVpJrVpJrRoJ7NnKLRnKbNnKLFmJ7NlKLNlKbNlKbNlKbNlKrNkKrNkKrJjKbJjKbJkKLJk KLJkKLJkKLFkKLFlKLFkKLBjJ7BjJ7FjJ7FjJ7FjJ7FjJ69kKaxkKqpgKqlfK6lfLKdeK6deK6de K6deK6deK6deK6deK6ZfK6deK6tdKq1eLK1gLa1gLaxgLKxeK6xeK6xfKwAAAAD///8AAACsYiut YyusYyusYyusYyusYyusYyusYyusYyusYyusYyusYyusYi2sYi2sYS2sYS6sYS6sYS2sYS2rYS2s Yi2uYSupYiqoYyqsYiqsYS2rYC6rYC6rYC6qYC2hYSujYSqmYCunXyymYCykYCynYC2mYCyjYCyl YC2oXy6tXyqrXiqlYCurXiqrXiunXiuqXCqpXSqoXSqnXSuoXSunXCykXC2mXSqlXCqiWyqmWiun WiunWiunWiunWiunWiunWiumWSumWSumWSumWSumWSumWSumWSumWSulWSulWCqlWCqoWCqoWCqo WCqoWCqnViqrXCu1bSy0bie1bCy0bCu0bSm0bSm0bSm0bCm0ayi0ayi0ayi0ayi0ayi0ayi0ayi0 ayi0aym0ayq0aiq0aiq0aiq0aiqzaiqyaimyaSiyaSmyaSqyaSqyaSqyaSqyaSqyaSuxaSqxaCmx aCmxaCmxaCmxaCmxaCmxaCqxaCuxaCuxaCuxaCqzaCmzaCmzaCmzaCmxZyqvZiuvZiuvZiyuZSuu ZSyuZSyuZSyuZSyuZC6uYy+tYy+tYy6tYy6tYy2tYyytYyytYyysYyyrYyyrYyyrYyyrYyyrYyyr YyyrYyyrYyypYy2nYy+lYC+lXzCkXTCgXi+fXi+fXi+fXi+fXS+fXS+fXi+eXC6gXC6kXTClXzKn XzKnXjGmXjGmXTCmXTCmXTAAAAAA////AAAAr2IpsGMpsGMpr2MprmMprmMprmMprmMrrmMrrmMr rmMrrmMrrmMprmMqrmIsr2EtrGEvqmIurGItrmIsr2Ess18srWAsqWAtrGAtr18urmAtrmAtrmAt rV8trV0sr18rsGApr14rrV4srl0tsl0usV0trl4sql4pnlMjqFQbq1Ucol0qrV4rsFstol4trVoq rFwqqVwrqVstqVstq1kur1kusFwprlsqrFgtqlorqlsqqlsqqlsqqlsqqlsqqlsqqVopqVopqVop qVopqVopqVopqVopqVopqVopqFkoqFkoqFkoqFkoqFkoqFkop1gpplcor2Mmtm4rtWsqtmwotm0n tm0ntm0ntW0ntWwntWwntWwntWwntWwntWwntWwntWwntWwotWsptWsptWsptWsptWsptWsptGoo tGootGootGootGootGootGootGkptGkqs2kos2gos2gos2gos2gos2gos2gos2gos2gos2gos2go s2gos2gos2gos2gos2gos2cpsmcpsWYqr2YrrmYsrWUtrWUtrWUtrWUtrWUtrGQrq2MrrGQsrGQs rmQsrmQsrWMrrWMrq2Isq2Iuq2Iuq2Iuq2Iuq2Iuq2Iuq2Iuq2IuqmIuqWItqWEup18upV0to10v ol0vol0vol4volwvoVsvoVsvolsvoVsvo10vpV8wp14wqV0wqV4vp14up14up14uAAAAAP///wAA AK9iKLBjKbBjKa9jKa9jKa9jKa9jKa9jKq9jK69jK69jK69jKq9jKK9jKq9iLK9hLa1gL65gMLFh L7BdK6lXJKJXIaxWJbVbLK9gLathLK5gLK5hLK5hLK5gLLBdLK5dLaxfLa1fK7FeK69cLahhK6tf LLFaKrVlOL+RcL+Vbr6GZZ5cOqdbKq9cLKpeK61bK6xdKK1eJ69cKKxaK6tcLKpcK6dcKqVdLKZa LapaK6pbKqpbKqpbKqpbKqpbKqpbKqlaKalaKalaKalaKalaKalaKalaKalaKalaKahZKKhZKKhZ KKhZKKhZKKhZKKhZKKdYKKhbI7RqKrVsKrVtJrZuJrZuJrZuJrZtJ7VsJ7VsJ7VsJ7VsJ7VsJ7Vs J7VsJ7VsJ7VsJ7VrKbVrKbVrKbVrKbVrKbVrKbRqKLRqKLRqKLRqKLRqKLRqKLRqKLRpKbRpKbNp KLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNnKbJnKbJmKq9m K65lLK1lLa1lLa1lLa1lLa1lLaxkLKtjK6xkLKxkLK5kLK5kLK1jK61jK6tjK6tiLatjLatjLatj LatjLatjLatjLatiLapjLaliLKliLqhgLqZeLqFdL6BdL6FdL6FeL6FdL6BcL6BcL6BcL6BcL6Bc LqNdLqVeMKheMKheL6deLqdeLqdeLgAAAAD///8AAACvYimwYymwYymvYymvYymvYymvYymvYyqv YyuvYyuvYyuvYyqvYyivYyqvYiyuYS61YSm4YimkVyOjYze3hmC2j2mzfFmkXDKkVR6vYieuYCyu YCyuYCyuYSqsZCSkWSSeTyGqTiCmUB+kUx6yXyOuWiKdSxiudU/059zq4dv6+PjYv6+RTByfUxuz XiefUh+cUBusWB6rVBihThyeTh6cUh2cViOhUiCyXCesXCmpWyqqWyqqWyqqWyqqWyqqWyqpWimp WimpWimpWimpWimpWimpWimpWimpWimoWSioWSioWSioWSioWSioWSioWSmoWimmVySsYCa2biu2 bSe2bie2bie2bie2bSe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1aym1aym1aym1aym1aym1 aym0aii0aii0aii0aii0aii0aii0aii0aSm0aSmzaSizaCizaCizaCizaCizaCizaCizaCizaCiz aCizaCizaCizaCizaCizaCizaCi0ZymzaCqyZyqvZiuuZSytZS2tZS2tZS2tZS2tZS2sZCyrYyus ZCysZCytYyutYyutYyutYyurYyyrYy2rYy2rYy2rYy2rYy2rYy2rYy2rYy2qYyypYiypYi6qYzCo YC+iXS+hXS+iXS+iXi+iXS+gXC+gXC+gWy+gWy+eXC6fXS6jXi+lXzCmXi+nXi6nXi6nXi4AAAAA ////AAAAr2MpsGMpsGMpr2Mpr2Mpr2Mpr2Mpr2Mqr2Mrr2Mrr2Mrr2Mqr2Mpr2MrrmItsGIts2Ar nVQnto9y7ePZ/v///////P//5tzSuI5rn1YirVwpr2AtrmAtr2ArrVkjtXlWy6mczq2dyaybwJh5 olYutXlVzKyPoWIzto54w62p7OTl6+XiqY53v559mVMwsopuz62ftYdqvoxt2K+h0qyfvpyEsItz y5x/p1ovqlopqlsqqlsqqlsqqlsqqlsqqlsqqVopqVopqVopqVopqVopqVopqVopqVopqVopqFko qFkoqFkoqFkoqFkoqFkoqFooqFkqp1YppVgjsWgnt28otm0ntm0ntm0ntm0ntWwntWwntWwntWwn tWwntWwntWwntWwntWwntWsptWsptWsptWsptWsptWsptGootGootGootGootGootGootGootGkp tGkps2kos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gotGgqs2gq smcrr2YrrmUsrWUtrWUtrWUtrWUtrWUtrGQsq2QrrGQsrGQsrWMrrWMrrWMrrWMrq2Isq2Iuq2Iu q2Iuq2Iuq2Iuq2Iuq2Iuq2IuqmItqWIsqWIuqmIxqGAvo10vo10vo10vo14volwvoVsvolsvolsv oVsvnl0unV0uol0vpF8wpl8vp14up14up14uAAAAAP///wAAAK9iKbBjKbBjKa9jKa9jKa9jKa9j Ka9jKq9jK69jK69jK65jKq1mJ65iLK1iL65hJ6NUHsOmjP///////////////////////////8u0 np5UKbNbKatjKK1iJ59THMefh/////v///3//////8evm7eeff///rudiP//++vn3PTx69vX09HO yfft5Z9jPf78++3s58fDr/z//drZ0+js6vb28NDJwfv28Z5cNKhZJapbKqpbKqpbKqpbKqpbKqpb KqlaKalaKalaKalaKalaKalaKalaKalaKalaKahZKKhZKKhZKKhZKKhZKKhZKKhZKKhaKadYKKZY JqpcKLdsLbduJ7ZwJbZuJrZsKLVsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VrKbVrKbVrKbVr KbVrKbVrKbRqKLRqKLRqKLRqKLRqKLRqKLRqKLRpKbRpKbNpKLNoKLNoKMGDU82debNoKM2debNo KLNoKLNoKLNoKLNoKLJoKrJoKrJoKrJoKrJnK7JnK7JnK7FmKq9lKruBVq1lLa1lLa1lLaxkLKtj K6tjK6tjK6tjK6tjK6tjK6tjK6tjK6tiLKtiLqtiLqtiLqtiLqtiLqtiLqtiLqtiLqpiLqliL6li L6liL6lhL6deMKVcL6NdL6FeL6FcL6JbL6JbL6JbL6JbL6BaLqBaLp9ZLaNcMKZfMKdeLqdeLqde LgAAAAD///8AAACvYimwYymwYymvYymvYymvYymvYymvYyqvYyuvYyuvYyuwYyusZCqnZya2Xyaa VCTErZn////////06+fPuqnWx7P7+vX////////////VvKmgVyesYCeuXi2nUSHGnIX///+ognGW Yz3q4df39PG8rZzx8u7a1czy7+eORSjarJvj5d/Nx7zx49ejaTr///+og22gbUz///bd29Dn5uLw 6+nNwbz26ueuWzGsWSSqWyqqWyqqWyqqWyqqWyqqWyqpWimpWimpWimpWimpWimpWimpWimpWimp WimoWSioWSioWSioWSioWSioWSioWSmoWimnWCeoWSilViaxZCi5byu2biW2bia2bSi1bCe1bCe1 bCe1bCe1bCe1bCe1bCe1bCe1bCfBayjbuXnPn3nPn1PPn3m1aym0aijBhSi0hVPBhVPOaijOnp3O nnnOnlPBhFOzaSjNgyjBnXnBg1PNnXnNnVPNnZ3NnVPBg1OzaCjNg1PBg3nNnXnNnXnAg1Syg1Sy ZyvAglXAglW/gSvKnXnHgVbJnHvWm1XItZ25gFXIm3rIm3rkzt/Im3rWm53ItXq5gFWrYyu5fyur f1a5Yi3ImnvWmnvk5565f3vWmlbItJ7VtJ7HmljHmn3Hmp/jzsC4X1nEsX2ze1iiXi/Be1ixen3B ln3Bln3BelixeXyxeC7BlXygWy+lXzCnXy6nXy6nXi4AAAAA////AAAAr2IosGMpsGMpr2Mpr2Mp r2Mpr2Mpr2Mqr2Mrr2Mrr2MrsWIrrWMro2UjolYgzrGb////////3dDCmGQ9olIeolQdpHRS49rQ ////9v//////xqaInlMksF0xqk8jwpyH////tntaoUYH0rmf+/3/wLuz9fHu3MPC+/77p3df4r22 4OPiy8e/7OPcnnZY/v//xaGRmVg2tZmDz7Gq6+Tg6+7oxr228uvmpVwwq1okqlsqqlsqqlsqqlsq qlsqqlsqqVopqVopqVopqVopqVopqVopqVopqVopqVopqFkoqFkoqFkoqFkoqFkoqFkoqFkoqFop p1gnp1gnplcmplkjtGgqt28ntm4mtm0ntWwntWwntWwntWwntWwntWwntWwntWwntWwn24YowZ+d z7mdz595wYZTtWsptGoowWoowYVTzoVTzridwYVTzp55zp55tGkps2kozYNTwZ15s2go2rd5zbed 2rd5zbeds2gos2gos2gozINT2rd5zZ15smgqsmgqsmcr2p1VwJ2dzWcrvZ15rWUtyJt7yJt6yJtV yJt61rWdyJud8ue/yJt61rV61rWduZudq2Mrq2Mrq2Msq2MsyJt7yLWd5M57uZudyJtV1pt74+fg 1bSfx5p91bSe8efAqH191JdYtJefol0vn10uwXpYsZV9wJVXn1tXsHlXwFsusJV8nVotolwtqF8u p14tp14uAAAAAP///wAAAK9iKLBjKbBjKa9jKa9jKa9jKa9jKa9jKq9jK69jK69jK61kKq1jJqpd Ms67pf///////9fLx87Bt8WlhK9aIbVfKKtWHJ5hMuHWy/////z///n49KxuUKtbI6dUHcSdhv// /6xyVJdCCdnIuPv7/b+xovDp26Z+YvDh3Pz98/3/+t3V0cy+rebYzuDNv/7////9+sSxnOHXx/fs 6ff08sCqmMawnvPu6KBdMataJKpbKqpbKqpbKqpbKqpbKqpbKqlaKalaKalaKalaKalaKalaKala KalaKalaKahZKKhZKKhZKKhZKKhZKKhZKKhZKKhaKadYJ6dYJ6dYJ6dWJa1gJLdvKbZuJrZtJ7Vs J7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ8+fU7VrU8GGU7VrKcGfebVrKbRqKM6FU8Geec6eU8Fq U8GFU7RqKLRpKbRpKbNpKMFoKMGdebNoKLNoKLNoKLNoKLNoKLNoKLNoKM2dU8GdncCDKsCDebJo KrJoKrJnK8CCK8CCes2CVbCBea1lLKtjK6tjK6tjK6tjK6tjK7ljK8ibeqtjK6tjK6tjK6tjK6tj K6tiLKtiLqtiLqtiLsiafLl/V6tiLrl/V6tiLqtiLqliL7liMMaZfKhgLqheMadfMaVfMaFdL8GW V7KVn8GVWLGVfMGVV7GVnsF4V6B4e59ZLaFZK6ddLadeLqdeLgAAAAD///8AAACvYiiwYymwYymv YymvYymvYymvYymvYyqvYyuvYyuvYyuvZCqvXyeuXTbm1sv////QycPLwrz////CqZKrWCanYC20 YSizWRyiZkLz6uX8///////KrJOkVRupVRbCn4f////bycHawrD////l3MylkX7i3dSgZTSrWTux cFO0eVedZkfCs5nWxriseGj////LrJ6lXz2seEy4fFipc0+VRiXTt6n79PKpWTOqWSWqWyqqWyqq WyqqWyqqWyqqWyqpWimpWimpWimpWimpWimpWimpWimpWimpWimoWSioWSioWSioWSioWSioWSio WSioWimnWCenWCenWCeoWCanVySwZSe3bym2bSe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1 aym1aym1aym1aym1aym1aym0aii0aii0aii0aii0aii0aii0aii0aSm0aSmzaSizaCizaCizaCiz aCizaCizaCizaCizaCizaCizaCizaCizaCmzaCmzaCmzaCmyaCqyaCqyaCqxZyqwZimvZSqtZCqr YyurYyuqYyuqYiyqYyyqYyyqYyuqZCuqZCuqZCuqZCuqYi2qYi+qYi+qYi+qYi+qYi+qYi+qYi+q Yi+pYS+pYS+oYS+oYC+oYC+mXy+mXjCkXy+hXS2fWy2fWy6fWy6fWy6eWy6dWi6dWi2dWS2dWS2f WSykXC2mXy6mXy0AAAAA////AAAAr2IosGMpsGMpr2Mpr2Mpr2Mpr2Mpr2Mqr2Mrr2Mrr2MrsWIr rGUpq2AiqmU9t5yJ0MO9///+u52CmVQktWEqrmEprGEut2ImnlQYvqWO////////1Mq2oVUiqVMf upN28Ojk9vPx9vXy5tnOrXZKq4Jj3su3s2g2q1kjq1giq1QgnVAYx6OF0rWfpGI97erdtotqn00a nlocqFYeoFYgqU8dzaqP6dnKqlowqlkmqlsqqlsqqlsqqlsqqlsqqlsqqVopqVopqVopqVopqVop qVopqVopqVopqVopqFkoqFkoqFkoqFkoqFkoqFkoqFkoqFopp1gnp1gnp1gnp1gmplcnqFontmws tW4mtWwntWwntWwntWwntWwntWwntWwntWwntWwntWsptWsptWsptWsptWsptWsptGootGootGoo tGootGootGootGootGkptGkps2kos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2go s2gos2gos2gosmgpsWcpsWcpsWcpsWcpsmYqrmQprGMrq2MsqWItqWIuqWIuqWIuqWIuqWMsqWQr qWQrqWQrqWItqWIvqWIvqWIvqWIvqWIvqWIvqWIvqWIvqWEvqF8vqGAvqF8vp18vpV4upV4upV8v pF0soFssnFsunFsunFsunFsum1otm1otm1otm1otnFotoFssol4spV8sAAAAAP///wAAAK9iKLBj KbBjKa9jKa9jKa9jKa9jKa9jKq9jK69jK69jK69jK6tlKq5kKqZXHqV3Uv///8y1paNNGbxhJKhj K7NiKaZZJ6tYH6hVFrWObf///////9LAsp9UHq5fKaZcK5xXKZVTMJNTLpVRJaVNGKtVH6FTHaBT HaJSHaZVIKBUHqRcHa5SJJhDHKRhIpVcKphQIaJRGadXHZ9UHKlYKaRRG5xTG49SJp5RIatcKapb KqpbKqpbKqpbKqpbKqpbKqlaKalaKalaKalaKalaKalaKalaKalaKalaKahZKKhZKKhZKKhZKKhZ KKhZKKhZKKhaKadYJ6dYJ6dYJ6dYJ6dYKKZXJ65hKLhtK7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7VsJ7Vs J7VsJ8+fU8GGec+fU8GGnc+fU8GGnc5qKM64vrRqKOe4U864vtu4ndu4nee4nc64vue4U9XDvsFo U9q3nf//vtq339q3ndq3ecGdecGdebNoKLNoKLNoKLNoKLNoKLNoKLFmKLBmKLBmKbFnKbFnKbJm Kq9lKq1kK6tjK6ljLKljLKljLKljLKljLKljLKljLaljLaljLaliLaliL6liL6liL6liL6liL6li L6liL6liL6lhL6hfL6hgL6hfL6dfL6VeLqVeLqVfLqVeLqBdLZtaLZxbLpxbLpxbLptaLZtaLZta LZtaLZtaLZxaLZ5aLKNfLQAAAAD///8AAACvYiiwYymwYymvYymvYymvYymvYymvYyqvYyuvYyuv YyuuZCqyYDCsXjOjWR3AlHb////Mt6edTh25YCauYyqlVB+2hGfXrZCVUiriyLb///////+5jHKj VxusXCGjXzDAkm/LoYPKoYm5iGHBkXa7fFOeXS7EmHzaqpPFjHLFk3q0hlWnYzjLnIOdZDWqcU7N oYzPp4+7gmXDl3arYkW7j2/VpovMn4u/kHCnWSmqWymqWyqqWyqqWyqqWyqqWyqpWimpWimpWimp WimpWimpWimpWimpWimpWimoWSioWSioWSioWSioWSioWSioWSioWimnWCenWCenWCenWCenViqn ViunWSezZiu2bSe1bCe1bCe1bCe1bCe1bCe1bCe1bCe1bCfPn1Pbn3nBn53bn1PBn53PhlPOuJ3O nnm0aijBaijOnnnn0J3bnp3buJ3bz53BaVPMrnmzaCjyt3ny///az53yt53Nt9/yt3nNt9+zaCiz aCizaCizaCiyZyeyZyexZyixZymxZymxZymxZymxZiqxZiuvZSyrZCypYi2pYi6pYi2pYi2pYi2p Yi6pYi6pYi6pYi6pYi+pYi+pYi+pYi+pYi+oYS6oYC6oYC6oYS6oYS6oYC+oYC+oXy+nXy+lXi6l Xi6lXi6mXy6iXi6aWi2bWi2cWy6cWy6bWi2bWi2bWi2bWi2bWi6ZWS+bWiygXS0AAAAA////AAAA r2IosGMpsGMpr2Mpr2Mpr2Mpr2Mpr2Mqr2Mrr2Mrr2MrrWQpr2UnrGEutGIetGlE9/Py/v38tJR7 mE8jpE4XroBb/Pr12dvQwreq////////28aypFcprmAioF0u3sy/////////////0Mmz6Oflzrys z8Cr/P395drWxLKr8PXz2LyirXVc////s56N9fTt+/r28u7ozry1+fbt0LKp/P//29ja+Pf77uve nVYnq1ooqlsqqlsqqlsqqlsqqlsqqVopqVopqVopqVopqVopqVopqVopqVopqVopqFkoqFkoqFko qFkoqFkoqFkoqFkoqFopp1gnp1gnp1gnp1gnp1Yqp1UrplUpq14ntWwptWwntWwmtWwotWwntWwn tWwntWwntWwnz59Tz4Z5wZ95z4Z5wZ95z595wWpTwYVTtGoo255TwZ6+zoUowZ55255TwZ6d2p5T wZ2+s2gozZ1T8s+dwZ2dzZ1TzZ152p1TwZ2ds2gos2gos2gos2gosmcnsmcnsWcpsWcpsWcpsWcp sWcpsWYqsGYqr2UsrGUsqmMsqWIuqWIuqGIuqGIuqGIvqGIvqGIvqGIvqWIvqWIvqWIvqWIvqWIv qGEuqGAuqGAuqGEuqGEuqGAvqGAvqF8vp18vpV8upV4upV4upV4upF8wn1wwnFstnFsunFsvm1ot m1otm1otm1otmlkumFkwmlkvmlotAAAAAP///wAAAK9iKLBjKbBjKa9jKa9jKa9jKa9jKa9jKq9j K69jK69jK69jK69kKK9jKrBjK6tVIL6Pc////////9O6rsuql/z6+NrUzMe+sv///////9nOv5xd NbBbJqtZIrKBXv///93OwqNvS7BzTKJuQe3n3+DLxvXy7vDs7NvJwbijjeXs5dSxm6huUPb49tLQ 0Pv9+6JtPptGEbmGbfr38tC2rP///tPKwu7q5ubh2p1WK6taJ6pbKqpbKqpbKqpbKqpbKqlaKala KalaKalaKalaKalaKalaKalaKalaKahZKKhZKKhZKKhZKKhZKKhZKKhZKKhaKadYJ6dYJ6dYJ6dX KKdXKKdXKKdWKKdXJ7FjK7dtJ7VuI7VrKrVrKrVsJ7VsJ7VsJ7VsJ7VrKbVrKbVrKbVrKbVrKbVr KbRqKLRqKLRqKLRqKLRqKLRqKLRqKLRpKbRpKbNpKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNo KLNoKLNoKLNoKLNoKLNoKLNoKLJnKbFmKrFmKrFmKrFmKq9nKq9nKrBnK69nKqtlKaljLadgMaVi MKRjL6ZiMKZiMKZiMKZiMKdiL6liL6liL6liL6liL6hhLqhgLqhgLqhhLqdhLqZgL6ZgL6ZfL6Zf L6VeLqVeLqVeLqVeLqVfLqNdL6FbLp5aL5xZMZlaLZlaLZlaLZlaLZlZLZlZL5lZL5dXLgAAAAD/ //8AAACvYimwYymwYymvYymvYymvYymvYymvYyqvYyuvYyuvYyuvYyqvYymvYymtYiyxYC2gVSS0 jm3w6+X////////V0cbHvrv////////bzLuXXDSqWCe1YCqiVSC/lnz///+3lnyjThK2VB6oWSfz 6uHWysLz8u3u6uzNwLuzn5Dp6+rRwK2rjG78/frRysn9//+whWSjXjW8jHv//v+ueGXAo4jLvr3y 8PTu4+KgVCurWieqWyqqWyqqWyqqWyqqWyqpWimpWimpWimpWimpWimpWimpWimpWimpWimoWSio WSioWSioWSioWSioWSioWSmoWimnWCenWCenWCenVyinVyinVyinVyinViipWya1aie1bSW1ayi1 aym1bCe1bCe1bCe1bCe1aym1aym1aym1aym1aym1aym0aii0aii0aii0aii0aii0aii0aii0aSm0 aSmzaSizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCiyZyqxZiqx ZiqxZiqxZiqvZyqvZyqvaCuvZiqrZSmpYy2nYTGlYjCkYy6lYjClYjClYjClYjCnYi+pYi+pYi+p Yi+pYi+oYS6oYC6oYC6oYS6nYS6mYC+mYC+mXy+mXy+lXi6lXi6lXi6lXi6lXy6kXy+iXC+eWi+c WTCZWS6ZWi2ZWi2ZWi2YWS2XVy2XVy2YWC8AAAAA////AAAAr2IpsGMpsGMpr2Mpr2Mpr2Mpr2Mp r2Mqr2Mrr2Mrr2Mrr2Mqr2Mor2Mqr2IsrmEts18urFUmp2U/uI5rr3tXtopr////////28W4o1ou rlkltmErsWAro1UivZBz////waWNlEcPoE4en1Mo8eTav6+dw6uX+PX16uXmz8O55eLf/f//+v3/ 7OLgoXRf8OPU/v//+/v3zbmy8OjctY155+Lb6OTm+Pj3z7KZoFAiq1spqlsqqlsqqlsqqlsqqlsq qVopqVopqVopqVopqVopqVopqVopqVopqVopqFkoqFkoqFkoqFkoqFkoqFkoqFkpqFopp1gnp1gn p1gnp1cop1cop1cop1cop1cpplclrF8ltm0ptm4ntWwmtWwntWwntWwntWwntWsptWsptWsptWsp tWsptWsptGootGootGootGootGootGootGootGkptGkps2kos2gos2gos2gos2gos2gos2gos2go s2gos2gos2gos2gos2gos2gos2gos2gosmcqsmcrsmcqsWYqsWYqr2cqr2cqr2cqr2cqrWcrqWQt pmExpWIwpGMvpWEwpGEwo2Evo2EvpmEvqWIuqmMvqWIvqWIvqGEuqGAuqGAuqGEup2EupmAvpmAv pl8vpl8vpV4upV4upV4upV4upV8upF8wo10wnlkvm1gvmVotmVotmFktmFksmFgsl1ctl1ctmFkv AAAAAP///wAAAK9jKbBjKbBjKa9jKa9jKa9jKa9jKa9jKq9jK69jK69jK69jKq9jKa9jKq9iLK9h LaliLrdgLbReJ6BbH65YHqddKtK3ntjGtZlbLq5bIrFhK61gLK5gLq5ZJa1wRP39/fbz8Mmxmsew oL+OdN3Bu8iegJxOI7N4WbqHZrF7Vq94VbiBYrCCYqRqP6tUH6hhOrZ+YqmCX7KGcd3VxqxzWrR+ YMGFZK58VKNYLq9YKqlbKqpbKqpbKqpbKqpbKqpbKqlaKalaKalaKalaKalaKalaKalaKalaKala KahZKKhZKKhZKKhZKKhZKKhZKKhaKahaKadYJ6dYJ6dYJ6dXKKdXKKdXKKdXKKdXKaZVJqVXIbJm J7VuJLVsJrVsJ7VsJ7VsJ7VsJ7VrKbVrKbVrKbVrKbVrKbVrKbRqKLRqKLRqKLRqKLRqKLRqKLRq KLRpKbRpKbNpKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNn KrJnK7JnK7FmKrFmKq9nKq9nKq9nKq9nKq1nK6pkLadhMaVhMKRjLqRgLqRgLqVgL6VhL6ZgLqhg LahiLqliL6lhL6hhLqhgLqhgLqhhLqdhLqZgL6ZgL6ZfL6ZfL6VeLqVeLqVeLqVeLqVeLqRfMKRf MaBdMZtYLphYLJdYK5ZYK5ZXKpZXK5dXLZhXLZhYLwAAAAD///8AAACvYimwYymwYymvYymvYymv YymvYymvYyqvYyuvYyuvYyuvYyqvYymvYyqvYiyvYS2rYi6uYS2wYS2sYi6uYS6rYCqmWiqlWSyp XSmuYSytYC2sYC2uYC6wXyumVia9mYDx7eX///n////RwLLRuKbNn3qfViOoVyOoVCCpVyOoVSKq VB6pVh6sWyK0XymqVyepUx2YThizd1Hp072qa0ejTxqoVB6jVSCoWCmsWyuqWyqqWyqqWyqqWyqq WyqqWyqpWimpWimpWimpWimpWimpWimpWimpWimpWimoWSioWSioWSioWSioWSioWSioWSmoWimn WCenWCenWCenVyinVyinVyinVyinVyinVielVCWpWyS1ayi1byW1bSS1bCa1ayi1aii1aym1aym1 aym1aym1aym1aym0aii0aii0aii0aii0aii0aii0aii0aSm0aSmzaSizaCizaCizaCizaCizaCiz aCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCqzaCqzaCqyZyqxZimvZiuvZiuvZiuvZiuv ZiyuZC6rYy+oYi+mYi6kYDCkXzClXzClXzClYDCmYDCmYTCmYTGnYDGnXy+mYC+mYC+mYC+lYC+l YDClYDClXzClXzClXjClXi+lXi+lXi+lXjCkXjCkXzCjXjCfWS2ZWSyXWSuXWCuXWCuWWCuWWCyX WCyXWSwAAAAA////AAAAr2IosGMpsGMpr2Mpr2Mpr2Mpr2Mpr2Mqr2Mrr2Mrr2Mrr2Mqr2Mor2Mq r2Isr2EtsGAur2Aur2AusGAur2EurmAtrl8rrl8qr2AtrmAtrmAtrmAtrmAtrmErrmMom1ginmM5 rWlEr2hDpmQ9oFcnqFklsGEorV8qrV8srF4rrF0qrF0qrF0rrF0rq10qqlworlwprlwsqFgqpFEm plksrF0rq1wrq1wrqVspqVsqqlsqqlsqqlsqqlsqqlsqqlsqqVopqVopqVopqVopqVopqVopqVop qVopqVopqFkoqFkoqFkoqFkoqFkoqFkoqFkoqFopp1gnp1gnp1gnp1cop1cop1cop1cop1cop1cn plUnplUjr2Motm0ntWwltWsmtWsptWsptWsptWsptWsptWsptWsptWsptGootGootGootGootGoo tGootGootGkptGkps2kos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2gos2go s2gos2gps2gqs2gqsmcqsGYpr2Yrr2Yrr2Yrr2Yrr2Ysr2UtrWQuqmMup2EupWAxpV8xpWAxpWAx pWAxpWAxpGAxpWExpV8xpl8vpl8vpl8vpmAvpWAwpWAxpWAxpWAxpWAxpV4wpV4wpV4wpV4wpF4w pF8wo18vol0uoF0umlotl1krl1grl1grl1krllkrllkrllkrAAAAAP///wAAAK9iKLBjKbBjKa9j Ka9jKa9jKa9jKa9jKq9jK69jK69jK69jKq9jKK9jKq9iLK9hLa9hLq9iLK9iLK9iLK9iLK5hK65h K65gK65gK65gK65gK65hK65hK65hK7NeKrFeKaxcJ7BZJrJYJLNaJ7NeKq5fK61gKq1fKq1gKqxf KaxeKaxeKaxeKaxfKaxeKapcKKpcK6pcK61cKKxcJq1cKKtcK6tcK6pcK6lbKqpbKqpbKqpbKqpb KqpbKqpbKqpbKqlaKalaKalaKalaKalaKalaKalaKalaKalaKahZKKhZKKhZKKhZKKhZKKhZKKhZ KKhaKadYJ6dYJ6dYJ6dXKKdXKKdXKKdXKKdXKKdWKKZVJqdXJadZJLNoKbZsKLZrKbVrKbVrKbVr KbVrKbVrKbVrKbVrKbVrKbRqKLRqKLRqKLRqKLRqKLRqKLRqKLRpKbRpKbNpKLNoKLNoKLNoKLNo KLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKLNoKbNoKrNoKrJnKrFmKa9mK69mK69m K69mK69mLK5kLaxjLapjL6dhL6RgMKNfMaJfMaJfMaNfMaNfMaJfMKNgMaRgMqZfL6ZfL6ZfL6Zg L6VgMKNgMaJgMaJfMaNfMKVeMKVeMKVfMKVfMKNfMKFeMKFeL6BdL6BeL5paLZdZK5dYK5dYK5dY K5ZYLZZYLZVXLAAAAAD///8AAACvYiiwYymwYymvYymvYymvYymvYymvYyuvYyuvYyuvYyuvYyuv YymvYyqvYiyvYS2vYS6vYS6vYS6vYS6vYS6uYC2uYC2uXy2uXy2uXy2uXy2uYC2uYC2uXy6yWy+x XiytYSqoYC2qXi6uXi2rXi2qXi+qXi6sXyytXiysXiysXSusXSusXiusXiusXSuqXCmoXSunXSuo XSupXiqqXSqrXCurXCurXCupWimqWyqqWyqqWyqqWyqqWyqqWyqqWyqpWimpWimpWimpWimpWimp WimpWimpWimpWimoWSioWSioWSioWSioWSioWSioWSioWimnWCenWCenWCenVyinVyinVyinVyin VymoVimnViWnVyWmVCisXie1aiu1aiq1bCi1bCi1aym1aym1aym1aym1aym1aym0aii0aii0aii0 aii0aii0aii0aii0aSm0aSmzaSizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCizaCiz aCizaCizaCizaCmzaCqzaCmzaCqwZimvZiuvZiuvZiuvZiuvZiyuZCyrYi2rYy+nYS+lXzCkYDGk XzCjXjCkXjCkXjCjXjCkXTClYDGmYC+mXy+mYC+mYC+lYDClYDGkYDGjXjCkXjClXzClXjCkXS+k XS+jXi+iXi+jXS+jXS+iXi+bXC+YWSyXWCuXWCuXWCyWVy6WVy6VVi0AAAAA////AAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAP////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////wADAAAAAAA= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Bel19JournalArticle{48D3F76B-D845-42F4-9B23-838647758EFD}BellemoValentinaLimZhanW.LimGilber= tNguyenQuangD.XieYuchenYipMichell= eY.T.HamzahHaslinaHoJinyiLeeXinQ.HsuWynneLeeMong= L.MusondaLillianChandran= ManjuChipalo-MutatiGraceMumaMulengaTanGavinS.W.Artificial intelligence using deep learning to screen for refe= rable and vision-threatening diabetic retinopathy in Africa: a clinical val= idation studyThe Lancet Digital Health201935-441119SDe2= 1JournalArticle{BE44884B-81F8-= 4FE8-9FB6-3D715B536EBD}<= b:Last>SDeepthiMurthy TSravyaChirakalaNiharikaChadavalaSaiSaiDudekula= ReddyDwarsalaRamanjaneyula<= /b:Author>Turkish Journal of Computer and Mathematics Education Fi= ngerprint Image Recognition for Crime Detection Research Article Turkish Jo= urnal of Computer and Mathematics Education Research ArticleComputer and Mathematics Education20212230-2237121230Xia20JournalArticle{A7201240-D263-46A6-8656-0A8= 93C647DA2}XiaYanhuiNieBaishengZhangYananWangZhengyou= WangZhiqiangLiuShiboZhangBaoyueDesign and implementation of tunn= el image mosaic system based on open CVInternation= al Journal of System Assurance Engineering and Management2020792-79711435Are18JournalArticle{F78B36B0-C8D3-47F= 2-BADA-7F8726FC94E7}A review of image-based automatic fac= ial landmark identification techniquesEurasip Jour= nal on Image and Video Processing20181-2311JohnstonBenjaminChazalPhilip42Akb19JournalArticle{FEE86C83-0D03-4DA2-8848-569A516C7D62}AkbarJaveria= ShahzadMuhammadMalikMuhammadImranUl-HasanAd= nanShafaitFasialRunway Detec= tion and Localization in Aerial Images using Deep LearningDigital Image Computing: Techniques and Applications, DICTA20191-81123DB= e20JournalArticle{88250C42-E7A= B-4E6C-9718-01E4498E71F7}BerjonDanielCarballeiraPabloCabreraJulianCarm= onaCarlosCorregido= rDanielDiazCesarMoranFranciscoGarcia= NarcisoFVV= Live: Real-Time, Low-Cost, Free Viewpoint Video20= 20 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 20= 2020201-21111Auy19JournalArticle{1C= 537E29-5B2A-4E79-ABB7-DFE778A61410}AuysakulJutamanee= XuHePooneethVishwanath<= /b:Author>Development of Multi-process for Video Stitch= ing in the AVM Applications Based on OpenCV.Procee= dings of International Conference on Mechatronics and Intelligent Robotics = 20191013-1020= 1141BDe18JournalArticle{B05B81E7-FF1D-4855-86F2-DAEAE8DD026F}JainBDeepthiThakurShwethaMSureshKVVisual Assistance for Blind Using Image ProcessingInternational Conference on Communication and Signal Proce= ssing (ICCSP)20180499-05031114BPK20JournalArticle{4CD0338C-ABCA-4CD7-9F06-F9B1B377CCC6}KulkarniB.<= b:Middle>P.KrishnaS.S.Meenakshi<= /b:Last>K.KoraP.SwarajaK.Performance = Analysis of Optimization Algorithms GA, PSO, and ABC based on DWT-SVD water= marking in OpenCV Python Environment,2020 Internat= ional Conference for Emerging Technology (INCET), Belgaum, India20201-5116Buz19<= /b:Tag>BookSection{64C4851E-0094-4B6A-= 862C-36D1A9287B65}BuzzinAlessioAsq= uiniRitaCaputoDomenicoDeGiampieroSensors and Image ProcessingMachine learning = and information processing proceedings of icmlip201= 9137-1426511SingaporeSpringer Nature Singapore Pte L= td. 2018Advances in Intelligent Systems and Comp= uting38C= ad19JournalArticle{91E68D21-57= 90-498A-9114-07316EC8AFBC}Cadena MoreanoJoséAugusto<= /b:Middle>La Serna PalominoN= oraBerthaLlano = CasaAlexChristianFacial recognition techniques= using SVM: A comparative analysisEnfoque UTE2019103= 98-11133TBh17JournalArticle{80B30= EF0-896C-41B2-AA47-2CA93BDF9C7F}BhattacharyaTathagataChatterjeeArindam= Evaluating performance of some = common filtering techniques for removal of Gaussian noise in images2017 IEEE International Conference on Power, Control, Sign= als and Instrumentation Engineering (ICPCSI)20171981–1984114DeL21JournalArticle{26B136FA-760C-4AAE-BC4A-F8E3= DE03E50B}De Lima= RobertoCabrera-Pon= ceAldrichA.Martinez-CarranzaJose<= /b:NameList>Parallel hashing-based matching = for real-time aerial image mosaicingJournal of Rea= l-Time Image Processing2021143-15= 618137Dee19JournalArticle= {50A28B9D-406E-4049-89C3-A807E66C75D4}DeepSamundra= ZhengXi<= /b:Person>Leveraging CNN and Tr= ansfer Learning for Vision-based Human Activity Recognition29th International Telecommunication Networks and Applications Con= ference (ITNAC)20191-4<= b:Volume>1122Día18JournalArticle{673F3B20-22D0-41E9-BD46-4BB218E67FFF}Díaz-Toro1AndrésAlejandroPaz PérezLinaMaríaPiniésRodríguezPedroCaicedo BravoEduardoFr= anciscoDe= nse tracking, mapping and scene labeling using a depth cameraRevista Facultad de Ingeniería Universidad de Antioqui201854-6986= 140= Est17JournalArticle{C21F0518-B= 904-4AAE-A93D-42F2EAE00719}EstaritaJ.JimA.BrocheroJ.EscobarMorenoS.Sistema de Reconocimiento de objetos en tiempo re= alInvestigación y desarrollo en TIC201741-458231GCh18<= /b:Tag>JournalArticle{B1DDD517-8F8A-48= 18-88F1-6EA373605D8D}ChandanGJain<= /b:Last>AyushJain<= b:First>HarshReal Time Object Detection and Tracking Using Deep Learning and OpenCVProceedings of the 3rd International Conference on I= nventive Research in Computing Applications, ICIRCA 202120211305-13081116Gad20JournalArticle{A87A81E1-ACCF-476= 5-A2C0-9F7D13A81859}GadiVinayKumarAlybaevDastanRajPriyanshuGargAkhilMeiGuoxiongSreede= epSekharanSahooLingarajA Novel Python Program to Automate Soil Colour Analysis and In= terpret Surface Moisture ContentInternational Jour= nal of Geosynthetics and Ground Engineering20201-86234Guo19JournalArticle{0C4856EE-E883-413B-94AB-0B92A14F3A08= }Geosr: A Computer Vision Package for Deep Learning Based= Single-Frame Remote Sensing Imagery Super-ResolutionInternational Geoscience and Remote Sensing Symposium20193376-3379GuoZ.= WuG.ShiX.SuiM.SongX.XuY.<= b:Person>ShibasakiR.1117Har19JournalArticle{901FEDD1-E2C9-4179-91F5-61C3E902DC85= }HarikrishnanJ.SudarsanA.SadashivA= ravindAjaiRemyaA.S.Vision-face recognition attendance monitoring system for survei= llance using deep learning technology and computer vision International Conference on Vision Towards Emerging Trends in Commu= nication and Networking (ViTECoN)20191-51125Khu18JournalAr= ticle{6F196F10-7168-455F-862F-D2B87A1E6F24}= Khuushi= Jain,V.Patrikar= R.DeshmukhR.Real Time Mixing Index Measurement of Microchannels Using OpenCVIn VLSI Design and Test: 22nd International Symposium2018278-2841136Kus19JournalArticle{472B01= 94-808B-4F44-ADEA-F62F39C2CD91}KusumaS.UdayanJ.D.= SachdevaA.Driver distraction detection using deep= learning and computer vision2nd International Con= ference on Intelligent Computing2019289-292112= 1Lee23Journa= lArticle{1284F537-940A-44E6-BE2B-97230F0A99C8}LeeH= aLimKangJihoonLimJunseopKimSeung<= /b:First>ChanJeonSoonOkLeeJunYeobHybridization of short-range and lo= ng-range charge transfer excited states in multiple resonance emitterNature communications20231-81411MKh18Jo= urnalArticle{32A9CBFC-CC13-4A0A-BFF4-8E172D016A1E}KhaliluzzamanMd.YakubMohammadChakrabortyNiloyC= omparative Analysis of Stairways Detection Based on RGB and RGB-D ImageInternational Conference on Innovations in Science, En= gineering and Technology (ICISET)2018519–524113MSw18Jour= nalArticle{2EE9F1B7-C995-47CD-B188-0B8AA62EBCE6}SwainMahendraDhariwalSandeepKumarGaura= vA Python = (Open CV) Based Automatic Tool for Parasitemia Calculation in Peripheral Bl= ood SmearProceedings - 2nd International Conferenc= e on Intelligent Circuits and Systems, ICICS 201820= 18445-4481112Man21JournalArticle{83CC242B-B2B5-417C-B742-F7= 8E0EF7D0F9}Manju= A.ValarmathieP.Video analytics for semantic substance extraction using OpenCV in pyth= onJournal of Ambient Intelligence and Humanized Co= mputing20214057-406612329Man19JournalArticle{37CB3B7C-EB72-4405-B972-7D2AFD2BEB51}MantegazzaDario<= /b:Person>GuzziJérômeGambardellaLucaM.GiustiAlessand= roLearning= Vision-Based Quadrotor Control in User Proximity1= 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI)2019369-3691126Mor23JournalArticle{53B08= 1FB-20EF-401B-BDA3-260B7C5C8D0A}Moreno LigeroMartaLucena AntonDavidSalazarAlejandroFaildeInmaculadaMoral MunozJoseA.mHealth Impact on = Gait and Dynamic Balance Outcomes in Neurorehabilitation: Systematic Review= and Meta-analysisJournal of Medical Systems20231-194719JNa20JournalArticle{1B6DC32C-= CEE6-4157-85D4-DE009AFAA354}HoPhuongThaoAlbajezJoséAntonioSantolariaJorgeYagüe-FabraJoséA.<= /b:Author>Study of Augmented Reality Based Manufacturing for Furth= er Integration of Quality Control 4.0: A Systematic Literature ReviewApplied Sciences (Switzerland)20= 221-511248Nas19JournalArticle{23BCC265-FFFD-4E73-8ED2-DB6C9= 9EDB727}NassifAliBou<= b:Last>ShahinIsmailAttiliImtinanAzze= hMohammadShaalanKhaledSpeech Recognition Using Deep Neural Networks: A Systematic Rev= iewIEEE Access201919143-191657124OMa20JournalArticle{574EFAB0-AB51-4D90-AF1E-E37D293D= F3A4}O’Mahony<= /b:Last>NiallCampbellSeanCarvalhoAndersonHarapanahalli= SumanHernandezGustavoVelasco<= /b:Author>Deep Learning vs. Traditional Computer Vision= Advances in Intelligent Systems and Computing2020128-14494310528Per18JournalArticle{1= A1C6CE0-1214-493C-B509-E39F96BEA10B}RaoT.Venkat Naray= anaGaddamAkhilaKurniMuralidharSarithaK.Reliance on artificial i= ntelligence, machine learning and deep learning in the era of industry 4.0<= /b:Title>Smart Healthcare System Design: Security and Privac= y Aspects2021281-3001139PRK19JournalArticle= {B55560B4-D366-49F9-97D6-9A61214223F1}= PavithraR.SureshK.V.Fingerprint Image Identification fo= r Crime DetectionInternational Conference on Commu= nication and Signal Processing (ICCSP)2019= 0797-08001115Rod15JournalArticle{FBFF0202-67F4-4D2D-B55D-CB7360B52EC= 8}RodriguezAlvaroRabuñal= JuanR.= BermudezMariaPuert= asJeronimoDetection of fishes in turbulent waters based on image an= alysisLecture Notes in Computer Science (including= subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bi= oinformatics)2015404-4127931232SMo19JournalArticle{6DC75A1B-CD5C-407F-B519-7891F3235D0B}MohanasundaramS.KrishnanV.MadhubalaV.Vehicle Theft Tracking, Detec= ting And Locking System Using Open CV 5th Internat= ional Conference on Advanced Computing & Communication Systems (ICACCS)= 20191075-1078= 1113SMo22JournalArticle{CA694FA7-5518-41CD-A2DB-2D2ACE9FB3F6}MostafiSifatulZhaoWeiminSukreepSittichaiElgazzarKhalidAzimAkramulReal-Time Jaywalking Detection and Notification Sys= tem using Deep Learning and Multi-Object TrackingG= LOBECOM 2022 - 2022 IEEE Global Communications Conference20221164-1168115Sán10<= /b:Tag>JournalArticle{EA8E9B5F-F455-42= 24-A318-6D409DB4FEF4}Sánchez MecaJulioSánchezJulio= Estrada LorenzoJoséCómo realizar una revisión sistemáticaREDINED - Red de Información Educativa<= b:Year>201053-6438166610Sas17= JournalArticle{7F7A0621-9980-4= A7C-B150-EE99E37179B3}SasakiHikaru= HoriuchiTadashiKat= oSatoruA study on vision-based mobile robot learning by deep Q-netw= ork56th Annual Conference of the Society of Instru= ment and Control Engineers of Japan (SICE)2017799-8041118WSr18JournalArticle{832097C5-1B9F-405E-A64E-D21188621= 18C}SriratanaW.MukmaS.TammarugwattanaN.SirisantisamridK.Applic= ation of the OpenCV-Python for Personal Identifier Statement2018 International Conference on Engineering, Applied Sciences, a= nd Technology (ICEAST)20181-4117<= /b:Source>YuL18JournalArticle{D6AB8296-1EF7-4850-9E22-F17EBD3CF9E5}YuLijunSunWeijie= WangHui<= b:Last>WangQiangLi= uChaodaThe Design of Single Moving Object Detection and Recognition= System Based on OpenCVIEEE International Conferen= ce on Mechatronics and Automation (ICMA)20181163-11681127WSu18JournalArticle{B553E156-33FA-4ECC-B6B6-C91115151= 737}ShubhamMishraVermaVershaAkhtar= NikhatChaturvediSh= ivamPerwejYusufAn Intelligen= t Motion Detection Using OpenCVInternational Journ= al of Scientific Research in Science, Engineering and Technology202251-634099= 12Y= ud19JournalArticle{A3042107-78= 6E-4912-8F9D-8C650291C591}YudinDmitrySotnikovAntonKr= ishtopikAndreyDetection of Big Animals on Images with Road Scenes u= sing Deep LearningProceedings - 2019 International= Conference on Artificial Intelligence: Applications and Innovations, IC-AI= AI2019100-103= 1120 ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQDW 2L402gYAAJEaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz4sbNxS+F/o/DHN3/GvGP5Z4 gz22s212kxA7KTlqbdmjrGZkRvJuTAiU5NRLoZCWHhrorYdSGmigoZf+MQsb2vSP6JNmPJZsOZtd Uggla1hmNN97+vSe9D3N6Oq1hxF1jnHCCYtbbvlKyXVwPGJjEk9b7t1hv9BwHS5QPEaUxbjlLjB3 r+1++slVtCNCHGEH7GO+g1puKMRsp1jkI2hG/Aqb4RieTVgSIQG3ybQ4TtAJ+I1osVIq1YoRIrHr xCgCt0OwccbYuTWZkBF2d5fuexT6iAWXDSOaDKRznNlo2PFRWSL4ggc0cY4RbbnQ05idDPFD4ToU cQEPWm5J/bnF3atFtJMZUbHFVrPrq7/MLjMYH1VUn8n0MO/U83yv1s79KwAVm7hevVfr1XJ/CoBG IxhpykX36Xeana6fYTVQemnx3a13q2UDr/mvbnBu+/Jn4BUo9e9t4Pv9AKJo4BUoxfsbeM+rVwLP wCtQiq9t4OuldterG3gFCimJjzbQJb9WDZajzSETRves8Kbv9euVzPkKBbMhn12yiwmLxba5FqEH LOkDQAIpEiR2xGKGJ2gE8zhAlBwmxNkn0xAm3gzFjENzqVLql6rwX/48daUignYw0qwlL2DCN5ok H4ePEjITLfdz8OpqkLNXr06fvDx98vvp06enT37N+lauDLs9FE91uzc/ffPP8y+dv3/78c2zb9Ou 1/Fcx7/+5avXf/z5Nvcw4lUozr578frli7Pvv/7r52cW7+0EHerwIYkwd27iE+cOi2CAFv74MLmY xTBERLdox1OOYiR7sfjvidBA31wgiiy4DjbjeC8BqbEBr88fGIQHYTIXxOLxRhgZwAPGaIcl1ijc kH1pYR7O46m982Su4+4gdGzrO0CxkeXefAYaS2wugxAbNG9TFAs0xTEWjnzGjjC2jO4+IUZcD8go YZxNhHOfOB1ErCEZkkNjNq2M9kgEeVnYCEK+jdgc3HM6jNpG3cXHJhLWBqIW8kNMjTBeR3OBIpvL IYqoHvB9JEIbycEiGem4HheQ6SmmzOmNMec2m1sJjFdL+g2QGXvaD+giMpGJIEc2n/uIMR3ZZUdB iKKZDTsgcahjP+NHMEWRc5sJG/yAmStE3kMeULw13fcINtJ9vhrcBYXVKa0miHwyTyy5vI6ZMX8H CzpBWEkNFABD1yMSnyvya/Lu/3fyDiJ69sNzy4jej6TbHRv5uKCYtxNiXU17axK+Dbcu3AFLxuTD 1+0umse3MSyVzeL1UbY/yrb7v5ftbev5/Yv1Sp9BuuW2Nd2uq817tHXvPiGUDsSC4n2utu8cqtK4 D43STr254vxdbhbCpVzJ0IGBmyZI2TgJE18QEQ5CNIM9ftmVTqY8cz3lzoxx2PqrZqtviafz6ICN 01fWclm+nqbiwZFYtZf8vB1eN0SKrtVXr2G5e8V2ql6XlwSk7UVIaJ2ZJKoWEvVlowySejmHoFlI qJG9FxZNC4uGdL9M1QYLoJZnBbZNDmy2Wq7vgQkYwVsVongs85Smepldlcz3meltwTRmAOwhljNg lemm5Lp1eHJ06VR7h0wbJLTpZpJQkVE1jIcIvsqoDypZCrMFsRHlFY2L5rq5SqlBT4ZiuRpWNOqN twXjsrkGu3VtoLGuFDR2TlpurerDlBmhWcudwKs/XEYzmDtcbncRncIXtJFI0gV/GWWZJVx0EQ/T gCvRSdUgIgInDiVRy5XDz2cDjZWGKG7lCgjCB0uuCbLyoZGDpJtJxpMJHgk97VqLjHR6CwqfrgLr U2V+ebC0ZHNI9yAcnziHdJ7cQTDF/HpZBnBMOHwBKqfRHBP4pJkL2Wr+rRWmTHb1b4pqDqXtiM5C lFUUXcxTuJLynI66y2Og3WVjhoBqIckK4eFUFlg9qEY1zatGymFr1T3fSEZOE81VzTRURVZNu5ga PSzLwFosL1fkNVbLEEO51Ct8Kt3rkttcat3aPiGvEhDwPH6WqvsOBUGjturMoCYZb8qw1Oys1awd ywGeQ+1dioRWfGpLt2txy2uEtTtovFTlB7v1WQtNk+W+UkVanX7oxxPs8AGIRxc+BM+p4CqVcPiQ INgQDVS1TGUDlshDkS0NuHLmCWm5j0p+2wsqflAoNfxewat6pULDb1cLbd+vlnt+udTtVB5DYRFh VPbTk5c+fIaii+z8RbVvnMFEyy9tV0YsKjJ1tlJUxNUZTLlinMGk5ynOUB6xuA4B0XlUq/Sb1Wan VmhW2/2C1+00Cs2g1il0a0G92+8GfqPZf+w6xwrstauBV+s1CrVyEBS8WknSbzQLda9SaXv1dqPn tR9n2xgYeSofWSwgvIrX7r8AAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhANbYvjTaBgAAkRoAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAADkCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAN8KAAAAAA== ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABxAG8DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9sPh+ fGnxVj1rxPc/E7WdIht/E+pabZ6dpMFl5ccVpdSWwYma3kdmcxFz82BuwBxk9B/wrfxP/wBFx8Wf 9+dM/wDkKsj9mr/kTdd/7KB4j/8ATtc16HQUzk/+Fb+J/wDouPiz/vzpn/yFR/wrfxP/ANFx8Wf9 +dM/+Qq6yigVzk/+Fb+J/wDouPiz/vzpn/yFR/wrfxP/ANFx8Wf9+dM/+Qqp/Hb9oDwD8APC/wDw kHjG+3XE2V0/TYWBmunx0A7KO7HgfUgH4d+Mn7dnxr+KF1NBpetNoOltuEdnpzbWKf7b9ScemK7s Jl2IxesdF3Z8xnnFuV5C/Z1G5VP5Y2v8+i/PyPuK68MXFk/l3n7RviCFv7ssmlKf1s6daeEr7UG2 2H7RHiKY+kLaU38rOvyp1r4mWLS79c8aNNJn5jLeNI2ffk1Y8OfFB7edJvDHjmaGVW/d/Z75o2z9 Mg10/wBn4GVT2axMeftdX+69zzZcS8VUsJ9dqZNWWH/5+OE1H/wJ0+X8T9WP+Fb+J/8AouPiz/vz pn/yFR/wrfxP/wBFx8Wf9+dM/wDkKvir4I/8FC/ix8PruHTvH8x8RaVuxJ55xcRr6q/f6Gvt/wCF /wAU/BXxh8JQeM/AusJdWk3Dr0khcdUdeqsPQ9RyMgg1yYrAYjB/GtO62PYyPijLM+i1Qlaa3i9H 69mvNfMq/wDCt/E//RcfFn/fnTP/AJCo/wCFb+J/+i4+LP8Avzpn/wAhV1lFcZ9Dc5P/AIVv4n/6 Lj4s/wC/Omf/ACFWPqFz4u+HXxG8L6TP8QNU1yx8RXF1Z3Fvq0NqDA8dtJcJKjQQxn/lkylWyDvB GMc+iV5/8Wv+So/Db/sPX3/pruqBrUz/ANnO6WLwpr6E/wDNQPEf/p2ua9A+2r615h8Arny/DviB M/8ANQPEX/p1ua7n7Z71PMEtzW+2r61jfEH4i6F8N/BuoeNvEE+210+3aV+RlyBwo9ycD8af9s96 8p/aj1W31PRrTwbdIskF1ukuYWGVdRwP1rw+JOIcJwvk1XMsTFyhTtdJpN3aSSvpd3OnB4DFZpiF hcO0pyvZvVJ2bu0tbI+MfG3jD4kftR/GD7bJFJeanq10INNsVYBII8/LGvZVUck/Unua85/bo+Gu r/AL4m2PwtPiOS53eHra9vmj+VPPkaQMq45KDaAM9eT3wPur9j/4E+EfBniHVviTZ27NMwFrYrNy LfI3SFfqCgz2AI7mvkP/AIK6Seb+1hG3/Uq2f/oyapzviyjn/CdHF5bzQo1FFpNcsrO+jS6ad7Pf VWPr/oz+HdHA+KVSpn1OFfEQjUkm7TjGScbTV18Tu2na8VorO58u5oBKnKmiivy8/wBKXGLjZo+k P2Jfgt4r/aM8P+MLHSNaZtS8O2ttcabazkbbne0gaMseQcKNpzjPB65Hffs1fHbxN+zj8UFuZzMu nTTi21/TX43KGwWwejoeQevUdCa0v+CLE3leKPHpz1sLH/0OWui/4KF/DKx8KfE6z8eaParHB4it 2a6VB8v2mPAZvbcpU+5DGv3LgvHVMZlMMNiW5XTs3q9G9L+S27WP8ovpPcMYPh3xKxWa5NTjQcHS cowSjFuUINysrK7k/e/mvd63v916Z4g0/WdOg1bTLpZre6hWWCVDkOrDII/Cp/tq+teA/sIfEG58 V/Aq306/u/Mn0e5e15bkR9Uz+Br2j7Z71WIpuhWlTfR2PMyzHRzLL6WKj9uKfpfdfJmt9tX1rhfi ZcCb4qfDcA/8x6+/9Nd1XSfbPeuP8dXHm/Fr4crn/mN33/psuqx5jvjuY/wPn2aN4iXH/NQPEX/p 1ua7T7V7V578Grny9N8SJn/moHiH/wBOlzXYfbPf9KzuPU0vtXtXkPx+kkk8U25b7v2X5fz5r0z7 Z7/pXn/x005rq2s9bjQnyWMUjegPI/WvzTxcwdbHcB4pUtXDlm/SMk39y1+R9JwjWjRz6k5dbr5t NI6H4GTongONVxn7TJu/Ovzc/wCCyfibUNF/bBtZbVg0beE7TzIm6N+8mr74+CHieOyuLjw3cPt8 9vOt892Aww+uAPyNfBX/AAVl8B+NPin+21pnhHwF4cutU1G68LWaw21pCWY/vJuT6D3PFeJkeZUs 08McE8M7ygoU2lupQ91q3d2T9Gu5+w+FcXlvitXqVpKMfZ1Z8zdlyvld7vSy6+h86aH4n0zXY/3E mybHzQt1H+IrSr7U/Y0/4JJeFfAptfiF+0iY9W1ZcSW/h+Fj9mtm4I80j/WMP7v3fXNN/am/4JjS WX2jxr+zvukh5ebw5NISyf8AXFj1H+yefc16cOH82+pqtOGv8v2rd7fpv5H75g/HDgTEZ88rddro qrVqTl25t1/iaUX32va/4I1user+OH28m3sxn/gUlew/8FHZ4JPAXh9TjzP7YYr67fKbP64rx/8A 4JJadqvhzxL480jWtPmtLqGO0Sa3uIyrIwaTgg1p/t0fFC18a/Ei38JaTc+Za+H4WjmZfutcOQXH vgBB7HdX6ZwLSnLD0f7vM397P4n+lXjsPR4nzHVP2ioqOu96dN6fJNno3/BN+SaPwl4kJH7s6jF+ fl19KfavavE/2L/Cc/g74LWtzeweXPqk7XTcclDwufwFetfbPf8ASvUzKpGpjqjXf8tD814Tw9TC 8O4anPflv97b/U0vtXtXL+KZvM+L/wAO1x/zGr7/ANNl1Wt9s9/0rndan834yfDtf+oxf/8Apsuq 4k9T6JGJ8J7lY7bxMh/6KB4h/wDTpcV1f2xK4P4b3PlnxQm7/mfvEH/pzuK6T7Z/t1L3BtXNj7Yl VdatrPW9Mm0u7X5Jlx06Hsao/bP9uj7Z/t1jWo0sTRlSqxvGSaaezTVmn6ocKkqc1OLs1qn5nl2p afqXhjWPs7u0c0L7opV4yOzCuv8AB3irwTe663iTWdHs7XXpbZLebUmiAaWNckLv7Dk8e9aXiDRt N8R2vkXq/Ov+rmX7yf8A1vauH1bwXrOmsxSD7RGOkkXPHuO1fzhicg4y8K81qYvJKbxGCm7uFnJr tzJappaKcbpr4ux+k0czynifCqjjJ+yrJW5r2TXrs03q4vrt3PXlv4nUOjblPII70k+p2ttE09xK scajLO5wBXidve6nY8Wt1cQ/9c3ZaSabUtQYLcSTzNnjeWb+dej/AMR4jKnywy2bq9ufS/8A4Bf8 Dl/1EcZXliY8ve3T77fidX4v8XeG7K8vrjwTYQw6lqEIhvdWt4wrlRnGD/ERk4PavCPCP7K2s+Jf iRCLjU/tGjibz9QupP8AWYznYfVm9frxxXsWjeA9V1CRXvx9lh/i3feP0H+NdxpFnp+iWa2OnRLG g5Y92PqT3NfVeHuZeKGYZ1PNMwksPhZKyouPxb2cU/ei03dzbvLazW3zHGmR8GZhhKWGmnWrU2mp 8z0StdPo00kuVLRdU992y+xadZxWFlAscMMapFGq4CqBgCpftiVj/bP9uj7Z/t1+tHiLlirI2Pti ViXU4l+NPw9Uf9Ba/wD/AE23NP8Atn+3Wdaz+b8bvh+N3/MUv/8A023NEfiRSsc94CmZLjxQo/6H 7xB/6c7iug+0P6VyXg+68rUPFSbx/wAj9r//AKc7itv7b/trU3dyepT+IPxZ+Hfwo0dfEHxM8caX oNk8nlx3OqXyQq74ztXcRuOATgc1T0X48/B7xH4LuviNoPxP0K80GxGb3V7fVI2t7f8A33BwnUdc V836Ro3hj4zf8FN/HFh8XYrfVI/A3grSx4J0PUYVkt0S5G+6u1jbIMgkxHv6gMB2GOZ/bW+GH7OP w7+GXxsvfhlrC6b4q1TwPby694X0+dEtRF9oTZcmBV+V2ORuzzjpVLsPlPtux1a21Ozi1HT7mOa3 njDwzRvuV1IyCD3BFS/aH9K+I/AHxb/aa+A3xS+B/hXx18WrHxP4c+JWh30VzoMfh+K0XR3tbKOa PyJlJkk+8FJkJyAeMkFeT8M/t3ftJ+LdCs/2g9B8b3V7bX2ubY/hha/DW7e2Gm+eY8/2kI+Zwo3k htmeMDoC0g5WfoK/lSf6y3Rv95az4vF/hQeKW8Ew61Y/2xHZC7bS1mXz1ty20SlOuzcCN2MZr5O0 f4q/td/tS678RPE/wS+Mml+BNN8E6tJpOg6Hf6BDdDU7qKJZGe8mky0CMWC/IMqMnkjnzX9on9q7 xp+zn+1pJ4/1nwvaXXizVPghYWrjS3efTbG7a+kMlw8u3cLZMM2SMkACpjTjzXsr/iP39rn6HfaH 9Kw9J+K3w917xhffD/RPHGlXmuabHv1HSLa/R7i2XIGXjB3Lyy9R3Fcv8I08bN8INPTxT8Vo/EWt X2m+bJ4kt7GGOJpJFyrxRoqqY1yNuckgcnmvhH4H+O/il+zX4Y+Pfxh0zxxZ654juPjXf+FrWXUf D8KLJfSXUCHUJHQh1TDE/ZwRGCBjrVK7J5T9MvtD+lH2h/SvkPU/i1+05+zT8YdD+GvxV+Ndp48s PGXh/UJLG+PhuCwuNMv7eBpBtEJKvEQD94EggCt3/gnx42/ag+MPw/s/jz8dPi7p99pms6fJDpfh ex0GKHyWSbaLuSdSGZ2CP+7ChAHHORijUOVn0/8AaH9Kq6NK0nxz8Agj/mJ3/wD6bbmq/wBt/wBt aZ4XuPO+PHgIbh/yEb//ANN1zRF+8hxOW8PXSxa14sRj/wAz9r3/AKcritX7bH6mua0y4ZPEni5Q f+Z+17v/ANRKer32t/73/j1J7g9zgfjr+y94R+M3i7Tfibpfi/WPCni7SbVrW18SeH5gkzWzHJhk DArImSSAehNc/pP7Cfwug+HvjDwh4k8V65reqeOrZYPEXijUrgNeSxqwKovG1FBXhQMV65LeSLEx DfwnvXx3P+1T8b0/YX+Jfxc/4TZh4g0HxrqNjpN99njzDBHeLGibdu04UkZIJpq/QZ9KeI/2bvAn ibxX8OPFt/qN753wzW5XRo1YbZhPAkDeZxz8qDGO9cbpn7Cfg7RdQXS9I+Lfi628Ipq39ox+Cob4 LZpL5nmbQwXeI93OzOK4PRda+P8A8d/2j/H3w2sf2hdS8L6D4Z0PQ7m3t9Hs7c3MlxdWhcnzJEbE e5GLLjLFgAQBzxvhP9qT9oT4vaf4X+BSfEL+xdcuPHWr6BrvjLT7OPfcw2J+/CpGyOR8jscYz3p6 9wPWPG/7LHwX+IHxY8X+C/Bfxy17w1d+I7NLnx34R0G5VY72KVPL81tyExmReCVOTXoNl+yr8HrD xTJ4gg02T7LJ4Di8Jf2S2Gtxp8bllGCMluep/nXy1o2r+OPgX+098adV8U/HG1uL/R/hrYtZeLvE lmNtsCSI2njgT94ykgAKuXOBgk4rU+GXxz+PEfx28H/C6/8Ain44vrHxrpF611qfirwfDpsazJCH WewVkWQKCfuyJjBFOz7gfU/7Ovg7wX8LvhjbeAPAXjifXdJ0u4lhs57i8WdrdQ5/cbl7J93B5GOa 5sfscfB2XwJ49+Hl+2oXFj8QfF114j1RmuMSW99M6PvhYD5djRqy9cEV8kfCL4m/Fj9nb9lDUtf8 I+ONU1LUPEXxWm0GzX+yorlrF3u5RJcwwqFM0zhTiNjtLEAYrvvBnxg/bMsr/wAUeCPBul+ONcju PB8114c1r4heE49NktNWQn90XGEeN1OV3dGAXpk0uW3UD27wR+x14b0HxY3jrx58UfEnjDVodIm0 3SrrXZkI0+3lXa/lqigbyP4jk133wR+GHhz4E/C/SvhT4XvLiaw0mJo7eS6bMjBnZznHuxr5k/ZV +NfxKX4t6X4I+MPxS8d6fq2qaU73HhT4geEooUvbpQN72F3BtTy1OfkOSR9K+r/tb/3v/HqUvMRr /bY/U1P4DuFm+PvgNVP/AC/3/wD6brmsH7W/97/x6tD4YTtJ+0J4FUn/AJfb/wD9N1xRH4kNHJwT qnizxgpb/mftd/8ATjPVr7Uv96pvG/wv+KPg34h+JrST4b65qEN94m1DUrO+0vT2nhlhubh51GVz hlD7SDjkHqMGs3/hHviT/wBEh8Wf+COX/Ch81w1Ln2pP71eA+Lv+CeXwT8YSeILK58X+LrLRfEl8 17f+HdO1oR2QumYM0yx7D8xPODkZJ46Y9y/4R74k/wDRIfFn/gjl/wAKP+Ee+JP/AESHxZ/4I5f8 KXvB7x87j9ju78W/tJfED4hat4i8Q+G7e80/RbTw1r3h3WPIuJoI7V47qFxgqVLCE8rnKKVI5z3F 9+xn8EpvhZo/wt0iPVNLTQLw3mk65puoNHqEF2fv3HnYO6R8ncSCD0xjFeof8I98Sf8AokPiz/wR y/4Uf8I98Sf+iQ+LP/BHL/hTvIfvHjNj+wP8EFtvFUfiPXfE2vTeNNHj0/xBea1rAmlmVH3pIrbB tdWCkY+UbQNtTaF+xJ4C0fxn4d+Id78U/G+q614Ynzpl/q2uCZlh27TbldgXy2GN2AGOBlq9g/4R 74k/9Eh8Wf8Agjl/wo/4R74k/wDRIfFn/gjl/wAKLyF7x5NB+xJ8GU8NeJfBlzqmv3Gk+JNS/tFb GXVPl0u83l/tFoQoMMm5t2cnmrHhn9jv4Xabb63/AMJt4h8ReMLvXtI/sq61DxRqpnmiss58iLaF EY3fMSBuLc5r1H/hHviT/wBEh8Wf+COX/Cj/AIR74k/9Eh8Wf+COX/Ci8g948x+GX7I3gH4c+L9N 8a3njbxR4ku9DtGtfD6eI9UE8emREYIiVUXnb8u5snHFetfal/vVT/4R74k/9Eh8Wf8Agjl/wo/4 R74k/wDRIfFn/gjl/wAKXvB7xc+1L/erW+EMyyftEeBwD/y+X/8A6b7iud/4R74k/wDRIfFn/gjl /wAK7L9nf4bfEfVvjfoXifUPAmraVp+hrdT3Vzq1mYBI0lvJCkaBuWbMm48YAU85IFOPNzINep9a UUUV0GYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9l= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAMAAACelLz8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAJqUExURQAAAAAAAP//AICAAIC/QL//QJmzM7PMM6LROrHeN6fOO6TIN57KNarVPKbS OaHIN67UPKXPOqfQOaXIN6zVPKjNO6LIN6PNNqfPOKXLOKrPO6XNOavVO6XPO6XPOqvVOqbPOaXK OKnUOqPNOKTKOKLLN6fOOanTOazTO6bOOKrTOaXLOKfNOKnSO6zUO6bOOqbOOqXMOarRO6fOOqbQ OabPOqXNOanSOqrTOqTNOabOOqfQOqfQOaXNOavUO6bNOabOOqXLOKvUO6bNOazWO6XOOazWO6vV PKbOOaXNOavUO6zWO6XNOabPOazWPKnTO6rSOqXOOa3WO6nSOq3XO6vVO63XPKfPOazWO5fGGJfG GZvIIZ7KKJ/KKZ/KKp/KK6DKK6DLLKHLLKHLLaHLL6LLMKLMMKLMMaPMMqPMM6TNNKTNNaTNNqTN N6XNNqXNN6XNOKXNOaXON6XOOKbNOabOOKbOOabOOqfPOafQOajPPajPPqnQP6nQQKnROqnSOqrS OqrTOqvUO6zRR6zVO6zWO63SSa3WO63XO67XPK7YPK/ZPK/aPLDaPLDbPLDbPbHcPbLcPbLdPbPe PbPePrPfPrTfPrTgPrXgPrXhPrbiP73bbMDccsPeesTffMTffcbfgMfgg8fghNbppNjpqNjpqdnq q9nrrdvrr9zrsd3ttd7ttt/tuODuu+HvveLvv+Tww+XwxeXxxujzzev00uv11ez01Oz01ez11u31 1u312O712O712e/22+/23PD23fL44/P55fT55vT55/X56Pb67Pf77vf77/n88vn88/3++/3+/P7+ /f////JD2N8AAABZdFJOUwABAQIEBAoKFhcaHB0eKC4vMDEzNzg8PUBERUdJSk9PUFJTVldYYmJo bW9xcXFxcnN0dXeHiYuSlpibqKmtra6xsrm9v8TIydHS1Njc4Ofr8PX19vb39/n6KiHTUAAAAAlw SFlzAAAXEQAAFxEByibzPwAAAepJREFUKFNjgANeeSNTE10ZTigXAZScgidMA4K+ADspqBAE8LtM nlBXBgYNk3vteKDCQKAcNLkoHyJTVlZSMcNPHCrBoNrTmpuTnweVKisr7A4Rg8gIRbTkZm/aXZ0D lQHJ+XOBZFg8JhTm5207UptdDAIQuRmOICm1mUB2fk5+TllaampqSnxCXnlZWUW/BAMDk2c3UCpt 8arMqrVb9u3dtW5+flp5WclkBwYGwaYKoFTSjuNpNaePrlm34fDZnW1AufpADgbNaSDDkzcfTK85 vTQqLi59zpm9eUDX9skyWE6BS51aEQu0NXru2UVxZWXTDBhsJ6JKlWUXn9iUAJQyZbBHlypO3b83 vbRsmhmD1WQ0qZyyk2BdxgyGCGeApYqj551dCLRrggKDaAfI8WCp00siY2MSZ5/Zk5NXVhfOzcDq 0wmUStp6DKjr0LKVq/ed3d4M9NdEZ2BA6c8qLCtLXb4+s3rjvsOHDmxakAOUKZsiB5Ri9+0GymVl gXBWVkZiPDAMCye7goKXQbK3vrCsoADoWyAAUsCAbw3lA0sxaM9oAOpDgMKWbkWIDAODTjfITDiY GKYClQACae+ZXSA/AEFlz3Q3YagwGLDpebVPmzJp0tRpje7qjFBBGGAW0bKwsTbXEIDyGRgAuQH6 Gl8RLYcAAAAASUVORK5CYIJ= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image003.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAB0AQkDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKM56UE460AFFFFABRRRQAUUUEgDk0AFFeI/Gj/AIKK/sUfs96xJoHxZ/aL8P6f qELbZtOtHkvbmE+jxWySOv4gVwv/AA+u/wCCZXf9plf/AAj9Z/8AkOnyy7AfVFFeG/s/f8FGf2Nf 2pPHf/Ct/gR8ZF17WltXuDZjQNQtsRr95t1xAi8em7J7A16re/Ej4e2F8+m3/jvRoLqN9klvNqkS yK3oVLAg0gN2io4Zo5o1lhcMrYKspyCPXjtUlABRRRQAUUUUAFFFFABRQay9c8X+FPDBjHiTxNp+ n+dnyvt14kW/HXbuIzigDUoqnpGtaRr9mupaFq1veW7MQs9pOsiEg4IDAkdauUAFFFFABRRRQAUU UUAFBz2oJA601nXHDUAId3c0m7IwK5/4hfE/4ffCfw9J4t+JXjXTNB02HiS+1a+SCIH03OQMnsOp r5t1X/gtV/wT40rWH0ofF2+ulSTa13Z+G71oeDgkN5Y3D3UEHtmuzC5bmGNu6FKU7dk3+RxYnMsv wbtWqxi/NpH1kcAdK+cP29v+Cj/wn/Yb0Czg1iybxB4n1IhrHw3Z3axyGLPzTSNhvLQcgfKSx4A4 JHX6f+074X+P3wU1vxl+xv458O+LNci0yR9Ks5r4xhLjadizxlRLFz2dVJ9q/BX4/wCvfGXxL8Yt e1L9oO51CTxg2oOmtrqQ2yxyg42ADhVAxtC4XbgrwRX1nB/Csc6zCUMW+WMN47Sfy3S7s+W4q4nl leDi8KuZz2lvFfPq/I/oI/Zr/aT+F37U3wrsfit8KtbW6s7oBbm3fiaznwC8Eq9mXP0PUEgg16EH HUV/PP8AsX/tofFL9iv4pxeOPAly9xpdyyx69oM0hEF9Dnkezjkq4HB9QTX7p/sz/tL/AAu/ap+G Fl8VfhVra3VpcrtubV2UXFlMPvQyqCdrD9RyCQQa5uLOE8Tw/ieeF5UZPR9vJ+f5nRwvxRQzyjyT 92rFaro/NHpOc9KKajhh1p1fIH1wHpXwn/wXB/bj8V/swfBXT/hZ8L9Sm0/xL448yP8AtSCTbJZW acSOhxkOxIUMMFc5FfdjdOa/DX/gvx4x1HX/ANupvDs13I9po3hmzjtYWYkRs5dnIHbOBn6VpTV5 AfK3wR+Afxs/af8AiCvgH4N+Cr3xJrt1unmjhkA2rn5pJJZCEUZ6szDJ9TX03bf8EFf+Ch88Kyv4 Q8NRMwBaOTxTCSvtxkZ+hIr60/4NzPhhoum/Arxd8VG0iH+0NU15bNb7yx5ghjXJjzjIXcQcZwSM 1+kgUAYAqp1JRlZAfmP/AMEmv+CXn7Vv7H37TUvxT+M+jaHb6S2h3Fsr6frSXD+Y+MfKBnFec/tb /wDBHP8AbW+Mn7ZPi742eCtB8PyaFrHigX9jJca/HHKYcryUxlTweK/XxlUDOK/n7/b/APiV8RdM /wCCinj7S9N8fa5b20XjjZFaw6tMsaLmP5QoYAD8KmEpSYH73+DNPudD8IaTpF6iia102CGYK2Ru WNVPPpkVq+Z7V8n/ALfP7eCfsO/si6H4t0iOG88Wa9psFp4dtbpWZTL5Cl5345CAg4J+Y+vIr8kf Dvi//gpP/wAFBvHt5/wh3irx94y1CP8AeXMFhq0lvZWQPQY3pBCD2HGaUYcwH9DzyhelHme1fhV4 R/4Jsf8ABXWw8XaTqGqfDLxctrBqUElwzeObNgIxIpYkfbOeM16z/wAHAHi7x34M+Jnw303RfFWq 6Y//AAh/+lR2eoSRBpBKQSdjDJ9zS5NbXA/X7cPWmiUFttfzlfDv4Gf8FDfi54Ut/Hnwy8D/ABN1 7RrrcLbUtLkvJoZdpwwUq2Dg8fWtn9nz9uj9sn9hf40xRa34t8VRx2GoKniTwX4nmndJo8/OjQzH 93JjO112sDjOVyKv2fmB/Q9TfNUHBr5p/bg/4KDeHP2Wv2QLf9oXQLRNS1LxHbQp4SsZF3Qyzyx7 w8mCD5aLknbyTtHAJI/GXVv2gf8AgoR+2/8AEGaDTvHHxA8X6pJ+9/sbw3JdGG2TPVbe3wkS++AD 3OaiMJSA/ow3qR96vg//AILN/sCftDftt3HgOT4Fabpdx/wj63w1H+0tTW32+aYtmNw+b7jf5Nfm z/wx7/wVO2/L8GPi9/36vf8AGvsH/g4N8U+NfB2h/B2DRPEmqaXNJp98LpbS+lhZmC2339hBOMnr 396pR5ZbgfZn/BLn9nP4mfspfsf6H8GPi5Z2sGuaff30t1HY3gmjCy3Mkq/Oo5O1hmvooOp6NXxB /wAEpJPG3j//AIJNta22o32pa3qFj4ht7GS4vC00kxmuFiUO7cHO0AkgD1FfnzL/AMEz/wDgsC07 +V8MPFzDcduPHlp0/G8FHLeWrA/eQygHFCyhjgCv54fjN8A/+Cl/7H9jZfET4rWHj/wratchLbWr TxM0qRS9laW2ncRsewcqTg46Gv0q/wCCI/8AwUK+IX7WXgnXvhH8cdfXUvFnhJYZ7XVpI9s2o2Em V3ykcNJG4ClsDcHjJydxJKHKr3A+9qKRM45pazAKKKCcDNAEcgYc5rwP9vL9vD4a/sQfDUeIPEij UPEWpK6eHfDscu2S8kXGXZsHZEmQWYjuAMsQD658VfiJ4b+Enw51r4neL7vyNM0HTZr2+kxyI40L HA7njgdzxX89H7Uv7R3jz9qr41ax8ZfHt5I019Ns0+z3ZSytFY+VAnsqnlurMWY8mvs+C+Gf9Ycc 5VtKUPi830Xz6+R8fxdxF/YmEUKX8Sd7eS6v/IT9pH9qT41/tWeOpvH3xl8YTX0m5vsOnIxW1sIz j93BFkhBgDJ5ZurEnmq/wt/Zm/aI+NtlNqPwj+CviXxFawNtmutL0mSSFW67fMxsLf7Oc19ef8Ep f+CUsP7Q1vb/ALQ/7Q2nTp4OSbOh6GSUbWWUkGVyCGWAMMYHLkHkAHd+unhzw14d8JaHbeHPC2gW enWFpEsVrZ2NukUUKAYCqigBQB2Ar73O+OsBw/JYDLKUZOGj6RXlpq3310Picn4Ox2eR+t4+o4qW q6t+euy7H86Hg/xd8f8A9jz4vx6/ox1vwb4s0iZfOtb63ltpSvB8uWNgN8bDGVYEMOua+7fEvhr4 M/8ABaH4Nnx14HTTvC/x48M6eBqWnn93HqsS4+paNj91zloycHggt9uftyfsJfCz9tn4byeGfFFh HYa9Zxs+g+JLeFfPs5eyk/xxMfvJnBHTDAEfij4t8JftH/8ABPb9oxbK+kuvD/irw/dCWyvrXcYL yPtJGxUCWFxkdPVWAIICy/NMLxdFV8O1RxtPVf3l1T7p9U9ULMMtxPC83Rrp1cLPT0ffyaPPfGHg 7xV8P/FF94J8ceH7nStX025aC+sLyLbJFIP4T+HIIyCCCCQQT6d+xj+2f8U/2K/ilD458EahJc6X cOqa9oM0hEF9DnkH+7IB91v4fcE19la94L+FH/BaX4Gz/ETwHplr4a+OHhOxUataqhWHU0AO0M+3 lGP3W5aNjtOR9785/GPg/wAT/D7xPf8AgjxvolxperaZctBfWN1HteKRex+vY8gjkEgg19Xl+Pwf EWFngcZBKpHScH+a7p7p9D5rGYPFZHiIYzCybhLWMl+T8+jR/Q9+zP8AtM/C39qv4XWPxU+FesLc 2twoW6tWOJrOfGWhkHZh69COQSK9IRt3DV/PT+xR+2d8Sv2Lfi1b+OvB1w0+k3LpH4g0NpNsV9b5 +h2uOoYA/iK/en4J/F/wV8ePhppPxX+H2qreaTrNqs1vIPvIT95GHZlbII9R6YNfifFnC1bh3FXj 71KT919vJ+f5n7BwvxJTz7D8s9KkVquj81/Wh2J6V+Gf/BfXwlqGhft2ya7NayLa6v4Ys5LeZlO1 2TeHAPfHGfrX7mHla+Cf+C5v7E3jD9pD4Lad8Yfhtpk2oeIPA6yvNptrFvkurF8GQIM5LKQGwMk4 x718rTdpH1hyv/Bud8RtI1T4B+Lfhi2qw/btK8QC6+xFh5nkyp/rMdSu4Yz0B4r9IK/mR/Z//aQ+ N37KfxEX4jfBTxfcaDrESNBcYiR0ljJ+aKWORSrDPYjIPPB5r6mg/wCDgT/goDFEsUjeCJGVcGRv Db5b3OJhz9ABVSp80roD9yK/ng/4KGf8pI/iF/2Pf9Y6+8v+CUX/AAVX/am/bJ/aYk+FHxhXw3/Z S6HcXQ/snSHgl8xMY5Mrce2K+DP+ChjZ/wCCkfxCwf8Amev6x0Qjyy1A+nP+DgLUbz7D8GdK2n7O PCfm7ucF8KMflXzL+yX/AMFK/wBqD9jfwJdeAfgXp/h6Oxvb03d1PfaGbiaWQjHL7xkAcAY4r9Af +C1f7KHjL40/sk+CvjP4C064vrzwTpcJ1Kxt4TI8lnJCm51A/uEZPBOD7Zr4o/4J1/8ABVTxH+wt oepeAde+FFn4y8O6hdfaIbWS+FrcWc2MMVkMTqVP93aOec046x2A9M+F3/Bcr/goF4w+J/hvwprR 8Lmy1PXrO0vPL8LlW8qSdEfB8zg7See1dD/wcbSGT41/D+SQ8t4VkPy+vntXougf8HEvw413xBYa JF+xpNC15eRQLN/wk8J8su4Xdj7JzjOa81/4OKNQXU/i78N9S2bPtHg9pdu7ON0zHHT9cCkviWgH 2t/wRJUt/wAE7fCGP+fq+/8AShq/L/8A4LZRLF/wUO8ZbP8An3s93HX9wlfqB/wREIP/AATu8I4/ 5+77/wBKGr8wf+C2pA/4KIeMsj/l3sv/AEnSpj8Y47nq3/BYPWNT/wCGQv2afDipiz/4RV59/wDf k8iBcfgAD+NfR3/Bux4C8IaX+y54j8eWEUUmsat4qkh1CbaPMjjijQRxE9dvJfB7ufUVzv8AwUL/ AGWPGH7Qn/BLD4V+Ofh9pEmo6p4D0C1vpbODmSWzktkWdkUffK7EOPTd6V8Q/wDBPT/gpn8U/wDg n3qGsaZoPhG18SeHtamWW+0O+u3g8u4UbRLHIAdrFQFbKtkKvTHNbxaEf0Hqu0Yr8qP+Dlk4u/hQ f+meqfzt6hX/AIOW9d/i/ZCtf/C0b/5FqL/g441M6vp3we1Rk2G6s9Rl8sE4XcLY4z+NTGMoy1A9 t/4JUfGzwb+zl/wSGtfjR4/ufL0vw7Lq9zcbWAaVvt0qxxLnjdJIyov+0wr5B8cf8HCP7aviLxTd Xfw98M+EdD0t5mNjp8mkyXk0ceflDytIN7Y6kIoPoOletfB74beLvip/wbzat4c8DWkt1fW897f/ AGSJsGaG31VppQMkZxGjvjkkpgAkivjX/gnP+3Bo/wCwl8WdU+I+t/ByHxhHqmkfYfs8l8tvJbfv A+9GMUg7YIwCeOarl1bA6T9ov/grl+2Z+038H9W+DHxWj8OHQ9WWL7V9k8PmGZTHKsilX3naQyDt 0yK9e/4NyNx/a/8AFyhuP+FczE/+B1nR+2d/wWx8E/tVfs1+JPgJpH7Ls3h+416K3VNWbxBHN5Hl zxyk7Ft1LZ2bfvDrn2o/4Nx8L+2B4uB/6JzP/wCl1nR/y72A/aIdKKFORRWIBQaKRmA60AfLH/BZ fU9Y0v8A4J5eOptHd1aRtPhnaNiCIXvoFccdipKn2Jr8XP2d/h7ZfFv48+DfhXqdz5Nv4i8T2OnX Eqr91Jp1Rj1HOG9a/en9piT4G/HDRNY/Y18ZfELTrXxB4x8N3L2ektMpuliAAFwiHurlWUHBOxiM hGI/CH4ifD/4s/se/HqTwt4ntJtJ8TeE9XjuLO4TIDtHIHhuIm7o20MrfgcEED9k8O8R/wAJOIwU fdqu8o30umkk13s10PyPjukv7Vo4p+9TVlK3Rp3afbR9T+ijwp4d0Twf4bsfCvhvS4bPT9NtY7ay tbeMLHDEihURQBgAKAK1c8YNfP37Av7ePw3/AG1/hZFrulXENj4m0+FF8SeH2kHmW8nTzE7tEx5D didpwRz9AKykc1+R4zC4jB4qdKvFqSbvfe/633ufqOBxOHxWFhUoNOLStYVgDyK8N/be/YX+FX7b Hw3bwn42iFhrFnufQfEdvCGnsZD14yN8bfxISA3HQgEe5bieBSOOOmTU4XFYjB1o1qMnGSd01ui8 RhcPjKLpVoqUXumeSfsh/shfCv8AY7+F1v8ADv4b6YJJ2VZNY1iaMefqM+OXc9cDkKucKPfJPx5/ wXg/ZF8Oap8PLX9q7wvpXkavpNzFZ689vGMXVs52o7YGdyMQN2fuk5zxj9Hk5G3bXy3/AMFhvHOh +Cf2DvGEGqhWk1aOKws4eMmSSQAHn+71+gr3uHcwxy4jo1+ducppNvqm7NP5Hh59l2B/sCrRcVGM Ytrya2sfhbksm5vlr9Jf+CAH7S9/Z+JvEH7L+vX8klrdQnU9CWSTIjlXiVFHYMvzfVa/NqPDrzX0 7/wR61W/0z9vnwebAf68XMMw/wBgxMD+lfvHGGBpY3h6vGf2VzLyaPxfhXF1MDnlFwe75X5pn7t7 yegodN4wTTUzjgVV8R6vbeH9Du9fvFdobG1kuJljUFiqKWOASOcD1FfzGf0YeJ/Gb/gmR+wt8f8A XpvFHxQ/Z10e61KeTzLjUNOmn0+aZv7ztayRlz7tmuJH/BEL/gmaP+bd5v8AwstX/wDkqvOrn/g4 c/YisrmSym8C/EYtDIyMy6HZ4JBxx/pfSkP/AAcUfsO/9CJ8Sf8AwR2X/wAmVfLUA9+/Z6/4Jtfs b/sq+Oj8SvgR8KJdF1prR7Y3jeIL+6/dN95ds87r+OM+hFYvxE/4JM/sFfFj4l6j8XvHfwTlvfEG q3/23UL9fE+pQ+bPx83lx3AReg4Cge1cD8Lv+C737A/xK8RW/hy+8R+IvC8l1MscNx4k0UR2+4nA 3SQyyhB6s20Dua+w9L1fS9c02HWNF1KG7tLiMSW91bzCSOVCMhlYZBB9QSKXvLcBLLRdP07SIdCs 7fba29usEUL/ADARqNoX5s549c5714D8Tv8Agk9/wT6+L+vSeJvGn7Neki+nctNcaPe3WmiRiclm S1mjUknqSuTXUeOf2/P2Mfhn4yvPh749/aP8L6TrWn3HkX2mXl/tlhk/usMdea9a02/stXsYdT02 4Wa3uIllgmXlXRhkEHuCOaPeQHy/p/8AwRS/4Js6Vf2+qaf+z7NHcWsyywyf8JdqrbXUgg4N1g8j vXeftD/8E9f2Sf2rNU0vWvjt8MZNauNFsfsemyrrl7a+TDnO3FvMgfnuwJr26ilzMDi/gb8B/hf+ zf8ADuz+E3wb8NtpOgWDO1nZNfTXHll2LN88zu5ySerGvLPjj/wS2/Yg/aR+I978V/jJ8HJNW17U FjW7vl8Sajb+YEUKvyQ3CIOAOgFfQd1dQWVvJdXMgSONC0jN0VQMk15F4P8A2+/2MviB40tfhx4K /aO8Malr19ctb2el2t9ummlAOUC46jB/Kj3twPR/BXgnw58PvCWm+BfCNg1rpek2sdrp9q0zyeVE g2qu5yWbAHViTXinxa/4JX/sC/G7X5fFfj/9m/SW1GeQvcXek3dzpzTOerP9kljDE+pyTXpf7Q3x z8J/s2fBrXfjl47s7640jw9bJPfw6XCr3DK0iRjarsoJy46kcflXkP7GH/BUb9nr9ubx3qXgH4Re HvFlpe6Xp4vLh9e0+3hiKbtuFMU8hzk9wOKa5t0Bjn/giF/wTMAz/wAM8Tf+Flq//wAlV6b+0b+w f+y7+1lbaHZ/Hv4dSa5H4bheLR1GtXlr5CuF3D/R5U352Ly2cY4r2OildgcL8Bv2evhN+zV8Nbb4 Q/Bjww2k+HrOSaS309r6a42NK5dzvmd3OWYnBbAzgcV5D8QP+CQn/BOv4l+KLjxd4m/ZssI766fd cNpOrX2nxux5z5VtOkYPPZQT3zxX0xTZASMinzMD5RP/AARC/wCCZhGP+Gd5v/Cw1b/5Kr0D9m3/ AIJ3fsh/skeNLzx/+z/8LZND1a+01rC7un16+ut9uZEkKbbiaRR80anIAPGM4JFeN6r/AMFzf2RN G+MFx8D7jwh47/tiDxE2iyTro9r9n+0ef5G7d9qDbN3faDjtX2bA7OiyE/eAPzdf0ofN1AmVdowK WiipAYT7V80f8FJ/2/NH/YZ+FkN/YaI2peK/EHmweG7OSN1t1dVG+eaQDGxNynywd7kgDAy6/S1c D+0T+zt8MP2n/hjqHwp+LGhJeabfJ+7kXiW1mH3Jom6o6noR15ByCQe3LZ4Kljqc8XFypprmSdm1 /XQ4cyp4ytgakMLJRm1o33P57fEfxt+LHir4szfHjXPHeoTeLptSW/8A7cjuDHMlwpG1lKY2hQoV VXAUKAAAMV9+eBPH3wX/AOCynwdi+EPxeudP8M/HXw7Yt/YOvrGETV1UFuFBywwMyRfwnLpxuVfk L9t39iD4ofsRfE5/CHi+GW+0O9Zn8O+JIoisV9ED0b+5KoxujzkdRlSDXknhvxJ4i8HeILLxb4S1 u40/U9OuFuLG+s5THJDIpyrqy8hgRwRX9F4nLctz3L6WJy+ShKCvTlHp5NdujR+B0cfjsnxk8PjV zRk7TjLr5379Uz0fTdQ/aO/4J7/tHebGl34b8XeHLrbNCxPlXMWc7Wx8s0Ei/VSD2I4/af8AYI/b z+HP7b/wzXXdCePT/EmmxoniPw+0nz28hGPNTkl4WOdrdQflPPJ+Lfhn47+B/wDwWb+FVp8F/jpq Fr4X+NXh20P9jeJLe3GNThXG9tvCtnq8Gcjl0wNyr99fsk/skfCv9jz4WWvw2+Gmmru+WTVtWlUe fqNxjBlc8/goO1BwO5P5jxpj8HisLGGMouGMg7Nr4Wu9+qfTqmfofCODxmHxTnhailhZK+u6fa3R rr3PWE6U6kVtwzTJ5ERN7tgDkmvzVH6OEpWJS7thQMk+lfjP/wAFqf227H49/FmL4C/D3WPtHhvw fdP/AGjPE6mO71D7rYIySIwSvb5i2R8oNe8f8FXv+Csem+ELLUv2av2a/EK3GtTK1v4k8SWcgKae uMNDC4yGlxkMwPydPvdPypAcs0kjszMxJZmzknuT3NfsPh/wlWhUjmeMja3wRe7/ALz/AEPyfjji enVi8BhpX/ma/L/MG+ReK+2v+CEXwn1Txn+1rcfEoWedP8L6LM0lwy/L5so8tVB/vck/QGvie3t7 m/u49NsYGkuJpAkUca/fYnAH51+7H/BK39j0/sl/s12dl4jslTxP4kK6hr/rExH7uH/gCnnvkkc4 r6fj/N6eX5JKgn79XRLrbqz5vgnK6mYZxGrb3Kerfn0R9OKOMCsT4q/8ky8Q/wDYEuv/AES1b9YH xV/5Jl4h/wCwJdf+iWr+dz98P5l9I8Lz+Nvibb+DrS7WCbVtcW0juJFysZkm2ZI9Bmv0Kb/g2z+N jRnZ+0v4XJ/7A1xz/wCPV8HfCP8A5OM8N/8AY5Wv/pStf02r92tqkpRtYD+b79tX9hP41/sL/EC3 8FfFmOzurfUITNpGuaTIWt7xAcNjcFdWB6qw+mRzX6Cf8G+H7W3ijxZoGvfsr+MdQuLyPQbdb7w3 PPcF2hgZsPbgHooPzDBAGcAV6R/wcIeDtK1r9jOx8WXNhHJeaN4ngNpNJ96MSgq+PqBXwh/wQu8T N4e/4KDaDAYyy6hot9akbuhZBz+GKfxU7sD6K/bN/wCCUWh/Gr9rDxd8XLn9tv4b+HX1bXDctoer 3ii5tvu/I4Mq/Nx6d6/UHwJpo0TwTpGii9juBZ6ZbwC4hYFZdkaqGXnocZHJ4r+f/wD4Kg/8pGPi T/2NX9Fr9RP+ClP7bniP9jL9iTwtc/Du4jh8VeKtLtbDR7qQbvsai2QyTBe7AEbe2TntUSjLQD64 8VfEn4f+BBHJ438eaNoyyHCNquqQ2+/6b2Gaxj+0p+zttz/wv3wX/wCFVZ//AByv5+PgD+yv+1t/ wUF8d6tf/DvSr3xNqELedreua1qgSONnPAeWVuWP91cn2Are/ai/4JiftWfsf/DyL4n/ABp0PR7b Spb5LRXsdbjuH8xwSPlHPQHmj2fmB++1h49+H/xP0LUrbwJ4/wBF1ZVtniuJtL1OK5WDch++Y2IH rzX5pfso/wDBKTRPhF+2D4Z+MsX7bXw31yTS/EE12vh/TbxWurgssg8tB5pJb5vTselS/wDBu/z8 JPi8P9qP/wBJ2r47/wCCdXH/AAUz8Cj/AKnK4/8ARc1VGO6A/Wb/AIK5fFL4bQ/sJfFDwJP8QtEX XG0i3VdGbVoRdMftcDACLdv6DPToM9K+Af8Ag318e+BvAX7SPi7UPHXjLSdFt5fCypDNq2oR2yO3 nD5QZCAfpmuv/wCCyX/BOP4/6x8UviD+27bX/hweDbW0s5pLeTUJRfbQsUB/d+UUJ3n+/wBPyr42 /Y4/Yq+MH7cPjfUvh/8ABu90WC+0vTxeXTa5fSQRtGW28FI3+bJ9KIxXKwP6KNA+Jnw88WaZda94 V8faJqen2Ib7ZfafqkM0NvtXc290YquF5OTwOayf+Gk/2dRwfj54L9Mf8JRaZ/8ARlfKf/BPH/gn n8d/2Wf2Rvih8DviVqPh6XWfGMd8NKk0vUJJLdfNsfIXzGaJWX5+uFbA556V8Tv/AMG9f7drysV8 QfD35mPXxBc5/wDSWs+WN9wP2M0f47/BHxHqUejeHfjH4VvryZsQ2tj4htppH+irISTXWI6kZDZz 096/ny/ax/4JO/tb/sa/Dpfi58Tbfw/eaJHeR29xeeH9YaVrV3Pyb1kjjYAn+JcgHrjIz91/8G/f 7Znj/wCLnhLxF+zf8UPEF3qtx4Tt4bzw7f3sxklFk7MjwOx5PlsF27iflk2jAQVTh7t0wPzp8cf8 pDdS/wCywP8A+nOv6NrT/j1j/wBwV/OT44/5SG6l/wBlgf8A9Odf0bWn/HrH/uCifwoCSiiiswD8 Ka6BhyKdRQB57+0V+zt8MP2nPhhffCn4raAt5p19H+7kCjzrWYA7JomIOyRc5DD3ByCQfwv/AG4P 2H/if+xH8UG8JeLoZL7Qb6R38O+II48RXsQOdp/uyoCNye4Kkgg1/Qc43d64T9oT9nb4ZftNfDHU PhV8V/D8d9pt9H8rfdktZB92aJuqup5BHuDkEg/XcKcV4rh3FWd5UZP3o9vNef5nyfE3DOHzzD80 LRqLZ9/Jn85vhzxBrvhHXbPxZ4T1a4sNS064S4sb21lKSQSIwKsrddwIByOmK/Tv9kD/AIL2+Gho Vn4K/a98OX1ve26rF/wlui2vmwzqABvnhBDq/cmMMDnhVxz8U/tv/sJfFj9iP4hSaF4psptR8O3k rHQfE0MJEN0n9x8ZEco7oTz95cjp4jkFc4+lftuNyvIeMMFCq1zK3uyi7Nd9f0fU/IMHmWc8L42V OGjW8Wrp/wCfk0fuJ40/4LT/APBP/wAJaDJq+k/Fq916cR7odN0jw9d+dL7Dzo40U/7zLXwj+2r/ AMFqvjR+0NZ3Xw++CmnXHgfwzcLsuLiO4B1K8XuGkTiBT/djJb1YgkV8UgLjOaTdxgLXn5X4f5Dl lZVeWVSS1XO00vkkl99ztzLjbOsxoulzKCe/LdN/N3f3CFEwxIz369aSR2AwhFS2lte6leRabp9n NcXFxIEghhjZ3kYnAUAdT7Dmv0s/4Jnf8Ea9Qmu9P+PX7W+heTFHtuNE8GXCncx6rJdD+Hnnyjz/ AHvQ+5nefZfkOEdStKz6RW7fZL9djyMpybHZ1ilToxv3fRLu3+gz/gjl/wAEzdQvNSsP2s/jxoDx 28LCXwfot1GQ0rcYu5FI+7/cHc/N0Az+paRqFwEqC0s4bK3W0tIljjjULHGqhQqgYwAOwHSp1DKK /m/PM6xee494mv6JdEuyP37JcnwuS4JUKW/V9W+5JWB8Vf8AkmXiH/sCXX/olq365/4qtt+GfiDP /QEuv/RLV5CPXP5sfhH/AMnGeG/+xytf/Sla/psRht61/LfLrWoaD4ybXtGvGt7yz1IzWs64zHIs m5WGfQgGvdZP+Csf/BRORCh/ar8QcjHyw2y/yirolFysB+gP/BxB8bfC2h/s/wDh/wCBo1ASazru sLe/ZUk+aK3h/wCWjDHILHaOcg9sV8mf8EEPA914m/bwg8Q/2cZrXQ/Dl5NNIGH7qRwqxn8Tmvkr xL4s+Lnx+8fNq/ijW9e8YeJtUlCLJcSS3l5cN2RfvMfZQOOwr9pf+CMH/BPrxD+yN8JL74j/ABX0 n7L408XLG81m0hL6fZgZSBxwBISdzDBIPBPYHwwA/MP/AIKgf8pGPiT/ANjX/Ra+jP8AgvtP4g+x /BS3bzf7K/4QdGUfwfaMLn8duPwr5y/4KhPt/wCCjHxIz/0Nf9Fr9Nv+Cof7Fni79r/9h/wnqHwy 01bvxN4P0y2v7GxXPmXkLWyCWKPjmQgAqp6nOOcZObVAZ/8Awb2QeF4v2L76bSVt/wC0JvFNwdUa PHmFhgR7v+AYx7VN/wAHCOwfsTWGD/zN9r/6BJX5a/st/tuftSfsAeKtWtPhheR6bJdyBNa8O+It MZ4XkTjLxEq8bjpkFT2PHFdV+1x/wVc/ac/bP+GkXwo+L2leE4dLh1CO8VtF0qaCXzFBA5eeQY5O fl/EVPs5c90B9ff8G73/ACSX4vf70f8A6Iavjv8A4J2/8pMfAv8A2Olz/wCgTV9h/wDBvE2PhL8X Mn+KP/0Q1fHX/BOth/w8y8Cc/wDM5XH/AKBNT7gfsR/wVu2/8O6PiiCf+YLb/wDpZBX57/8ABuSY h+034yDFR/xSaf8Ao4V+k3/BRz4beJfi7+xB8SPAPhDT5brUrzw80lrawx75JmhkSbYq9WYiMgDB JJ4r8If2Rf2uvjB+wz8YX+KHwwtbBtQ+ySWGpaXrlrI8E8RYEq6qyMGDLwwIIPHQkGaavFoD9/f2 xf2jdM/ZR/Zw8VfHe/sVvG0PT91nZs+PtFy7rHEh5BI3upYDnaGxX4uaf/wUD/4KvftYfEW+/wCF R/EfxzqF8ytcf2H4B09hFZW+7j93bpkIM43OSScAkmvsCD45/G7/AILBf8E0PioNT8B6RY+I/Dus QyaLpvh4T7bwwLHMy4kaRmco0gUAcsFHvX5//sUftxfF7/gn58R9a8T+AfCWj3l1qdoLHVtP8RWs /wC72OSMeXJGyOGz1yMds9HGPKmB1/7RGp/8Fcrr4RatD+0za/Fr/hCcRHWm8S2dytko85PL8wuu P9bsxn+LFe6/8G4ag/tMeN8j/mTU/wDSlK81/ao/4LZ/H/8Aay+BGu/ALxl8KvB+m6bry24ubzS4 7rz4/KnjmG3fMy8mMA5GMdK9J/4NxHVf2mPHAz/zJqf+lKVX2XcD5Y8cH/jYbqX/AGWB/wD051/R taf8esf+4K/nJ8dOB/wUN1In/osD/wDpzr+jS1kDQx4H/LMfyrOfwoCaiiiswCiiigAoYAjBooJw M0Acx8S/hd8P/i/4Puvh/wDE3wdY65o99HtutP1CFZI2wcgjPRgcEMMFSAQQQK/Or9pT/g32g1DV Jtf/AGWPifDp8MsjN/wj/inzGjhzkgR3KBm2joFdGOOS5Nfp1jdyKQ5H8H617GU59muS1ObCVHG+ 63T9U9P1PIzPI8tzeKWJpptbPZr5n4Xa7/wRY/4KKaTqjafYfBmz1KFWwt9Y+KLBYmHqBLNG+Pqu favRvhL/AMEBP2qvFdxbz/Ffxx4c8KWbN/pEcMzX91GvoFQLGT/20x9a/YwAjnpQeTxzX01bxI4k qU+VOMfNR1/FtfgfO0/D/IadTmkpS8m9PwSPm39kb/gmB+zF+yHND4g8L+GpNd8TJ18Ta8qyXEZx /wAslACQj3UbucFjX0cECj5RipNhx1oPpXxOMxuLx1Z1cRNyk+rf9W+R9fhMFhcDRVOhBRS6JCp0 6UtFFc51BUV7Z2uoWslle26TQzRsksUigq6kYKkHqCKlooA8jb9gv9iSZ2kl/ZL+HTMzZZm8H2Zy fXPl9aX/AIYH/Yh/6NH+HP8A4R1n/wDG69boouwOK+Gv7OvwA+Dt1JffCb4IeFPDVxMu2a50Lw/b 2kjr6F40DEexOK7TGBxS0UAeY+K/2Of2TvHfiS68ZeNf2bPA+ratfTedd6nqHhi1lnmk/vNIybif cmtj4yfFf4e/s2fCHVvip46Eln4d8N2KSXa2Nr5jRQgqihEXrjIwB2rtq4H9pb4D6H+038DfEfwJ 8S63eabY+JLEW1ze2Cr50S71fK7wRn5e4oA+NfiL/wAFWv8AgjP8Xr5dW+K3w7t/Ed4i7Vutc+Gq XUqr6b5ELY/GvkH/AIKZ/tYf8E3/AIu/CzTPA37GnwH0vR9Y/tRbnUNds/BsGmGKFVI8oEKHbcTk 8Acd6+qf+Ibb9nH/AKOD8b/9+LT/AON1p+C/+Dc79knQ9dh1PxZ8U/G+u2sLbm05ri2t45fZmjiL 7f8AdZT71rGVOIGT/wAG6Xwu1HTP2dvGXxE1m1b7J4i8QfZ7NWT5Jooowrn3+csv4V9qeGf2PP2U fBvii38ceEv2bvA+mazazma11Ww8M20VxFIc5ZZFQMCcnnPc113w8+Hngz4UeDNO+Hvw98P2+l6N pVskFhY2se1IowMADufcnknvW9USl7wDWRSMYrzbxh+x7+yf8QNcm8UeOf2avAuralctuuNQv/Cl pLPM3cu5jLMfcnNel0VIHK/DP4KfCH4L6fcaL8I/hjoPhmzu5vOurbQ9KitY5ZMY3ssagE4AGfQV h+Of2R/2Wfibr8viv4i/s6+Cdc1SYgz6lqnhe1muJfd5HQsx+pr0aigDyM/sDfsQ4/5NI+HP/hH2 f/xuui+Gf7Nn7PvwX1S41z4R/BTwr4ZvLqHybi70LQYLWSWPOdjNGoJGecZ613VFAHls/wCxZ+yJ d+I28X3X7M3gVtUe++2NqTeF7Uzm43bvN37N2/d827Oc816ciiMbQPyFSUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAf//Z ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image004.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABPAJUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD91vAv xQ+G/wATNI/4SH4c+O9H16xZtv2zR9Uiuos+m+JmXP41g/tMazquifs7ePNa0bUJrO6s/BuqT2d5 azNHJDMlrKyurLgqwYAgg5BFfzr+HPFHinwTrMPiPwX4lv8ASdQt3D2+oabeSW80TA8FXjIYH6Gv 3cs/FGv+Nf8AglvD4s8WanNfapqnwLW61K+uGzJcXEujb5JGPdmZiT7mvss+4Vlw9iaSdTnU3baz Vrb6u58TlPE/9t4WqnHllGN9HdO9/JNH5e/BP/gsh+3F8JLu3XXPH1r4y02FVRtP8UWKySFQeSLi LZMXI43O7jPJBr9XP2DP2yNL/bi+CLfF7S/BNx4fmt9Xm07UNPmvFuFWaNI3LRyALvQrKnJVTncM cAn+f2v2L/4N/Rn9jHWgD/zUC+/9JbOvpuNshy7A5TSxNKmozuldaXTXVLQ+f4RzbHYjNpYec24W bs9dVa2r1Pu0Z718f/8ABXT/AIKHar+wp8HtN0z4a29rN468YSzQ6G15H5kVhbxBfPu2To7KZEVE bCln3HcsbI32BX4o/wDBxJrN5fftvaDpEkzeTY/DmyEMfOAz3l4zN9TwP+Aj0r8qprmkfqx5H4H+ Nn/BXP8AalvdQ8Y/Cr4nfHDxJGlwUvrnwlqmoxWUEuAfL22pSCJsMD5agHByBivoD9g7wn/wV0sP 2vPAN38c7r47N4Rj11Trw8Sa1qkliYPLf/XLLIUKZx94Yziv0O/4JjfD7wx8Nv2CvhXonheyWGO+ 8G2eq3TbeZLm8jFzM5Pcl5Wx6KFHQCvfCAeopyn0sB8C/CH4vf8ABVHU/wDgpxdeAviB4d8RR/BN fF+tw293N4LtorQ6fHFdGzP2sQCQqXWDDb8sSMk5Ofvkuo6mvx4/Zv8Ain8Tb7/gvfqHgq++IuvT aKvxK8VxLpEmsTNaiNLbUCieUW2bVKqQMYGBjpWb+3Z+2z+2V+2X+3Jf/scfsseM9Y0fSdN8ST6D pem+HdSeybUZrfet1dXU8bBniBjlfBPlrFGrbS25icvMB+zVNSVHGVavyb8D/wDBG/8A4KkeHvGm j67rf7XHh24s7PVLee8hXx9rbGSJJFZlAazAJIBGCQD3ryH/AIKMa58fvH3/AAVj8TfAb4YfF/Wt Jl8QeKNG0nR7f/hILq3s4Jrmzs0UsIidib3yxVSeScE1Ps/MD9wy6jq1LkYzX4NftR/B7/gpb/wT L17wv4+8aftG6m39q3D/ANl6p4d8ZXt3b+dCVcwTx3CpvBBBKMjRuuQc8ivrv9uf/grD8WPBX/BP 74S+O/hbNBo/jn4taO019qcNuGXTY7dES8e3VidjvPIojLbtqb/4grA9ntYD9Kgc9K+Yf+CpPj39 s74ffAvRdW/YZ0zVrvxVL4shh1SPR9Bh1KRdPNrcliY5Y5Aq+asPzAA5wM8kH85f2fP+CfH/AAVk /a5+HFn8dLX496npen64on0u48aeP9SjutQgP3bhVjWVhG3VS+0suGUFWVj6V+3h8Lv2o/2K/wDg ln4P8CfE34zXVx4sb4xNLca1oPiS8lMlrJYXjJEZpFjkIBTJUjaCBRy+8tQP0G/YE8TftDeMf2TP CfiP9q+zvrX4gXX27+3odS0uOymXbf3CwboY0RU/cCEjCjIIJySSfaNw9a/Nn4NfAj9pr9tX/gjF 8LfC3wf+L/8AZfi5vE19f3niDXPEF7A01tFqWqRGMzwJLKx+ePCkYwnUYArx3xL/AMEbP+CsXh7w 9feIdP8A2pNJ1SaxtJLiLTdN+IWsfaLpkUsIovNtkj3tjau91XJGWAyaOXzA/Yfep6GivxU/YJ/4 LefE/wDZ38Dap4B/aDm1b4gWqzwyeHb7UtSaW8tFIfzonnkDPKmfLKBiSnzAHbtClP2cgPjOv3c8 FHP/AAST0s/9UBh/9Mor8I6/d3wR/wAok9L/AOyAQ/8ApkFfsfiV/vGG/wAT/Q/GeBf4df8Awn4R V+xv/Bv8f+MMdY/7H68/9JbOvxyr9jf+Df3/AJMx1j/sfbz/ANJbSujxA/5J+h6x/IXBP/JQT9Gf ddfkH/wce/BjxDpvxl8C/tBw2cj6Tq3h1tAuJkjO2G7t5pZ0DHoDJHcPtHUi3f0r9fK4n43fAj4V /tFfDnUPhF8ZPB9vreg6kv8ApFrcZUow+7JG6kNHIp5DqQw9eTX4nGXLK5+zn59/8E0P+Cz37M3w 7/Zf8P8AwR/ac8UX3h3WvB9munWeoLo893b6hZoSLfb9mR2R0j2xsGUA7AwYliF+qPhT/wAFZP2C vjh8Q9J+E/wz+Nc2oa9rl0LbS7FvC+pQiaTBO3fLbqi8A8sQK+c/EH/Bt9+znd6m9z4Y+PvjSxtW b5be7t7S4Zeem8JHkfhXWfs2/wDBCX4Tfs2/HXwz8dND+O/iHUrzwzqQvILG702BI5mCsu0lTkD5 u1VL2YHyX+zECf8Ag4X1Jh/0VDxf/wCkuo183/FL4OeHG/b/APF3wV+M/wASj4L0+T4ianZ33im6 0trlLRWuJTDcPH5kZMT5jJfcAqPv5Awf14+HH/BJX4e/Dz9umb9uWw+LmtXWrXHiPVNXbQ5rGJbc PfRzo6Bx82FFwxB6naM1rftuf8Elf2Y/23vFUfxI8VtqnhvxWtusNxr3h2SJWvkQbYxcxyIyylB8 ocbX2hVLFVULUZxQHxF8A/8AgmH+yZ8Mvjj4L+J1l/wVm+F+sTeHfFmm6pDpMElkkl60FzHKIFP9 pNhnKbQdrYLdD0rlP2mW3f8ABwRpZ/6q14S/9A06vpTwp/wbq/Bfwp4p03xPbftGeJ5pNN1CG6ji fS7cB2jcOFJB6HFeufEL/gkV8OviH+3Fb/tw3vxg1y31a38UaXrS6HDYwtbmSyEAWPefmw3kDJ6j ccUc3mB4n/wcm/8AJHfhj/2NF7/6TrXyH+3p4S1gfsF/sp+O1tpW09vCOrafJNsOyKYXSSKpPQF1 LEDuI29K/WD/AIKBf8E/fB/7f3hLw74V8Y/EHUvD8fh3UJruGbTbWOVpmkjCFWD9AMZ4q5af8E9f gXq37Gej/sUfE22m8TeHtFs/Ks9QulEN3DMHkZLqJk/1Uq+YwBHBUsrBlZlMqUYpAeZ/sCf8FHv2 L7n9jn4d+HfE37Qfhnw1q3h3wjp+i6to/iTVobK4iuLS2jgdgsjDfGxTerrkFWAOGDKPIf8AgvV8 Vfhn8Y/2EfB/jX4VePtJ8SaS3xUghXUtF1CO5gMi6df7k3oSMjIyM8ZqTUv+Dbj9n6S9kl0f9ofx lb27NmOG4s7SZ1HoXCID/wB8ivTtc/4IyfDTXP2N9H/Y2k+NOvR6Xo/jaTxJHrS6fCbiSV4JYfKK fdCgSk565FH7vmvcD4T+N/x9+J/wy/4Iu/s+/CvwLq97plj401LxOdevLGd4nlhtdWuNtqzKR8kh uCzLn5vJA5GRWD8Df+CZ37NfxW+EOg/Ejxj/AMFRfhn4V1PWNOS6vPDd89q0+nOwz5MvmX0TeYvR gUHOcZGCf04u/wDglJ8BPEX7D/h/9h/x5r2r6ppfhe9uL3RfEkJjt7+1uJbqecyL8rR4xcSRlWVl ZTnAYKy/Pv8AxDa/A8E4/aR8Vfe+XdpVscVSlED8g1LAYzRX6+f8Q2XwRHA/aS8Vf+Cm2/xoqvaR A/K+v3d8E/8AKJTS/wDs3+H/ANMgr8Iq/d3wT/yiU0v/ALN/h/8ATIK/XPEn/ecN6/5H4zwL/Dr/ AOE/CKv2N/4N/f8AkzHWP+x9vP8A0ltK/HKv2M/4N/v+TMNY/wCx+vP/AEls66vED/knqHrH8ieC v+R/L0l+h92V5v8AtW/FnxB8Cf2bPHHxo8Mada3WoeF/DV3qVna3ysYZZIoyyq+1lbaSOcEGvSK8 U/4KQf8AJhPxe/7EDUv/AEQ1fiK+JH7Qfmn/AMRH37Wg6fBX4d/+A1//APJVafg3/g5E+Plnr0c3 xB/Z48I6jpvSa30W+urOc8dVkkaZRg9inPTIzkYf/BAH4K/CD40/FP4iaZ8XvhT4Z8WW9j4fs5LK 38S6Db3yQO07gsizowUkDBIwSK+h/wDgtH/wT6/Zo8P/ALHmrfHf4R/CHw/4P8QeDbqzl3eF9His o721muY7eSKWOFVRsGZZBIVLDytoIDEVt7nNawH1X4E/bl+EXxb/AGO9Y/bH+FRm1bR9H8O6jqV5 o80iQ3cE1nA8stnMAWEUvyj+8Crq67lZSeJ/4Jx/8FKtB/4KGyeMDoPwnvPC/wDwiK6eZvtWrJdf aftX2nGNsabdv2c+udw6Yr4D/wCCLPx0uvAnwK/aU8DT6XZ6xDZ/De48T6foutW/2jTpntrW5jnj nhyPMSYPbI65G5I8E9K+jP8Agin+2Bo/xe0P4v8Ai/xR8DvhP8N9N8J2Ok3eoX3w/wDCa6Ok8BXU HeS7bzG8xYlhJUnGwPJ13VLjy3A/RSivyJ+L3/Bw/wDHnxF8SrjQ/wBlj4GeH20VZmj09vEljd3u oXoUnEvl280SxZXny/3hH989uT8Q/wDBwL/wUF8M3a6d4l+D3w9024aMSRw3/hfUoWZckbgHvQcZ BGfY0ezkB9qft7f8FePC/wCwf8brH4N658E9Q8RyX3h231ZdQtdaS2VFlnni8so0TEkGAnOf4sdq 7L/gqX+2f8RP2Ef2etJ+Lvw28NaLq2oah4wt9IktdcjlaFYpLW6mLDypEbcDbqOuME8dMfJv/BY/ 9s+4+Av7U+g+EP8Ahln4L+NDeeAbG+bVviB4DGp30Re6u18lJjKpWIbNypjhnc55rif+C+H7RP7R 2u+O779mzxB8L4bX4Z6L4g0zUdD8ULod2jXV82muWh+1M/kSAfaLj5FQN+76/K2RRvYD9Cv+CdH7 UHjX9sT9lTQ/j1470DS9N1LVL2+hms9HWQQIsNy8SlfMd2yQoJyevpXvVfjL/wAEqf24P26/ANl8 Nf2cfh9+z9b6l8Nb7xtb2eoeKG8H6jM8NtdagBdyfao5RAvliST5ipCbfmzg171+2d/wUj/4KYfB T9prxV8Lvgf+yzZ6/wCFdJuoY9H1iTwDq121yjW8UjHzoJ1jfDu65UADGOoNDpvmsB+kFfFv/BW7 /go38Wv+Cfx+H/8Awq7wT4d1j/hLv7V+3f29HO3k/Zfsezy/KlTr9ofOc/dXGOc/KOn/APBfb9t3 4T/EPT9K/aa/Zp8P2OlyMsl9pa6DqGlai9ucjzIDczuvB5G6Mhtu3K53DU/4OHfHPhz4meCP2e/i N4PvvtWk6/pOuajptx5ZXzbeaPSpI2wemVYcHkURhaSuB+ln7NHxJ1741fs7eBfjDr1tFa6h4q8J afq19b6auIYpbi3SVkTzCW2gsQMknHUnrRWH+wL/AMmOfB//ALJnof8A6QQ0VmB/PHX7t+CDj/gk tpf/AGQCEf8AlEFfhGxwK/eP4Y6TqniH/glXoOhaJp815fX3wHtYLW1t4zJJPM+iqqoqjlmZiAAO STX7P4lP9/h2+7/Q/GeB7yhWt/Kfg7X7F/8ABAAkfsZ6xg/8z9ff+ktnX5VeMP2Zf2k/AGlya145 /Z98b6LYwrumvtU8J3lvCg9TI8YUfnX1v/wSa/4Ke/B79krwRdfAf42aBqVnp+oeIptSj8UWKm4j tzJDDGUmgUeYFHkg7k3k78bBjJ14uqU804fpxwrU2mnZNN2Sd7d/Tcz4Z5svz5zrJxTTV2mld2tv t6n7Er93AFeK/wDBR0g/sFfF3cf+ZB1L/wBENXoPw2+K/wAPPi/4UtfG3wv8Zafrmk3in7PqGl3S zRNjgrlTwwPBU4KnggHiuR/bR+HfjH4t/snfET4X+AtK+3a14g8I3tjpVm0yRedPJEVRd0hCrknq xAHc1+JyjKnU5ZKzT1T0aP2inUhUipRd0+qPzg/4Ns2QfGL4nfNj/im7H8f9IevqL/guh8dfAnw7 /YS8QfC/UfEFuviDxtdWVloumrMrTSJHdw3E8pTO7y1jiZS+MB5IweWFfnLb/wDBEv8A4Kb2rFrf 4DRxluGMfjPSlz+V1Wp4Q/4IUf8ABRnxh4jh07xT4D0Xw7bycTatrXiq1miiGO62rzSE+gCYz1IH Nbcsea9yja/4JF/D+5vvgJ+1V8VGmZYdM+CeoaUqeWf3rXNrdzEg9PlFoMjr+8FVP+Ca1z4js/8A gn/+2HP4UR2uj4L0VJPLHItmGprcH6eQZSfbNfpP8Mf+CfWk/suf8E8PHX7LXwjLa54j8SeD9ZS8 1KZlgbV9WubF4UPztthT/VxqpbaqrliSWY+J/wDBHf8A4J5/Hb9nrwb8ZPh9+1p8K4dN0nx9pem6 fHa/21a3S3tuseoR3KE20rlPluUGTjO7jocS5XuwPL/+Da/R/BE2v/FbXrq1s28RW9rpMNnNLGvn x2TtcmURk/MEaRIt+OMpHntXnn/BxuoH7anhQ8f8kvs//TlqNWfiN/wRM/4KCfs2/Fm48T/sZeOr jVLGSSVNJ1rQ/Fi6Pq1tbMQfKuCzwjJGATE7K23JCZ2j5Y/bb+GP7Ynwn+Kmn+Hf22dc1y/8VTeH 4rnT5PEHiwaxMuntPOqKJhNLtXzUnwm4YJY4+bJqOsr3A+j/APg4P/5PY8Lf9kt0z/0tv6+uP+Dj LaP2IfDRP/RUrH/03ajXmv8AwV8/4Jz/ALYP7WX7TWgfEz4FfCyPWNFs/Adjp1xdSa9ZWpS4jubu Rk2TzIxwsqHOMc4zkGvrz/gpr+x9qf7cH7K998I/C1/a2viCz1S31bw7PqEjpB9qh3oVcqCQHhlm QHBAZ1J6VPMvdA4n/ghaV/4dveEgvbVdWz/4HTV8j/Hf/grN/wAFCfjl+1/rXwC/YZsIbO20vWr3 TtHsNP0O1vLrUY7VnV7qWS7RkRW8tnAAQKpVSWYbjV/Yn/YJ/wCCwn7OPxi8E6YsOvaH8PbXxxp1 74o0vT/iFZ/YpLMXURumNul0d4aJWDKELOOME4FSftLf8EgP28/hZ+1drnxu/Yl1Zrqz1nWLzUdJ v9D8TRaVqGlLcszSWz+bLHlR5jxhkdg6AFgpO2q93mdwPnn/AIKP69/wUr8QweDrj/goNpFxbxwy Xy+FJLjTdNgyzC3NyAbJRnhYPv8ATt1Nekf8FSiT+wj+xuxOf+Le6gOf+vfSaj+Lv/BND/gtN8fU 0+P41aFrXiqPS2kbTl134iadci2Mm3eU33Z27tiZx12ivdP28v8AgnB+2L8bf2Tv2bfhj8NvhTHq GufD3wfeWHi60bXrGH7FO8Wnqqh5JlWXJgl5jLD5evIyc0VYD7w/YF/5Mc+D/wD2TPQ//SCGitL9 kjwP4m+GH7LPw5+GnjvT/seseH/A+l6dqlr5iSeVcQ2sccibkJVsMpGVJB7E0ViB8Dw/8G5qupN1 +1vI3+74GC/+3pr3L4Yf8E/f25/gr4Us/Avw1/4KcX1vo+mwx2+n2OofC2zvlt4Y1CJEjXFy7Kiq AoUEAAYAr7MUAcA05l7rXrYriDNsfZYiop26NJ/mjw8Pw/luD1owcX3Taf4M+e9M+F3/AAUT8NWp gT9pb4c+Km/56eIPhvcWbH8bS+Cj/vk1T8bfB34i/Ei0Vf2gv2OfhP428mEiS8s9cMl05PBMMV5p 4ERx/wBPPH96vo5U7qKCCprjWMq811ZPyVvysdkstw8lZ3frr+dz4V8MfsN+CvhR4oXxv+zEvxW+ APiSZlRbGa1HiHRb5RnJu4oJruMpgsAZJ4thYMoBAr6Q+GPxl+I9lBZ6N+0F4Y021muI0+w+NPC9 01zoOp7vukM37yyduMJNmMllVJpWOB6w8av1prwJMv2d9rL0ZWXg1NXEyxHx6tdXq/v3+8rD4OOH leDsuy2fy6E0bBhw2adVDTbOz0+2WzsrZYYYfkjjX7qL/dA7AdABwBwOBV+uc7gprrleBTqKAPyR uf8AgmH/AMFtp72aaD9su8WNpWaNf+FuawMKTwPuelaXwH/4IXftP+Mf2g9L+LP7c/xp03X9L026 huL6GPXbzVNQ1YQkFLZ5biNdkJwAx3M23KqFJDL+rlFX7SQEZIHWvIfjl+0rL8Jvi58O/ghoHg6P Vtc+IV5fLatfal9jtbO1s4BNcSu4ilZnwyKkYX52PLKBk+uOPlr4F8d6F4Y8Y/tw+NvCf7TmpWt9 rX2+xufhzod94Zt9YjutJMASCGwN1vt9Pme8/wCPhpkUyYTa6KC46MHRp1ZSlPVRTdlu3svubuzz cfXrUoxjT0cmlfTRbvfvY99+K/7avh7wl8DtU8R6NYNH4+/s8Q6L4L1K1m+0S6pPcSWdjE8ZEcnl z3CFo8+W8sKu6gBW28t8Nf2+PEnjvxroei6n4G0PStNuvDLanqWoTeJI5kMlxem10qKJ4PMUS3Pk Xcn2dfNdVVfm3KQbHxX/AGBfE/xS8Ra/4yj+ObaLNrmuSa5GbPw+sk1neHQf7KiYTGZWcW7D7RBg IY2eTq5SWOjp/wDwTL8Oabrlje/8LLaSzhvn87S20UeS+ntoa6Otqv77IaGHf5EjlxEs0gKO7PK3 VT/s+NFqWsnd9dHbbSy+epw1P7SlWTirRVl01s936npnib9rzwNoem65pdrYtJ4s0Vokh8M6hdrZ NqDS3UNpBJDLMApgluJo4kmIAJPQHiofi5+2h8GvBPw28SeI/B/jLTde1zSdJvJ9L0WzkaRtQuop 0s0hj2g+ZuvZobbKZ/eOVHzKwHI/EX/gnZ4f8dfFVPiDD8SrzTbWPULOeGxtbHdNDHbWl3GgW4eU sJVu7yS+SbaW89maQSny2ixfBf8AwTQGj654T1fXvjML5fC9notjHa2vh37KklppsN0scaEXDPET cTxXm7c3+kQbyGHlrDj7PA8qfO9LNqz8tDf2maczjyK2yd1p57n0v4MuvFz+EdLuPGtraprUmmwN rEem/wDHul1sHmrFvctsD7tuSTjGTRWraW6WFrHaWkCxxxrsSNeiqOAB+FFcTauevCMuVXP/2X== ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAALAAAAA/CAIAAADPM9UEAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AADfUSURBVHhe7Z13eFVV1vBvkpubQkmhdxBUFFCZ sQEjoCC9KtJEBKUOAoKgCFYEKUMNTZKQnttrCugrMurj2HF0FMs46quOZWZURMZC9futvW4OlwSQ 4Mz3fH98y/1s9tln79X32mufe060HTt27Pjx49QWHD16VBv0nxlk8HEpx34+bhXtqVbo/zWg/ADR awPRrpNB+ik1OYnerwUoFSB6fTJE79WEY8d/rlGEp/8CqJjVypnB4pzGkWOHDx/+CXMfOXL0+HGZ yXRxCIA7R+g+evTQkcOHj3L/RDn289HTFbkbAxalU4LerQbVEJ6uxPIjRE90UsdY3ZRjVeqPEj49 4CXV5ppygtwpqccWJVQNIH+KUsNyppyQ8cwlivpcwcKjbGvj8NFDR48ePnTokHEIHYZDHD18/PjR YCgwavSNo8ePHj1h7NiJ48dVlbG3jDtzuXnC+Amm3HzzuFMWvXu6AdWwnbmcmavYu+MmSBkbU8ZP qE6aIrdq4KHEoqpZrLvjEL8GTuiOuaV6qYbhHEo1KpTxyr+R1CqISf8pRsagUrnGTRw3dvyYYSOG Ll68+KeffiJCEA5+/vln25HDP/7rX1+mpCZ379l902Obir0l2UW5ucVnKjlFOZToZVFebuEOU/J2 FO7IK8rLkwadWnbsKJJLU3ZIKdLBpk3DYLPq2pacQsNAUV4OqEwthUZxXlW9gzrb3IW3KNFoMXfh p9jUJ0p1KqcrOYU5VdKBtkrkorxsKFaV7UU7pGGogDyWkCFdHWdssfQsdYGQyCvKr5JCdGv4N5JK EUlpCHIGFJlS1bBwZhdmg21HyY58Z/5jOY/dfMv45JSU3bufIq7iEAQJ25EjP7z+xquJjoQVf1ju DXu9Ea+n3OcrO1NhDCV6WR70RPyeSMBbFqDhNZe0vWUn+mnLXSZW+H0VjKH4PGVeChj85f4oqnMp AV9Eir8sSO0N+ynuiN9dHnCXRWtXmd9THqRTWaV2h2FMirc6trMt8ByoCHjCXn9FCGxI5w6LKmhQ u8JIF0AVog0RnCIyqt5OqO7sCrSY4q8IK6Eq9Qp+T0XQXRZwIa8RFklpW7rFjujcjZJR+8k4PWEP xRvyeQKe9MyM++9/EIcwceK4jV3k9ddfS0lN2rhloyfoRa2e8AnWT1dA5w65KSUBN/Kj7tKgR9uq Dm3QT+0MeakLvaXOkMdfGTbDvMV+F7WFpxr+sy2winURLOSD81KfS+qAxxn2ohqhG/HBmMWDVWBG XKQsGCgPuYMe8SRUGS1nEh9tlvhKSv2l8BysDBX5nL6KECQQGYloCLmgl4Ia3UEvnuoMSI9gRjMh 0bD6saF1EnKrqMHEZlXeA7eQgG2YhwQN1Bh6vJwan4AN+mnTwFEQVlkq8JQEd5UxNxa5FvGzkM8f CTRt3uyO2XOIDuSR5FU2Eoi9e19JSnZs3CwOEaoIG45PcqiaRZc1eJEZbbr87hJPqdPvRv5gRdgV 8IAEbFyqtSgMkwGW2XwuLsFgYTuHAk4lQSNUGRHOIwGob35s84PLHpo8/fbho0b0GdB34LBBs++a u3TlMjYUiSUwbDikTUO8IezXuab8AjN4AwWedz61q8TrRAObtm95cPnDd8ybfW3/Pj2uvWbIyKEz 58665/57t+Y+howMUH+loBwuIapsV8NcsxCHIBSsDIIHAVFaqdeJFEJu/pwRo2/o3vt3/Qb3nzZr xvy752dt2wRmoWikK8ImVUvFQhjrENIf9rdo1XLWrDs4B+INEiFwiNdee9WRnLRpy2ZvSPSrRjpF CXsp3GVx4On4F34QDPl9uFo44PV5snMem3vnnMFDBnXr3r1T585NmjZJz8ho07btpZddel2fPqNG 3bBg4fxSZ7HLXeoPeEORYLgyBDZX0FXFn9gVLlmj1UlXFQmD5RIGmeIlugQ86BcVBIyZ8el+A/vV S6ufkJCQ6EiMi4+z2WzUcfHx8QlxCYkJtnhb0xZNx4wfk1+U7w9JaIHiCa3FKE6LpQrZTNmMyrwl QSeX8Iy7Z+dmDxk6tFHjxlCJT4iHSlxcnI3/aCbEp6SmQLZxk8Z9r79+46as8M4ybMks8KBkZ9jN BipSmKJUtPgRP6aHy1BZIBwJ5RfsuGn0qHbntU2wx9kToaFE4xwOB3QRGdJp6Wk9evZYuXp5OOIP hn2UQMjrx1goFinMDuJV7UECoUK+Zi2a3XHHHbhCNKnkOBp1iK1bcAhCaDX+Ygu3TKgk0gaxQbA8 VFpanJ+/A2M3adIoAf7EBDYUAYvUdrtdbGGAW/HxNv5t2rTxrbfeUlRcGAhhSZcGRlRsSMhiPYND nCh4T8gj+jV+Wegs6v67bnZHgt1hRy8KaEo5EYjHNWzxdmk4khOTU5JHj72JnAtyrCqNc6q1aiWq uwj7rtdXGRBXCHtKPMVDhg1OShH8UWI2W1JSUpSWMY8RWYAxScnJva+/NqcglwAMw6gOnJJU1fAG KUZ8GcCuEXQjptfvmjRpYmpqKjoEK7SMMuMSExNpQ4haJaVOTk1yOOxdunTatm2LG72yVqsyAbxB l5MSEsw4RPOmp3CIxCRH1pbNvrBEUVZDlLOTi1t2Mq+3QmIRfoMxduTn/va3v4WJlJQUFd7ij7ay SwO3MByjJh0iwCbVt1+fUm8JBQ8r9hZDwhVyo/RT53oRP9uNrmMsJ+2gz+lxV+ysnD13Trxd1oea BHKNGjXq06cPcmZlZfn9/jVr1tx+++1XXHFFWlqa2gnl0qiXVm/TY5uJwyAUnzAJtTvisYiqtVgD vnI/a5p2fmn+slWP1Muob3ckggFagqdevauvvvrWW29dsWKF0+mE6O9///tevXpBTpXAUk5MsmOq e+5dVLlrp9snW6cndIJQbCE/JXOEHySN7CzLzctp1aalahhaADgvvvjiCRMmPPzwwz6fr6CgYNas WX379s3IyMAWuLtDeItPTEyYPPlWf9DnDXhlneP6JG0mSCAmSlaHaNqsSU2HeA2HIEL4QuoQp1oo WCsCrgAJCwGW6DdqzCgkhEv4g0sR2ywXZRpggSKGqkz9V4GmGSaN1LrJ0++YVuwuwgtxC5cJpB6z bqovnbDPH2bPC/gjQZffE4gECDA+v3/M2DEQgooSwg/27Nmjz9moEVIbwKFDh7755huPx3PZZZfB AJzYE+2JyUkL7l2I9imsSInkMUThgb2MQtLgDDi5nHPXnOTUZFmJrMXkZNZDIBD44Ycf2ID//e9/ U0MO5dL49ttvf/zxx//5n/+59tprjYqIlDILQ3p8Hh/kMLkhUU1ScyoJlJD7VpY9uPThjAaZcWYi AsL59u3bkUKFUkJKFFrUL7zwwvjx41E741keKKTfgP6lLqfT5yIQBndGWNLqEOITp3EIcgjLIYI1 HUI5xkgeDjbmtPbYju1dL++akGhPsMtqg6ouTZYdHC9YsKC4uPjJJ598+eWX//KXvzz//POPP/54 UVHR9OnTO3bsaOKe6BOnIFpgSlb2JV27bMneShLOQmSHU6JWrSUQDgbDITikeAL+UCTM5Q033KCm ReMXXHABRDk7oRcspBJyiaa0k1rdAlMVFhYSRWT3jY9LSsUpZwQ4yEW8TnaEauYx2T7JHXFi2syp 8XbZAaHYsEEDl9P13XffHTx4EFqgBbnaBrpKnTadMFNRUdG5c6eU5GTlFrZ9ZFHlYTBDQjWs5HA+ OSKFvMGK0H0PPkAiIlHInli/fv3169d//fXXoEUiJQd+9Qk9MWond1966aXrrruOaUIuPu7q7t2c XqfsrQGPnLdNKmZFiJpbxrHTOYTFqNacZEiS12ata922TdTbTX6AMQhWK1eu/OCDDxAevLBFLa4b 88SaHu6+//77jGQ88x2kRgYDTGc2zCBJJj2URE8PRScbxs/WGyFzDBAn8PfyXRXTZkwVXRmxWYX/ +Mc/IIeO0IhSZyVNnjy5W7du69atU/XpANRH45133sGHMA/rKbVuyuIHFrFh+1k6xkhaaCsnBLB7 7ltEWkpUwI3atWn75ZdfIiiEEA3kqBLpwPzhhx9+/vnnSot+BVhi/LW9ryURxLoguX3qFPIePURA RUiYpIEwWRIodQVcWVuyxF/NDti0afNnnnlGdQuAkBqcSgXgkpoeangQp9//7bix49jLRL0J8f0G XF9eWcY+hXHluGukq4VDxBpDGZVcsiLMaaduRj0MgCG1ZptcvHjxv/71L5iDY2VOGaVhPEEomX/l 5xNuAZ9++ums38+qX6cOcSLeJjGGyJFSJ3Xj1iyYJjhbarLY0BwCASjhysjSR5cSulEWPPTr149l CkXFbyll0qRJKBQ+gdzcXIslGugOtX75xZddOnVmDKPSM+vnFuZ45QAluYIW2JAEosy3OXtz/fT6 ujle0rnLV//66uDBAwiqOCFKDdEXX3wRXCNGjIC68kODu8rY1199M2TQUEKqaC8+jgWAgOBXMbWN 1LI9eUvOa98WnUCxQYMGb7/9rnL+/fffKyoAkZUoJGhoWxeDuM6Ro8eOHCWVgZYkWDbbzFkzyLr0 mKNr/iwdIuwNByWHjzEGXGKkjVs2NW7aBHHAzoaIpi/p3Pm9995Th9VaAbynBL0LRThm/FtvvXVx x4uSEh2EYXA6khyZDRts2LxJqaslNIuUEuYcJTUikaV36HghmRrbTefOnVmRilaBNsj3799PABBW DZDxoUQdhvAK7B/73nyrebMm4t5xth7XXM0JzUryWb5yJCb1C3uv7nEVisXYbDT79u0DD2YAg1IU VAbYwqE4bNgwbAMwDICuDqDByrn88svxY4zduGmjEl+JHq+8EY8fhYc9oXI/gXDkjSPgmWH166fv 2fM0zgAV8YKqxOhPf/rTnXfeSQZDpkwIHDVqFKnMP//5T7hSQjoS/xg6dKjo1uEgLJFMhMpDnOyi LmhWl8khfm/84QwOYR614ge6TEMVwYLS/As6Xog3kDrgtol2+6ABA7/56muo6iKgASqQIryavybo XWplGpWBYdiQoTiELFKMkhDftHkzuIx15GiJ+PEGcYvyEGkgIyl169b96KOPFJtYxgBtFAFXqAmd oguUm5eXxy36uQsntKNW/OnQzspyY2sbp9aszesDVU8qVQOob13WWnui5MhYcc6cObANElJIFQfg kryEbH/cuHFI0a5du0cfffSpp57C77kFWMqBK7YqIjn00OLdSxaq/5niDZb7OdAWlRRmZKar/+Xm 5n3/PYteIo3S/eqrr0aPHg0nEJJIYzyekQB0t27dqhTVHaHLTtq6dWtjMfvNt9zs9rvxb11s6hAm QvySQ6gxdAIovH5P199eJsGnaqcgGuOPKqQqBTBGPy1YY5gFx0zU6bA+ceJE0JKZ1qlTB9av6fU7 OZXpg05zFKREDwLmqUNmkwYsaNIzdiswqAoAEEKCHt284JDAAMJly5aR/RFvURB3LWYAcYmffhoy ZBAMsCF0/U2XQNVDTzQgDxYDni6XduYugNJRa/PmzVevXs1cSDAXU+3evbtx48bcZQwDAB183nnn Pf3005BQWioyMG/ePB3TvJV4vytozGO8kP1i8NBBSMd0cJqtMOq+eDMiaIBRWyiQA7H66VQFTpky hfFK1FA7tmPHDpwGPaRlpBWWFhLziPe1cwg5+YQkOPtCfk538+bN5WgLSXU0MjjyNUgyV7HQMCJX 94nYHqutDWpMSK2rloM1sikJ1DH3rvkcL8UhWKYVPk8lPhHwhP2lPte23McYwAEHw3z22WeQhhNF BYhYR4+yibzxxht79+7985//zEmHxptvvomYsM1dHclEZRuj7t37St26dbBQampyqZucjrgY8JUF IUfql2AXxrAQGodJlKuwcOFCUkh2AXjmrvKPbcRKBmjv3LlTKSo5vIf673//O2k1Uzj3PpazHS8n WXFJMiFPThs1aaw0nvnj04d+lPwX6ZgIEs0J1O0Y0KZNm0suuaRnz55sZLgFPeCEmaysLKYAzGUW cxnJLI5Iix9YUuwuJnWV2G8icfMWp3cIfzgUdQjy+UiIRrHLWVBYKKfKKt8n/mAGlIghLeXGgjH6 CYj2xniDBUyHOjXY8H2yJz2+snmilJy8XNkjJDx4PRXyM5XbPK4ZOfoGXUBEKZW5GhtEb30ApVpD gwRY1SO6ix0cywC5iDFq3NLlj3hCgQKP0yWP6cLz714IErTcpUuXrl27Wk9WAMZjchRCG+S07733 XtIIDpls8MgSiUTAjL+q7NDiEvMAbO3gxPC3T5+CH8gDUHmiHMh6bDP5JnxkpKfjDT/9EFUyNYc4 VMQsyCEOhzXwgFxh7Nix8AN71JmZmdiIKQBE0dLMmTOF4fi4Xn16kQBoJqAO0exsHEIDpjccIMHp P7Cf0ZTsVcjMuRGpYFFVqWAZRkHvAqL1qjbErDbjaVu1AvkpckIFQOkTJ92CQ/jlmbHHV+4t8jmJ EDhE81bN4+1xyakp5ZUVsbQA2gC7g2LASHAO0KAH5CwU/Fg5UaANEiRiuaNrZvW9vo9ECPkVW37m 6Hxp5/g4Gzd0myDeDBkyRMMA4wGQU4P/wgsvJMJjGxWHyEEbrsDPpcUhtOjJyckRruyJXbpeQvTW 8wV0b7p5jD7gmTljprzRdeTokUOSGzK3qKgIWdQde/fuDS0cQtGq28EAdxnDgPvuuw+iEOIut/73 f/9XdOJIzGiU6fLLfiHHaXWIM28ZgXK2T9xC0gj4c3pdySnJKXXkiQouP2PGDMPACUury8MxVC3Q W9SxThALOkzZBRhDhKChSRnASm3UpFFxaZHTV6pvaTjZ+fxuBKifXi8uwVY/Pe3Djz7SuVoDkKN9 4MABjQcGT7ShwKau7FnAePUJsnTjOvGXX3E5hPyV4WK/C4do2boFvUmORJa+jtez3+TJk3ELfVSg NfgJ3ViaEMUACGESOQFWxSFqdKVIsBC8xSfYMxs3MDmEnO1R+HUD+mI27uzIyT1uHOIoaA4feeKJ JwYMGEC/5siDBg3ijGZhAzlJ7qZNm7ilkhILMQp3uaWAr7Bl1Klfp9hdpL/Wst7IkH4xhzDhwbzc gU9MnzU9jkiDUybaGzZsiBgICRmlpM6ubCE/DbGzOe3Qr8OUXcAaAAbADJQFBDCMAWAj/NSvX5/l SNTkGHH33Qt8Afl1xx1yuSIe4qrT5+J0Cj+onoMlc9XnqC3AHpZeLMBgQNu2bSFq+IoC46mh/uyz zzKLMe07tCdvdZtXKMghMhtmMJ1N529/+xtsw6TyD3zxxRcrVqzAyZhFkKDW5Zuenr5o0aJPPvmE MXrAhk9IGFklOlKjCiGXEO9IScIP3GVeZ1geynX57aVsGeyJHFLYMvAGpjOYw1THjh3xBpjBEUmW wawBCf41id6zZw88GHFt7du31yfc9DMAsnK0J8wnJeSXFEBRT/InRwi2tmOncAj8gKSSCbhPq7at wAKLHPrnzp1raZNZADjglWR+165dbGlLlizhdMcRmaANK6oCatpMZFcLh8No8OGHH2YY6R6d3NKR 4NS4N2LECLxBDqI2W69e10TKAn42PFZPRLY9hEGJ6KtFixaKXy1qPCEKOEq1wACgKYD9HoaNBAIM jraOH8femJORTZo2xiFKgx5fRajAWVS3fl06yQHJBKEIh/CpEZFZWOLrr7/2eDzdunUjgqpLydI3 GeWwYcPQBoNVA0oIUJEZwKaemOIochWLu0fkR9fmbVuKQ9hsZME4BPsFg5Xiu+++26FDB0hMnTqV eIAgxgjR9YbUDFAGqMk2Pv30U+4yzJA+arTALmXLzs8hBGLl2jgEBxITTzh/CyKzB//xj39kEuMh QEMZzc7ORsvIb7HCyefSSy8lxDEMMQB4uv/++63Dt2JDfVdddRUy6DDUpGjLy8vrptZhJMPSM9Pc AXluI79Amp+eC0oLUSIqa9q0KeNhRo1qPEGA9pdffgl+w3UUwKbGbtWqldJSYLo2oPv222/rKm/R sjkOgTcQIwtdxexQTMzISCc66rMHnUUNcEkbTpCRGDN8+HBiCUiQjlkQBTp16uT1epmLunQiDWpN dZNSk6FChKCg8zbntxOz2WwsGLYMCoPBD6Dwffv2PfDAA9CiU0mryPTgmviQ6g0g0KpD6MSDBw9g H8Ecf8IhauQQp3EI9QbcZ0PWerDANAQwgKqS8QA0qDEzdzWlYoz6BICoKIKgxxh23PHjx6vHUGs6 xmBmMYb61VdfZRjsAKAl3ohAos14uF+btcYdJqJ6vBXyFLnEU5qUksz+xQr46quvmIhGtFaAQ1TD dEs1ChDCSC1btkR3jKkJTz/9tEpx0cUXydKJ+IO7yorcJZkNMhErKcmB78IewGClBV3a1CidBpgB Is2UKVNYFUoXNhCTBjsLp0F2GR2PsKKp+LgEhx1tS3gwDnHZlb/RUwYLg/AgaUSVUSFBQ7cJVReg bGhdWVkpOA1wJkc/Ootb2FtibrzNnpzIosIhJDGofsqo4RCcMgLlITYYhqKUybdPwojycDLBfuMN NyKtQR09Fzz33HN69sXAyDxy5Mi1a9fOmzePIx89aP+CCy5gWZAbcwkwEjVxVlyzZg0ZGU7DjsjE gQMHahRRnUKCszUiGXXa7l6yEIfg5Cm7bMApT6UaZJJDEG/IqhiMLpiooG2Izp49+7bbbhMMBsAG aba8VatWWTpisI6nDRQXFyvR7j26I7vLvIOJNlq0ai6uabPt3r0bnSkVBZ2ogJF0KYteDx8uKCgA GyIjoPoZGqCHnW7+/Pl//etfWetcotzGzZtgFU+5jxyCLeP6wf3ZEzllbN26VSMEDOPi1CUlJRyF 7jFAugAh6MIPQBvVETygJWjj43v16qULWG8dOXJI9BBvq5NWB3IlXueJCHEGhzCnjBBs4T7B8tDv evaQCGEIPPTQQ+IFZvNDYGh0794dGgBMkBnQCQfchVeWL6yTB9FDHqcaYY0Gg0HVGv3r169v1qwZ ZzkWjeKkBj+3OMsY9Ul8mzZrqrfc562QInm4392mXVscArExIVNUI4BlJGWS8yFjlEOARA/M3I2d ohS1MX36dDhk5NhxYwNlQY4YbBnood+A64mAYNKnogxWJEoIiqhi+/btY8aMYUVqP7Js2LCB1QI2 ZCcZhBPrPIJoxHM6ucuy6d6zh6RrZd5SEueA59apk2UJ2hPIPw5XRQhFe/fddzNXQx3HMdUYNbfw GKTLzCSYCTDgwQcf1FnUwL59b3Ik4nzAob26Q/ziloFDUKOUCzqej0+pWlnojFQmaBDYWaMqJBwQ x+hXS6AyjuCMQVPoiAHGunHkvQwAlEvuko7RVnvQ0H4G4F5GlbLnjZkwOlgZcEfcLKASX4k/Epg2 Yzr9yNy/f3/4UZwAeDAPNQAqHAIkFmADVGYN05FcgoEGQYWQzjAkWr9hvajM7+aUgdYeWb6UfvY3 Ah6DmWjxCSBFbm4utmci9uBkeOedd44dO1YfEBEFCQko55VXXtEfmRTUV6jRzJz5c3EICQ+cPEO+ 7IJc+XHSKO3gge/kOYThGdLPP/88nYqBJReJROBENQAb11xzjTo0gPeTAutdWKUeOXK4TI23Db9x OH4QrAhj4l9OKr0h8yZuWfR9WnI6OFAmXnrpJUsR8EfyrPIAdevWhSG9qwPgQNX93nvvoRcADFdf fTU9DGAkwBRlV6WltiAUCjFe6Mbb+g7soy+dctBAXzgrBw36WUbpaRnvvP0O6la00ckGwH9Kh6Cf u+oQhotoMsQpCW3i2XXr1vF45fgXqoxw1IJcUWkR/YkOBy5I2qjjQfIT6/fIYcIbIRD8ujWoSXAO Q1Ma7OtMYTw1O8Utt9yClzBSlCKxN25HwQ5OTyVBp7wqZkzVrn1b3AF02Vu34RBGUZKEwv/1118P G2BWDCTvEydOZM8lM6MHHmCA/nXr1qloAJph4TXITMcI7P3LVi0n9uMTLC0UW/Uc4nQ/f4fND81l vkCZv9RbUre+ZEZiGJvtgw8+wGwMpoYzThxIyy2YIN+kHwCjAjJQ00NeKYKbxymDBg1iv4BFpa15 Mpc6l05AG+hdiWL47r26eYJud8iln2DIYvK7W7dvQ5AAM2tR172SUwwKpNyCoQpwCOIq/YZONJYo dfR1xRVXoEpkub5/P7ffQ3SM7CqXSG5edOs/cIDIkBB/4YUXgsTy4yPHonGO5JrwoMYAiQIRET9j vGqDWZCj/e2331522WWiFntC+44d/OZNLXZDfVhEMJ8yYyoJlz2BE559/9fymxEKQ12w+v777zdu 3BhlKrdKDm+wvIRbhCgGGzeKLsslS5ZIjI63NWjS0Olzyfuw+pZ5WKQ7vUNs2ewJShoFcziEN+Rp 2LgB9FAF8OSTT4IaYBrwxhtv6HkBJggVhFzrLnyosTHVJ598op5LzUkdLrkFbcYwhUumwACXAA1m cdfv96sVk1OTBgztj0MQIfwmbkm0CHtXr1+FtkRndjt5CXOFp6ogQQNU1SIEqa4+DNUBWv/4w4+H fzpENgMeDi+UYmepv+rJvaQsQRfOkbMjR+xtHhGuXrmK0KA2NtSiToywWItkAp1cd911BAMVh1rV okaiJmak1q1jdyRymli9frX8plD1gow8PSzzFTmLW7dpjWlJ1yffOgm2mY66QAUGVIr7wglCQQuf 0JXJJU6/efNmBhtTyEMBnPWdd95hB2G8Izlxzl1zcQXNCkTGX3hBJua7DPROufCiC5QSkJ2dzUjl ifqbb74hh6AfhqgPHDgARjjgFngDgQCssDhINdhQDAJ5rMtcNbw6EFsDA5jISC7ppw0sX75cRSUM jL1lDN4pbzGFZBeDK6evNFwZuvp3V8XbhTTHBw6uOhEMAAxQ47LKmwLK0kfOOoaGKO7w4VAgiDcw kvU68qZRniAxUp7EWC/pSGgN+8eOHwMzgMOe+PjOXbgRHmBoRvc7cCLdiy++yNodPny4urtyQs0Y FfDjTz7Rl4wg16ZDW3nEoq8myGM3jyfsLtsVIYzfcecdGgLBpq84MFc9QyMisadv377EZnIUFEvY KCwsFImq3iCkoQuAu3hDvbS6KfVTS71ON4mk+a5OPgaUd3/8NV+yjc0hxH3gTxfiwEEDUIH6BCku EwCVkHrw4MHcUsv17NmT3RSHQBEul4vgwU7JFNyiS5cuSKUjiWb79++HY4ZxRsW1cZeNGzdaOSlo 4YyjqaLF5HcunAvfaCoIS2IefMJb5CrMK85r3qqZWMjhIB9kgzDcyapVl622ZRAh1IRKAlrA7id3 Z6bLz9As1o6dLiooLZbf9iLiDSiBQpBQnyh2lXS5TA7DhOfGjRvteeopMiX1LiVKTZvkkaPTlClT UIVhR0AGcRD46ceXXnm5RauW8qQ1Pq5+ehradgZd4DcRIlqKffLbNMeNXtf2xihEYLTHIRZuQUUN ZgQBlAQ9uszU5+iHFurlFnnl5ZdfDs94vN1h35K9lfDgDHrd5iNH+WniF1+h0w910ILxHe/UaVNA B0Mo/dprr7WoKk+kmRLWTOyCYqtWrTj7XnXVVexnomKbjaSBYU888QSLmB5GMoydFde+5JJL1EXo nzx5si4mMAPwg4F11ZJDPPDI/S4/ZyThx7ippxSlmZx39ZpVmJmR4GGtsKmBBAAD9aeffjpnzpy5 c+fihfPmzVu0aJGqibtwBSFOrbDKbuZISmzaoumGLRvldRicz7yRrKsWC2EtL2HJ796as61lG8wp +WydOinFxYWHDon2AfgHIWqhod6mPVYndbgs0rBxI7wBVddLT1u9bi3r1Xwx7HEFzMuC+F+ZPHFx hl0e2d19553fgTiB3jDBPffcw4oHFSZACmrLCwElpNZR0s899xwZDwKiHPb0RYvvIfAQD9xVH9wS J37ZIZigDsG2HaoIZuduhxW1LqpnX1DaKiEo8vPzIakBwDK5usiVV175j3/8Q5lbvXo1/YQNayQD aOBPOAcxgzGqR0Rij9QBAnG2LdmbxfysIfn9XtzCiOHxcHSviCxeshhyoFLS06ZNYw9iA8LkiAd1 JDQaExeBZ22/++670GWWPdGOzzVq0vCRlUuD5UGP/Iom32UYh8APxCHo4UDorwzR+YcNq9Mz6tkd CUkp8hbP6NE3sUODEOahRQMRDAUB2ACg+/HHH8+cOVO+7LPLr1lJqSlLHnzA7ZdXv0xswMvlTWh5 K6zc6y73+Coxm7fIU1pYWtL2vHaIBqAT1iSHO1Skng1RBWipdOormOmhhx4i9Ko3qFpcHmcgLM+W 2A31u+EzOMSRV197JTEpcdPWTXDGHNINCZUBV6mzCGXDSnJqij0xifRNtyUAyZlPg11TowLWBXBG dms2C3Jp7lpnwp07d+KwOAT8gZC6Xbt2K1asYIxGOcVGu7S0FPnVHzIapHvFr01GadIaDRLyvWLQ 4yPzC4fwNrZJBiM8NdFo0b2L/vjM04RU1osgJeM79BMR+9vvDuzevXvChPFQJ6xgV/Ks1u1b4XNu E7pDO0PyoU7MX0Mw4UFsJt8OlXlLfCU7inLatW8d/TAwPg4zT5h4y5NP7T5w8DuTJhylYJfvv//x wIGDL7zw0m23T02pW8+RlIwrOJKT2DKWPbrcF5AXhlmyVftFlJx83Ffud5V5nRFPcUCOA0XO0ksu uxSNsWKhSCo6cPAggs3X+7/57t8Hv//xB6Q7elx+JGcRvLL31QV3LySrQA9GRjmFLliwoKKiwut3 UfSHIYsi3lCVQ+hziCqH2Lv3hEPAhDoEqvf63FdeKZsQBFj/o0aN0kVmrQNcUh3zo48+evnll8l0 yO31ETqgg9XetKHH2ZXAvmfPntdff11fwtORAGMYwGDSEcSQNZEQP2r0jX7cOWi0FuMQwpt4t5e0 NBwOZ2VlsQepTwAwjIM2b96cHZRIMGzYMGpSGXntUexoYxMHfaLD3qtPz/ySPLU6RZ8O1fyUT4r5 lI9TgCfoyinI7tm7hz0Rt46uXaBJkyaQ6NevH6lV//79u17WtUkj/QhYnvUSG9Bw19/+Jjs3B3OG ImG8mSOfRdqiKJ/aVRAn5FF9sd9JSuf0eoaPHIFEKiBmhhwBoFOnTtdcc42S+81vfsMCU2aQMCHR jvO1atN67fp1wXDIH/QHCQlBeQcHzwaz0sIhqiJEDYcg8GdtzSKe4BDeSAAnlYUS9t93/xLJiOMT KDBByCI2ApjQilfaAGLbGqtpUCtY/dqwgFvqGXjD888/L9uK+YEbh1i64pFSzs0VclKP0Zo0TA/+ wVrzhSIcl713L1rY9jx5PiFzDaDBWDA+Jk+DOLJ2uaQzKUipt1R0JD+eiZqkSNyWd3qtQqdVuyKe 0M6gPDCI+FauebRT54vE3OZhrmlI2xASgJD8EGRM2K5920X33+v0uXzhIDyjWCnW+8NV39ZFLyu8 rnKPS/IJ+XMA4jdB76ZNm3r37g02I4p4hppfFwCgnfSSPzZq0mjmrBlsE8Qh9BOAVvSbMOPxVQ4B Dyc/qaxyiNdiHMJXEZJjiUQtmVBSWtyoYUP5xMp8TsPyVdNW8wnt1BqItbrVqWDGCmhbO3EI2tQ9 evQQmeNsREhOZaRyFLd8UxqrMsszzHNVo1z5dtHvJk1bsWZlnwH9MAWLUkIBiqIhbVk66Zlpo8aO +sOGNXoQD+4Ky2sWFfKdf7TUcAiKdde05VsuQn2xtxiieNUNN91Qp16qPDzlTJBst9nxCFucHX3Z 0jLTho4c+tDyh82XdF44xABwa3xCpIilUlUg5PKUu+VN0nKv3+xfQtFL2uRft3HDuAk3t2zdinNK giNRBDRv08QhoHkroFef3kseuq/QWQQVDQCqH5jXH1QtQQSteeWlukPQki0jMXHj5o0yvyJE0lEq nwnLX97wBn1Tpk7B+xMTJFIBbrebmRiPBa2hXgFcZw84gdZAdP6xY2x1+BycxOH68XF3zJvNMYl8 mOIrD7hZTyaimpdRTcCQ82HUIVC0PpGlUeJ1lvhc2YW5m7ZveXTtqqUrl61Ytypr+5btBTnFXmeB t7Q0JNLtcBaCtjTkYo9AWVXIT1eUOtqUd9hZuBwOWT95pYVkf6SENDZnb12zaf3yP6xYsW719vyc 3OI8BqDDIncJ5wh3QJ6IiytIkZSIcjKJaMEhoOIxjyUo6hAsDKhQu4LyKXduUd6O4vzVG9YsXbX8 kVXLt+Y+tn7rRqTziCrcZbvKguVmjwhyZjbvpVYhh+iJWHvKV+hovfrqy0nJjvVZ62EXpiURleep 0vYFfV6/p0XLFsQkQh8GI3PUt4CYjxWxqGAySa+xdS2A6UzULIQTPEFP9gvCnj2+wwXtcXMTHuSM ZP4kT1SJ5sQhDURVbwiYn+Jo4BAqgroRc7WIc5uDlv4hJk/0z0D5/BJjjHvJQcbCf8oiA8ww7BFw B91mI5Nv4UElZ3rzZ6wgQaENFWg5wz5/ZRjmcQIYE28w4cEUWK1GIlrIoKXoAOMNFBXHoqJyaTin wV19tCAvelXpBG2wSDQmCWb5fN4Ug1YdgiB3Cod4+dWXHMmODZs3EHJZXuoT4hb6yXrYv2rNSvJq s0PJ6a5ly5Z///vfsSIo1KjUauOzBA0MYCDGsPt89tlnJGUSG6Kbom3t+jXIw1JAwtKAbBzq76a4 fIgthc01mhnBp1WUcykhU8xffJJCm0WGZhnPCTbo9smfHJF3Ng0295lKwG3ONUwxf8GDidTyeBts UBGckIjWxh3lI25xZflNTjk0rLJwJZ6ZUoOKKfL3PaoKG41HRDA/7AlyDiZRKtpTxYAIyKXIHpC/ o1JFLqoZ0PoRQaWgmA2Lu/gNDjF79qzqESIlNYkcAocixMlvo5FAxROVYJc/piEfb3mmz5zGCtZc F+AM+cUXX2BXPUTQAECnbWP06L5gQeylDoOD/fv3c0xv1kyeOSpyHG7MuNGhsiBiiC0DnmJPaagy Eq4MlVVUL+GKcFhunVQiFWVlFeU1SuSkUh4pL6dRHWEtCxiqUaFAPYaQKZGK6kxqqYFQy0lzw9FG NSpaTgyzSjUSWmLxR8qDWnwBn8fnbd269ezZd7BCjx45+vNxk1S+8spLycmOm8aMum3abRNvmzhp yuSp06fcNmXy9rxs3I1UqGxXOfWgoUNI1khh6tSrm+hwNGjQ4JlnnrHihNpYQa1uNRSsS0YSGADm cgStX1++qmYnIjzgDVdeeWXQvN0lnh7y3XP/vbfPnHr7jCnTZkw92zJ92vRTwNSaZRql2txaFUFS E6B+EhXKryU0AySnhJOoaKk2sVqZagZoPW0GE6ZlZmbqg6lj6hC02L8ltwfMmU2KOcPUS6ufW5Dv CQWcflaqr9jt7NL1MlJZSeBlmPzOtm3btu+//548QIO/Wlqwm61EncBqa4MBuMLnn3++Zs0a86SK bYgDmvxycXHni4pKCnG+UEWY4LR+y0ZHqiPO/IGt04LFs1X+34RqTGr5b0A1ElpOBaxAbZz0pJLW q6++GnUIAzqOmlSfqBCuLDef7sjflyx0FV91TTcIJKdKeE81f2ita9euoVAIPDgElrYA7NAAuAXQ 0Ee5QEFBQfv27S2iuALlqu5Xkq/IthfySSoT9Hbu2iUhKYHz2+lE+v/wH4HqDvHyyy9bzsI/WhQ4 7D68fFmJ1+0KS/5MKst2PnD4YHwlMZHDvviN2hW32LBhw7vvvkvA0CCBT6gHcElswF3eeuutlStX XnTRRbpHCP5E+WtcHOIHDR9M1kLSS95A7kIeM27iePrNO3yGlVOBsg0DFhtaa7/WJMKxbW0Ql6jP AXQ6YHmzgnVpDfjPAgwr5tg6FlQJ0YtawpkcohokJNrTMjM2bttSGpRjm78ipH+CbtLtk5KSHObZ XJQPaoDE8Pzzzx81atS0adMefvjhzZs3P/TQQ7fddtuIESP07/eo4qij4EhIqZd6593z8QOOEmwT fkknffcvfTC5TrJ+FQL600mqRDEzmNTGsgNVPcIDtE2nXmqmoj2AIqkVgITp1GAGFDP9NPSURKf2 0G7YsKG++KqXMr+WoOTAAPL09PTmzZuTclmd0UFVetB+bURvnB2oQxwhlv+iQwDxifY257fP50Aq b47Ix5/eoD8QCqz6w6pOneQbfgDmlGnqWFTKHCBsGjMwgH5qOhl/Rfcr123eIG/lmIMu53XcYsPm TfXS0+QB9i+BoqXx+OOP79u375133tm7d+/rr7++e/duhAR/79696eeyadOmeopp1KgRY/7yl790 7hz9qw+1AshhFbIuqOhHfKDFVK+99lo4HE41X+kg3YQJExjwwQcffPLJJ88++6z+8UaVvVag2CBB vvXee+9xsvvoo4+sDZe7OiwSibzxxhuFhYUp5vVd+q1bZwBG6KCoQxz7JYcQrPFx8rJXQnzjpk22 5+cUOIs88tdGPZHKMo/PEwj677nnHn3LVMZWrZVYbMq33lKlyGVC/Hkd2q9cvQpXkGcD+neyOdEE PEtXLktKjv6kzpRYVDWBuzrg/fffJ+JhA/YsVEab8/DYsWMJCRiPy6VLl2It0Obl5bGRPfHEE+dg HgDpWrZs+d133yk5LoGMjAz2RHmLwASJ1atXs0syACP97W9/o3Hw4MFevXpFUdQGVHslJSUHDhxA tKysLMRhL37uuecQhwFQb9KkybfffstOjbvAm6W6s4ezjRCibPOonJNFSp3Uhs0asZqxGekeBwFf 0Lfz8coSZ3EwHFiz7g/X9+9br35d/V1Kp0jRNv+aHxfki6tGDQcNGZxfWOD0uN0B+S2NkEBeIs+g vM77lz6QlJocZz6MOSVLpwP0jiCoRnWxePFitLZp0yaQsFWhLEzSpk0bfZUec7KmdWKtQFlC6frY HlSTJ0+GYqtWrbD6m2++iXk6duz45ZdfQoKtk1v0LFiwgPEcsJPNnyWsFShFEHKOq1OnjjoB9tq/ fz+EwI9bz507F9k5GZCl0WZAbQnVIocQwJykkI7EOEd8nbS6C+5diDdQoo/AzINSfeZF55bsrUtX PDLtjhkjx9zYs0+vK7td2a1n9559e0+8/dYVa1dlF+TK1mCeMfjNO83eYMDl8/pDQX8wMH7Czfr2 KfEkSvqsgeCM0jEVIYFNITc3Fw0OHz6cW2iNbBf7Pfnkk2S1WHH+/PmaTOjc2kLr1q3xMPB88803 mKpx48bkCkQItiEitn6ztHbtWlxBx2PIoUOHDho0SPesWgHMAx9//DFRze129+nTB2xpaWl4Bvi5 BU42SlyhXbt2jCEmESFqG/xq7RDqEza2Akc8NRt/kasYu0q0MH/JUX5BDrnlUzvzp6DZAkg/qV1h Hw1qT8TPpkBaWux3+cx7O6QLTA+GQ4FAgM1PX5+BGkIq2VoBEQJ1EFdZmjSAnTt3slBQjbrIhx9+ iMB4CSP1baJzdgjiAfixwbhx40Do8XjUIfA2aFVUVNAmrWYkJFQcatrnRpFZPXv2RC48HkDGP/3p T9dddx39oOXIBg9//etfkYgkQwOhkovOPwuopUMYEBrmD7+JcyTak1JT5syfV+gqDVSGvBX+4ONh d5mXhn9n0BURP/BVhPyVYT2pau01/x8HCp6BQ+gj97KysgEDBui2pwsInSrFWoEufQJ4jx49xo8f /+c//xnFgVzXCp6B8bATcUK/QGR5ncN6VSBCYBgcAgwvvvgiNuAMRY9GCBwRQsOGDUMiUZpJpXFB VnZ0fm3Asgu0+vbtS+qAmFgOcldffTV3STBxiBtuuIHTB/kcXG3fvp1+a+LZwLk4xAkaVclBnD3B kZoy9ffTcovydPtgxZMkyk955v9dI25hfleUkGB+TDfPGAKUQmfx5u1bho0cBk5SCws5GhQStQcC AIZp0KABeHAv1IeaPvvsM3IF9bAWLVoQ54nw2IwxELJCem2BJPrf5jMCMHTo0IFogXlwAsI1tBYu XMgtwgZsGLHkLz5ZkSmK4uxAmWRLIiWaNGkSyMFGv8vlwvAPPvggl59//jmksaXWAPk1C6BWmjwX h7BARDSAT3AMj5eXE+0Xdb54xqyZW7ZvzS8q8Abkd1XMLxuKcRRcJFjB1uIrKC7asClryvRpHS44 H5sgbRSXRZ1/z5aRkwB1o5GLL76YvBLbs2Gjsrfffpt1owMIpFiFXV8dQjvPAZgLflBhdXU1/Qya hUtYooezKI7I5cSJE5s1awY/+i5qfn5+bekyHq8iYwD/V199xe6AS2HsdevW0XPXXXcNHDgQK77w wgs4x7Jly6jJJ+gZPHhwrdz9FA5xbmcwkZAlnhh9FuRIcmRkZnQ4v0OP3/UYOGjg2JvH3XrbpDHj xgwYOODyKy4n60kznxDJe2Van2s8qAksCxwCrf3zn//UP2zLSezOO+9UG1A3bdqUZU3nr3cI65TB JSKQ3xGfMDlbBpEJE06YMEHfMf76669pMBg7sdBrKy/j8TDq9evXg40QuG/fPtIFfB2KzZs356AL G2xYcMUwnGDWrFkM0z8UEcVyFsAsdQhqcYjnn3/+3HTELABWtIahmo5Fv9UZO15B+88ZLCTLly/n sB4KhViIRNSlS5eynuiHtIZu7JGTk4NmrUgOGBy1BlLUrVu35uXlgYpLnKBbt24cASBqicb5dtu2 bazdZ599lnMHmsERayrnDAASsGmbiWRapEQvvfSSz+cjQmQYQCIyBmuDoMbv2a1g7+xTFgipQ+Bb uJ2NfzjCRm/WEsAV21AZrE6AS0Db9Mfe+o8ACFGWRSLW87SObQC0GaONswcdbxCc5M2A9mNv+q0o rfzoAAWLQ6txNgCripk2SLQToEdx6gq0LoWSAZ0CRK/PKC93Z8+eTXhgm5MIQYuAFr1ZS7CIaa0Q 2/5vg0VdQduo4wxWP13/6UDwnkwF4NIyg4IZGwUdoHetwebOuUAsNu2JBb1rAZcW6KX2x4LeBaxL 9lZ1CIkQtPbu3XvOHMeiPns4hyn/KfiV3Iq0BqLXMXDKToXTTfk1cEqE50CFKffeey+uQKYsDkGG QmvPnj1/rA08XQXPVEH02kB00KmGxQL90XG/AixUsaCdQPQ6BmI7oyjOAqITTp4eC7FjgGrDzo0o wMRqqCzQWwrRrtN0AlF0BqJdZrD2kIkTFxRsBApAL9hC/m8C/hhtnStYGM4G1a8ndzbwH6Ry9tKd csDZzCKDVLtr+/jx4/8HweFGLF+cV58AAAAASUVORK5CYIJ= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAh4AAAEmCAYAAAFaBamBAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AALW7SURBVHhe7f2JsxXF/i2Iv/+gI34RL168X3T0 e9H9oqM7Xr/oF9/hDup1AgSVe53xqiizA3C9jiCioiAok6iIoIIoiKCgiIgTIvM8z6OgiCAi5wDn MA/ZtbL2qvPZuTPr5D57n7P3PidXxGfXyk8Oq8asT2XVrvoPO3fufCkyFSw2rBBF/PLLL9oImU7L O3HihDMPqC+P6bS8ptLQK8RVAAA/d+5cwl1l0/JQ35UHgJeLRrJCXAWA+vKwZsldZdPygPrymkoj OWRsBZj+7bffnHkA+JEjRxJu5qE+uZnH9IABA7LyRowYoX2Eqx4A7qPhsxxF60PWrFmj+fz5861l Cebt27cvWQkwcBowatQo9frrryc+aJAPHz48qx7AKcA8QqbT8pI9xFUAAK/v2Js+fbqejhs3Tm3e vFnngcM3depUXV/OMDjyXnrpJZ3++uuv1bvvvqv5mDFjdN7MmTN1Ghw+8kmTJqmxY8fqNNqRKwT5 BLiZDn2IJU3Y8pI9hA5XBZ9jj7DlFev4Jmx5Re1D2BhPXWb6/PnzzjykL1686MwDTp065cwrN41w yGQA3iiHDNBx8GrV5vEl2oB7x2/V9tHqwzpNyHby0bDlcYvb8pj20UhWCGArwHRaHrdeuyeW5hjQ +d1tWXb02X/RfkC2Izkg09Bw5QGcBwDcla4vLzlkCFMIHMcZua3sjX2WOg24/73tiQFHn/t3bafm v63TPhomB8C5ML0/2KkmTJigOcKA6upqnd+5c2e1fft2XQ59BCBXAiDTBfchN/Vblmrt27dX/5iy U7W77T49HdnxCvXxA5epo8//KTEgTQOcM2zmuRYMAM+nLKygPuT2Z1bUa0Cfj3ernqO/VVsO1Kqq Fy5XKx+/QvW57UrNYae+G1tQH4IFOXnyZMJtCwqgjCsPQJsN7kOAu59fWa8Bz8/8QduxUbeqqkFX Ww0wNWQaM+7KA9IWVKbry0sOGek008eOHUs487pEZxIfA16e86N69Zv9qmpIm1QDbPpInz171ppH DoC/9957mrP80KFDk/SZM2cSjjxMzXSDDhnggWFrtd3Xb4ae3v/yysR39dVXJxwY9e1+dW7XMlU1 9IZUk7DND2HmATWfPKfQefbs2TNZSQ8++KC+XmIa11nguDgEwLnCALTZoEPm4VHrvQ0YM++Aqh5x c7128qvXnfqYeVcewIUGwF3p+vKSQ4YwhcDNU+ITb2zyNqL61Q5eZtNn2pbHhcEp1bWgAHijnXaf HrfF24Bjb9zjbYBNnzNs5smFkRywpQlX2Qb1IQMmbPU24Ni4rjm2fNDdWek+99ygp4RtfggzD5gz Z46e7t27V1vHjh31YBUWcsqUKTqv0U67g6KI08fUyjhEP/7OAzm2fMh9Vr9LHzPuygPSFlSm68tr UB/y0uSdqaax6L9oO378uDo+sbe32fSZtuVxYYrah/CQ4IKb6YMHD2blDftwl9PU7ueUWvLfE8N1 xYlJj3hZzbR+iYY5P4yFzDweBlhYyc08oKamxpmHNDQadMgAI6buzrIOHTqobR9H1yXL/6Ctdn48 xdjoiQ+f9DLApY+Zd+VpLPqvqnfv3pqiLIxgmn2KLY+8QYcM8MpHuxNDIKZWXZMY0hdWXKMmDr5a tWnTJtryT3kZYNNn2pYnF65Tp056euHCBe1HPlYCV8Rdd92l87/66quseuBMJyvEFDLThJmn1rZP tW+++UbVTO9fr0nY9DnDZp5cGMkBW5pwlU0OGdtMMM3jlkjyNt6ebke+UPPmzVM1M56t15waGaTl YUHQB5DbFhRgv0GYZdFmg/sQcHS2aksUTFlMH0YRFixYoM7vW6u63dFe1Xw6wGppGkxjxl15QNqC ynR9eQ3uQ4Akva2z1fr376+WLo1HzWpnvmA1wEvD4AA4F+aZt7foUTJg9+7dOjBDHvoPpMG///57 3Y+Asx4g0wX3IeC6sYvRLrujW5bhlLZ8+XJdrvazgVkG5K2R4TJPLozkgC1NuMoW1odkILnGzh7a VqxYoQ2onTVIm4Rsp6z6EMwMgN0WTjMdblRZ0oQtj2vZlsd0Wh5QX15TaRT9kLHlcWvY8pguFw29 QoLV2X/gmuGawm5jrjUzTdjymE7LK1eNZIUAsoLkgEyzEyJsZVGG3FU2La9UGnqFmM6m6rzIXWXT 8oD68hqikawQ6TS5mfbpvFyPN/HxJ1seAV6IBlFfnk2jaH0IZg7Pfck0pgMHxhEp0gihMdUDRpEG H9IDZL1Dhw5pTsC3adOmrKcc8UAeNTAl2A7QkOVotD6ECws+ceJEzXGdgQfm4Pv555/1wBHr4cE8 cDyoB0gN1AfHg3nE+PHjs/oQXKsQSLOu5IBMhz4kA5k28xqtD/EJgAhbXqk0kkOGuw8KNafrElce YNMIh4yRV/RDBmcIgA/cwfjAHYww65npNA2mUcaVB9SXZ9NIDhnpxJolB2Qe4Mq764VV1ofuzAfu gDOr4kfBCdkOUF8e05hyTwDAmeYzH4TMA0yOtpIVAphC5IBM83iTsD1sR5MP3MH4wB0MxzmRpiHz AHCUAbAweOCO2Lhxox4+BL777jvNDx8+nAwjckVAW64UtFmUPsT2oJ20ewd+oB+2g527cEktefQy bfKBO8KlAdjSEnLhwPl0EG58m3lMSw4U1IcAtofsTOs2eIp+6K7VdTeowwPih+xub3tV8sAdjIPD gNSw6TNt9iHmwpncTNuGHAvqQ2wP2NmMD9xNX/Wr9WE7mk0DsOkzjam5oEw3uA9hBp1sSIrJNG4T ArYH7GyGB+5gJ+eOtT5oRwOkhkufad785qGBKR6q4/yjDXJZBu1gijhG5oE3+JDhA3Wm4eYUH8Kj 4YE7mO0hO9OkBrmpz7Q8ZPDAHRYIhgfqsGL4VDNXCgzA4xl40I5p3r8BGnTIQEw+VHdtq+uy0qbh gbtL589ZH7IzjUjTl2lMuTAAONNcEYTMA0yOtpIVAphC5ICZtj1c57K3FvxifbjOZkS+p11z4ZhO yyvaafeDr3+yPlznMsD2cJ3NAGq69AnJ5YIC4LJvMPOYNvMa1IfYHqxLM/lg3RN3xw/WLc88cHd0 bBc9vbHNtXpKjXz7EDxwhwXj8x8A8iZPnqy5ueDgRTvtTor2ENsDdqZpLPyP1gfrXEak6cs0puaC Mo0RNlceYHK01eA+xPagnTS1pXP80N3a65XtwTqXESXvQ9g4dkPXw21yF7U9bAfTEA/cAbaH61yG rQoNxAgufablg4C8ic1rI6T5oL8tj2kzr0GHDLj5wF2r1tcpdXiW6v/QFclDdzD9QM2laEtYHrCz GVGfPtOYYn7xwB0ArtMRmuy0i61Se/pC8sAdgIAM1r/nVfGTQ3wALwPbA3amAVLDpQ+Ac++QC4ar Wi449hD5TwgA10xMpx4yBDgLgZt5TGP6ysd7oigt2gMsD9rROBpue8jONMDUIAdsaQLzLBcOvMlO uziWE9getBOGB+5w+W17yE4aj2FAatj0mZZ9GmAunMnNNPoPcuY1uA/JguWBO9qiRYuSw8n2sB0M SNOw5TGNqbmgTMs+BIePzANMjrYa3IfIPA3LA3cwPHAHq7U8bAeTSNOQeQC47EPwwB0hFxyjZ+BY IfyrKoO3ovchMk8PCRgP3MHwwB3MfOBOPnQn25HptDxAcsyzXDjwJu9DbHkae6MzBh6629UzeeiO D9yd+yH+l6ZZz0yXvA/hLgoR7ErkZh4QblRlINNpeUB9eeWqUfRDhmmUceUB9eWVSkOvEPwAZgVO XZwg524HmGWRR064ykpOkAeNptVIdhDp5BQgx+Eo89PKAq6ykhPkQaP8NLJ2EKC+SoCrrOyiCHLZ /WEqOWHjZtmgEcPGzbLF0Eh2EMJVCXsTOeEqKzlh42ZZapiPFHJqcjyGSB9g43xMEcDUZzlYR/oJ 5sP279+f+GRZU8OcBxcnbNws21TbI9lBkGAmuJwBcFwkkbvKYhyW3Cwr/zIKMA9gWWjgkUxwuVLB WVZy5FdVVSVjsNBgvfXr1yftAKz3/vvv63ymqQE+cuRIzZnHZ263bt2alIUGyuGRU5bjOxrhQ3rQ oEG6LOYNac4D6iENsC5fGrVu3TqdxiOr0NizZ0/WvLEefOBNtT2SHYQFMZWcsHGzbDG6NFyrkWPo AtPPP/888XFls97s2bMTDg3m442jLC/r4WFoQubD8OIZWZZTAH4AGnjFKyDbZj5A3zvvvJOVzzL0 AXzIG8vNfLkcZj3Cxs2yxdgeyQ5CuCrJvYtwlZWcsHGzbNCIYeNm2abSyNpBfCpJTpBXyqWbyQny oFFXNtlBpJNTgBx7k8xPKwu4ykpOkAeN8tPI2kGA+ioBrrLFOOcRrrJBI4aNm2WLoZHsIISrEvYm csJVVnLCxs2yvho+OH36tJ7KepiW03KYnLBxs2xTaWTtID6VJCfIi31eBZ5+Z6u67vElqQbcN35b qi3/4bguB5h6BHmxl4NTgFxqYENwg2PKxx/oA2S+ixPk8oa1WbY+Dc5bsoPAgW5Hzjg4uylcU8su y1ZWPzKV4WZZXsbZ6rHspUuX1PafTqjrn1yalwHdJm5LtUvnz6qjz/1rYsDRo0cbZTnyXVe8r8yN BmAjwc9XAgHIhw9jGHiCQd6PBpc7BDheXEfuKmurx7JYjqweBOBCYCo5G6APcJWVnLBxWfavfZc1 2ICHJu1wGnB0wB+cRsj5MTlh42bZhqwr1hn93c/aCPoxxXvq8FQaBtf4dAf+t4CdCP5u3bppH8rK epITNi7LYr7As3YQzixgWwiTE+TyKDHLIo9c4panlxdsQJdBU9T9o75Uj03dpR/YwhQGzOp5uTr6 /J+1LXn0crX36ZhLq3rxKn30APkuh6us5AS51JAbBlPOB32AzHdxglz2DGbZ+jQ4b8kOAgednAJy IWR+WlnAVZb8w7n71Z3PrSyKAf0/2ZNlfT6I34ZdNfDKvAzgPAK2eTc5QZ7vupIbxsUJcvQgvmUB V1nJCenL2kEAnwVylZXnXYIceeT3DlxVVANe/HxvlgFVL17bIDu3Iw5861sOTCUnbNwsa1tX3DCI AeRGkpywcbOsjDsIch8NzFuygxByISRnRfoAV1nJCfLuL61R9/SZrqewri8uUzfc0TNJS+vY91M9 vabVdartX+/RU7MMDBjx1U+JAVUvtS3Izu1cmrocgMyXvCHrinWqX7tTG9C9e3f1+++/6xiDj+jz eWN83QEvE0Y+/mPJm2/4PyWmbI8cMQo+gMAbkvJv0YxjZD3MF3jWDsKZBWwLYXKCvL5z9+INR1Sv EetU+w49Vc/hazS/4/6X1DXXtFI9Bs7V6Tbtbk7yYPh/J3nHxyYkXBrwehTYwYCqYX8tigG25SAn ZL6LE+TFiEGwUbmhbWUrLgZ59LUNjWLA2PkH9LT6lduKaniSF5DLYXKCPN91JTeMixPkzS4GqTpx VvV9c3OjGHD+4iVV/Xp0RBXZCC5Hi45BMNOyCwXnCkGXJFeOrSwHkWQ9AHzktF3q2Xe2NooBx968 z2m47MX09htaqdlP3Z6V98Rd7fT06Jg4vXzgneqnUfckaUAuB3sU2/JzmfNdV3JjSfTq1SvrVADO shhUlPXAzbIwsx4ADn1ysx58XI6sHoQLxClAjsoyP60sYJZ94d1tRbcNu+J/EgPH3upuNf0n+mi6 akhHPZ3Rp0OSxz+5zX76zsQHwxdtfnqtizaCy2HjBHm+64obDli2bJk2+DAwxv+TEuD4Lxpe5oEY BPny5UEIWgmzHqcuTsiyWTsI4LNArrI4UsgJ8q37TqjBk3YUbIs2ZlbAwv9cZxGOT+jZKEZwOWTP gKnkhI2bZW3rihtGHu2YSk7YuFkW7ZAT5D4amLdkByHkQkjOivQBrrKSSwydsrNBNmd5/JY8tfi/ 5dqvn8TPgr7/cKMYIJfDxjGVvCHrSm4YG8dUcg61+5SVnLBxWRbzBZ61g3BmAdtCmJwgx/nUVRZ5 b878QQ2fusvLPvh2v66rlv7PdIvwySefqPP7N6sTHzxeVANsy0FOyHwXJ8jlupIbBlMZExAy38UJ crTjKlufBuct2UHgoJNTQC6EzE8rC9jKAiOn7XbaxC/jQa727a5SasUVat5bf9FTaR1uvkpdWFaX xpH02GOP6XonpvYpmtXOib+YaVsOkxPk+a4ruZHU+pu1wQdDnIEYA8BgGPm2bdt0Gxgkw006lMXA mmwLHHXImc82wFmeU0D6snYQAFPJCRs3y6bFIPLc/cpHexIb82k8s2pN2wYZjsQvv/xSN1HzUb+i WO2sIbq9+pYDU8kJGzfLhhgkwwnJeYnFo6XBtvV+NXfuXG3oSWqmP1OwXTgan9p8lkPmS96QdSU3 jI1jKnmTxyBIyJk1C2KGyF1l8/2jjsamvzfcIuAjaP369dNTvAOSdmRa/6y0jxHF+MORWQ+QZaUG pqgDA8cYBznAPIBlOR/Ms5XFfRtys2x9Giyf7CBcCEwlJ2zcLOt7isGUXL/H+1IU+G29Ly/r/3A7 XX/x4sWJqfNn1aeDHlB7JvZVq954VNV++ryXAXLeGrIctrKAq6xNA+CLmbGBuBNwI+J9OABfaMpx EHzIkjfbMA6CWANvm8Y3JuFfu3ZtcpOObZX1KSa17Pau/haBA0swoPazF7zszLrPdHnANT+SEzZu lm3IupIbhuAOgo2MDY6pNOwoCDjx2RWkURa9Bjh2Jn4RFTsIelmpYeOYkmO+wLN2EM4sYFsIkxPk 9V3mkhOuskmZkzuU2tHDaTgK+Q6j5OOBlpc70QhTjyAv9nJwCpBLDblhMG2xl7kmJ8h9NBKcPaT/ u7ty5crE8GfpC0d+zBQQwXCEfDRs3CwrOUHenDSydhCgvkqAq2ypzt3kQaP4GskOQrgqYW8iJ1xl JSds3CwbNGLYuFm2qTSSHSRYMJeFHSSY03LegQk0dRRvlg0aMchLpZG8dVo6bZywcbNsOMfHsHGz bDlrJD0Hp4CNY+riBDlmxrcs4CorOUEeNBpfI5xWMj7AVVZygrw5a+R8zADTSrkmJ1xlg0YMGzfL 2jTCaUVwgrzFn1ZkAlMXJ2zcLIuZISdcZSUH+IpLwlYW7x/10cBNKXL6CRvHVH5a39TABzvwGsrR o0drn6wnOQHOT8K5yhayrgAbN8s2VKOsTitY8TCbBl5+K8vaOMuS4xt+5AS5azm4cwBmvZkzZyZl +d7UhqyrHTvi95IAtnqyLKYN0bCVBVxlbRrJaQV7F/ewpn4ghmUnTpyodwJqYEfh9wdx1LIs/NDA FHnDhg1LVjjrAV9//bVO45kS1kMaXC4HntsER4+0b98+7XvttdeyNGBTpkzR7co3IqMcOMqhHpaB aWjgmQu8HRnA25GRx7cnIy010C78ANIwoFTbo2xOK9gpsGFgeAMywBUO8BQBcGXySAa4wgHWQx28 pVj6OcWXvwj6UY49B3w01qcefeQ0gFPuZJgHgH74uCPj+Q3WhR87KU9ZAKYuTti4WbYh2wPTsjmt cAVJzimM3biZD2BDACzLfJxW8ByqWQ+YNWtWjh+3/blz2E5j8rSCJ9Mw5U7GsnhrIt4jD2AZba8H 52u+5Su4AbaBqeSl2B5A2Yxz4BRAzv+0sjsG4OeL77nyweWKRfCH0w/zN2zYoP14Rzt84ADqbNkS f7qOPrxTA19kwMvc4MNL+VEOOwvL4EgnqIFTFsqxp4Dh1IIplhE7Nd63IecT+WgfOy/mmfOGDwKM Hz9elwPgA0qxPWBld7UC2LhZNmjEsHGzbINPKzJB2DimLk6QY2Z8ywKuspIT5EGj8TXC8HnGB7jK Sk6QN2eNshrnIA8a5aERTiuCE+Qt/rSCPUZ2TeDyzTVyzwRvjLfjmGWDRnlohNNKBEwlJ2zcLNuc NcJpRXCCvMWfVmQCUxcnbNwsi5khJ1xlJSdsvLa2Vk99gP+XynYlJ2zcLNsYy2GWLWeNsj+tAPPX H1FtHl+SY9+sOqzuHb/VahL1aWAqOWHjZtlyWleYSk7YuFnWplGW4xyE7SM/0rBz2D7yYxqAu5dS oymWw1cDRzaPbk4BcgSUMl9y5JETrrKSE+RSg/NWdqeVs+cvqnZPLPWyb1cfVp3f3VavXaz5XR19 9l90+wT1ANf8FLIcgI2bZXE7HbBtMExdnLBxs2w+GnLekktZOsGb+otILGv72lOaYeewff1JGiC/ BHX87c7a15jLwbI+GvLLTgBevIKjGK9YQB64/LJT3759NceGRD0e8ZID4GxXarjKUkPOW1mcVoAb +yzN2+ZGO8f9721PNeDoc/+eY4Rt3jB1cYK8GOsKG6n3Bzu1EXygCDsJ7uDiBS5Anz59tI/v5cCG BXDHePr06ck7PABMXZwglzsL562kpxXs0Ys2HLF+/svHvlvzm/XTYLToILR+GoxG2OYNU9/lMDlh 42ZZdvnyE2HUxYbGW5AB7Bzw4wUt8CGGgqEMgXy+FYhtYNrg04pMEDaOqYsT5KaIrSx2jNem705e g9QQm7f2N9V15Bz1jyk7Vbvb7lO9J2/XnAbsffpP2g4+G0+PPp9thJw3cp/lsHGzrOQEOTYcN44E fZ07d87KJ8eUvQl6DeknyKUGpmllAc5byU4r63ZWW78Hl49h5+B34/ANOX43DlZ18rz+Xhy/Edf6 mqv0e9KZlka45l1ygrxYp5W0DSa7fLMsTyv0Aa6ykhPkqacVziimMrAiyJEny0pO2LgsC9z+zIqC bf666LTy2peqz8e79Ybv8sJEzWFAn9uuVFUvXK62P3W5nqYZkc9yYFrourJtKEwll8EkQY48WVZy wsbNstSQ81aS04rtA4ENsQXrjuR8VPAfo79SC6NeqXpIa+vHA9OM8F0OwMbNspIT5Pl2+a6ykhPk DT6tyASmLk7YuFmWQraydz+/smi2cP0R9fzMH3IMqBp0dd52sTr+CwNQ33Jg6uKEjZtl8wkWJSds 3Cybj4actyY9rQC2r0Y21HClY35t8u0FB1TN1L7Wr0n6mIRrOSRvEacVWbix/kTTZfDqotqSjUfU y3N+zDKgakibBtvpxZPqXQ6mgULXFcuYwCUqj3hc2cmjHxwGjr9CkAPMA+DDXzOowTyMlQCyrNTg vDXZaQXAp0P5idGbOz2np/gcKT8rCrv6mlZZnytNs6Wbfs/6DCnszKpPrZ8XzccA13LI5XRxwsbN stwg8jOk1JUDWhMmTNB/nwD4NScMeoFjwIyDYvhEKaYsi8tdaHAHwTgJX2YLP6YwAFM5b012Wun9 ynr1wLC12vj5LfC7Hhmf+HVetHPINOy+p2fq79Sa/mWbf1ejvt2fGFA19IaC7dL5uiOIkMspebFO K/Id7fDxr5fg6PLx/xZucBzlrIf3scqyMPwZHd+lBbjTYOcA0Gtg58BnO+RnTFNPKwB5scc5APld WXx7tsvTnyTpv97ZO+H4Zq38jm2r69qrnsNWqdu6DkjK0JZvOZp8nxZ24fAP1u/NNsS48s1lIshL Oc6BkdImGeeQThsnbNwsK0WIh0etL7qt2HpUjZl3QBtQPeLmohlgWw65nC5O2LhZlqcV2wbD1MUJ GzfL5qMh561Jxjk+jLp824eHC7VV247qDxc3xseLAXM5JCds3CwrOUHO8z6AqeSEjZtlJSfI89Xg vDXJaeWJNzY1iq3eXqXeWhBrVL/aoah2Zl3duz3kMhHkpTytYNokpxXOKKbFDEgB29eoi2Frop3j nYWxlu2r1IXar7/+qtsGXMtcrIAUkBtP8pKPc0injWPq4gQ5xKT/6XFbGsXW7qhWJ89eUMfeuKdR LK1XIGzcLCs5QV7WpxXs3bL7Ay/2n2hsnykvhuHOLoBPk9ts5/C79SUzOKfS+twdf+7cLDOu1016 CpjLX+x1xU+XS8hTBTi7fExlTwEOfXKzHsvm83l0OW9NcloZMGFro9iho6fVsXceUMfGdbXa4Tc6 6+mNba7V09lPd9CfMge/ue21Cdc7RTSF6c+jZ7iEa5kLXVfcYHhXB99hBh/GIDDIhTEMbExw+Pmm IHyl6fjx4/qb+Rz/QD7b4xSwcbMsNAA5b01yWrF9x75Q0zh7OOsb9qYdHtNVf/te7xxRmt/Dh2GH 0DtFhmN6dFw3tXNkJ7X8xei0EqUBuZySEzZulpWcIGeXLz9TBsCHkU+MkmJ0FFPsGHzAB/nYceDH wJbcQQjyBp9WZAJTFyds3CxLIfoGvbe9aIYhc42F/1FPziz/WB2Peg9f++KZu6x+m8lTASGX08UJ GzfLYsMBtg2Fqck54knYOMuS56Mh561JTiuDJ+0oimmsaRXtGP85tgiXTh5Txyf0bBTD0DThWuZi nVYA1wZjl28rK2MJTCUnbNwsm3paAchxxMgFkbwhR9NLk3cWZPPXHdHtqEX/JdsyOD6xd9Ht5Ly3 ddvmMhHkxVhX5oYiyBksAmZZGVgSrrKSE+RSg/PWJKeVkdN2qaFTdjbINLZ0U2rxf8u1DE68/3DR TbdrLAcgl9PFCRs3y+Z7WiEnbNws2+DTCro+ufeDF/tPTecvXFLDPtyVl03PDImrJf/dabhEA05M eqToBjT1n5qwccDlUQwu/9TkKmurx7L5aMh5a5LTCjB86i5v0/jpDaWW/s9U4wjmiQ8eL7phhQHm MhHkxVhX2EjcUJwCcuPJfMk5n/QBrrKSE+RSg/PWJKcVYMTU3fXau3N+0mXnjP6z2jT1T0ot/4M2 XGpiOuaZy1X/h65Q7a67SvW4+0o1YsQIXf7Eh08W1c7uWORcDrmcLk7YuFmWXb5a9F9ji0BdTF2c MDkfEOI7U8FtpxX8+QmAj35M5bw1+jgHy545dzGKPXY7rXXr1lE/vkKpFVeoTdP+oqc0vXNkeP+e V+pph1vb6XeeHzhwQJ2Y2qeoRtiWg5ywcbOs5AQ5NpzeOOtvji0DDoJx8AsP6CxdulR/lpyXs7pe BHJscOwcADjGPzClBjjGRshZH5Cc89YkpxVOX/lod469NWuvXnC9A6y6Rk+3zbhaHfz6Gp3GFL7T S+L8/j2vUmeXRXkn4/+qLFmyRNVMe6qohhWVthwAebFOKzYMHTpUb2y8yZn/kcXOIQfCsPzYgdBT YD2y5wC4cwDIZxsYVOvePR7kY9nU0wpnFFMZWBHkyJNlJSdsHNPfqs9EO8SexDRqtym1pm3+FuHL L7/UdnrZVFXzUb+imIRrObKWqcB1JXcMckwll8EkQY48WVZywsbNstSQ89ZkpxXilY/3qNc/if9b ota2b7hFwOcqYHj/Rs30/gXbyblREByhvuWQy2PjZlnJCfLktBIBU8kJGzfLSk6Q56vBeWuygFRy df543Tm2oRYBj93DgJrpzxRsgO9yYOrihI2bZW3BIjmmLk7YuFk2Hw05b016Wkn8VfOV2nh7YRZh 3rx52oCaGc8WZEQ+y4FpizityMKN9acmWVZt+nve1rpVFJQyHWHBggXa2rVrp+5o31b17XKbevWR e5LH/H3twq+79dsKOW/5LEex/tQELRjzmQbS/tSEgUBygHkAy+arwXlr8tOKLKu23JOX4epE7yAR x4gePoSjr3IifDrofnXko+j08OmAvOzszsVZR42cT9/lMDlh42ZZbhBqAeSYujhBzk+RAWbZfDTk vJXktIIpNdTW+/Kysxvu1VN87QhfS4J16NBB1X76vPr9o2fV2jcf01Ok67Mzaz7Ts2DOG2HjZtli nVb4QhoAPl6GgiPopp8AxyUs3rmKsQvuHBznwMNAgLy0BcgxlTz1tAKQN9Y4B0AuNdTuJ5Ta1tnb LuwboQeEaOjaa2e+kJddOndaS9vmDVMXJ8iLNc7xzNtbtBEYs+AYxffff5+zUfm3RwyWYVAMD/tw 7AI7Br4OtXfvXr1zgLMewClAXtLhc1fZpMyFaM/d3tXPajcnT07B8EG92s+ije5pAG+YAa55a8hy cArYuFmWXb4EdDmgBcPGZw+AKYfG8aQYdgQcILLnwFT2HA0+rcgEYeOYujhBboqklQUkV7v+odSO bukWAd9yk3bq+7eiDT8w1c7/tEHXlfMjOUHe0OUwy0pOkGPDyY0jOWHjZlnJCfJ8NThvZXFakWVx itDY0cNtEVasWJFlF6t+tu4QsHM7Fuo67C2g1djLgamvRn0brOR3ZTmjmDZlQGorizz+A1zVrFdq Z7RDSItg7hxA7axBWUa4NMgxlZywcbNsoevKtqEwlbzk4xzSaeOYujhBDjHfsoCrLLntiwnr1q1T K1eu1IZXDtjA+oCtXZMT5MVeDk4B8nLWCF9qstRj2ZauUbanFVlWcsLGzbJBI4aNm2VtGhVxWuEU IA8aja9RNuMcnAI2bpYNGjFs3CzbUI1wWomAqeSEjZtlm7PGf9i5c6cKFsxmeucg5F5j7ln1cXRd 5IAvZ9qHB4047cODRpz24UEjTvtwaiSdh6sg4MvRKDnzfDjgy4NGnCbSeNCI00QaDxpxmkjj1Mjq PIg0LsfWmOfDUY8cSONBI2j48qCR25aLF1sj6TzocBUklxfXgC+XF9PMc/GgETR8edDIbYswebE1 siIPOiUHfHkI/eI0kcaDRpwm0njQiNNEGm9KjaTzYK+EcEVyViTHIwDkKCc5HiEgByTHIwiyXclR TvKgETSCRvlrJJ0HAAcsjaMyOeDLOaPgzHPx5q4xYMAAtX//fs0Bs4yvBr7lhD8p0A/48nyW4+23 39b/hCHoB9J4MdYVkMaDRm5bhMmLrZF0HrKi5IAvb46h34wZM/TBPnDgwKQcpjYOkK9fv17XI+DH px3hAy/GcqCtzz//XHPALFOsdQWdffv2aW6WqU8D/93ky9zwb7QxY8Yk64VlgDRen8bXX3+t/y8L SD8gOXT5NwezTLHWVRpvbhpZkQdgFmTah6NRcsCXM+3Dm1JDHuz4fyrez8UyADjy8VIZTGEzZ85U gwcPTtI0WR6ghqwLGz16tPZjJ0da6uGvkqzPtuADhyE6YDs0HvTAtGnTrHlSg+3S0GliumbNmqQc puYyutrC+hg1alSWH+URMQHww7B+ZXtSD2kzUoOPyy45wDZoLCMNf8pHm6YfnT6Q1hYBzrQPb27H R1bn4SoseUsKy7CzyJ0W6R9/jD+Gzbbgw0sAWYd+Rh70AyxPjjcrsLMgwDFvZueBKTsPcBg4Pt0C jrZwALI8wDKSo4MBd60rlEGnKf3w4WAm2CYgy2zdulVzAH5ooPNAHg1RCOtQA35ze8B35Ej8Knz8 0RFpAGWwrIMGDdIc9ZCHCAxpdsZsC1Ny+BH9EPQDsgw523KtKxs3l8OXV6JG0nnUVxAAx8AJOfN8 uByUAdJ4OWjg7aDYcWzGMgDSOKgB6eeBDsh2ZX0cSOPGjdNclsG84Uwu6wPmpRA435aGtnBJAMi2 UIbjFfRv3rxZ+3FJRsjy5AA4fJgf1mcZlnNxLAcuWxB5APDjXU2mBtL1bQ8sG5bRrI96SNu2AXSR B8APjk6Z7SL6gI8dCsuQwwBomG0RJq9vOVwc9ciBNF4uGlmRB8BMwCxcH28uYRl3KoJ+AAc7znoA /CjHkJnlMOUlBM6IOIDoZ7tcDqSxY+LMPnHiRJ1mO+DoxHDgogw7NIB1pTbSuJyAj2dNnPkBtIFL EHRA+Fc68lAGoB6AeUXe6tWrdVQDDpOXERhjYH1EGywHyLbAbZctjEYA+Nke/NDh+mcdua5gvEQC 6Od6AEdkgnbGjx+ftAPDdsP6wSUT1gHnAy9/kcsq22VbGJxmWwTb9eXN5figRtJ5MExBjyM5IDle kEKOcpLzxSwy5CHHrR/ZruRA0AgaQaOyNJLOg0JAGpdCzPPhqEcOpPGgETR8edDIbcvFi62RdB4E MwGzcH28uYVlhC9n2ocHjTjtw4NGnPbhTamRFXnYCgK+HI2SM8+HA748aMRpIo0HjThNpPGgEaeJ NE6NrM6DSOMtKSyz8aAR5/nwsD1y23LxStRIOg86XAXJOchC+HLUI2eeiweNoOHLg0ZuW4TJi62R FXnQKTngy0PoF6eJNB404jSRxoNGnCbSeFNqZEUegFmQaR+ORskBX860Dw8acdqHB4047cODRpz2 4dTI6jxchSVvSWEZYPJCNH7//fcMiz/xaQM2jOsrlzbeXNeVLw8auW0RJi+2RtJ5wIEdF5AcU8n5 gAg4GyHnZ8hYX3J8M1e2KznLkleqBt5zYGLDnmPqtRl7VJvHlljtm1WHdbmO72y12rCvflKLdmY+ eGUA8xm2R9CQvCk1siIPgAUBcKZ9uBQCfDnTPrycNIj564+o6x5f0iBj53Hv+K0NsuFf/6TrExgl x9OBQEvbHiZn2ofzgCB8OdM+vJI15LqCDzyr85AFXLwlhWWA5EDNqfPqtmdXqrZPLC2Kfbs67jw6 TdhWsK39Md7Q+EivCXOZmsP2AC+WBg8SwOTy857Mc3H5uU/Al5e7hm29JZ2Ha6WavFzuMdt4MTXk insmOsO3e3Jpoxg7jy7vbivI5myMx1OqXviTOvrsv2TZhSPxH8n4+jig0raHixdDw3bwSI71Rg6k cV66gjPPh1eChrnesiIPgJmAWbg+DhFywJcz7cMbU+PQoUOaA89GHcYN0cHd2DY303l0n7i9wfbW gngZjr15tzr63L+lGjsSvLOD4DoAzHVSH6/0bU5uhvsuoEzv3r0Tzjo+vNletshMyQFfbhPy4YAv bwwNflj9h19qVfu+y5rUvlsTh90PvL+9Qfb0J3t0/ZqpT6qjA/7gbcdGd9D1CN91ZfJK3eaSo30c dOTAC5/tzTKAeZjivSB33XWX/ss+0p07d07yOnbsqF8RsHHjRu3DQGWfPn20Bsqx/siRI/UdOL6y oWfPnjqve/fuesq2AE4B+AmTy+Vgng8HfDjWG9NZnQeRxptbCAtM/e5n9benlpXE2Hm0v/cfquML k1WvyTu09Xxvs7r66qu10SdN5sOevO2KqFP4o+Ztr71Kc9gTt/4l4S4z4VpX4Mzz4eW6zcGZhykP BkzlgeJCp06d9PTw4cP6HSsAOhJ0Fni/Cd4XgldWsvNAR4HOA0BdaKBDQV1w1KUB6Hi+++47zfv1 66fLsPMAL8vLFjPTxpvL4BnwSRTu3/L08pLavLXxPHd/ZY7qNOgD9c8Pd6qH3lqacBg6BDmlAaeX T1Otr4k6i+f/pLb1/bOa1fNyNbLjFeq3AX+KOpSo44j8viYh11Vz2eZpGmkHks9AIzuUhgxmsuNg R8E8Fy/LAVM6JQd8OcXAmefDAV9eiAZvYR6uOqNu67+8LOz7TOfx4KgvVdcXp6gnpu1S/3h7mbr7 iZGaw665tlXCacDZ7QvVja2jjuOFy7Lsiduu1NPb2sZ5bVtdnZWfZsfeig8C+RCbXIcmL/dt7sPR fmOH++DNQQPrjemk82APjtBOcq5kcryNiBzlJEeoQw5IXuqP2vBg6DJ4terw7Iqysfnr4nl8avru eg2RB6bAxZqjqmrgFY1mF47Uvei5Urc5yknu0sBZ9tKlS/qgkGdnctQjx7xIzgOJHFNylJO8kjXk eoMfPOk8ADhgaRyVyQFfzo0KzjwXL7YGUF1zTt01YGXZ2cL18RvCn/30By8DLp0/q6oGXdXodmLS P7UediBzXRNpvJTb3MbTNHjwACaXByLzXBxlyQFfXu4atvWWdB5w0Ck54MspBs48Hw748nw1gOVb jqqOL6wqS1u0Ie48Bs7aW68RVS9e06QmwXUKgJfjNicHfDjaD5ctcZpwcaw3prMiD8BcwUz7cDRK Dvhypn24rwbHN16LwvxOL64uW1u8Me48hszel2pRNKpRNbh1SQxA2As0ZHuYnGkf3hQaOOh4UAC+ nGkf7tIYPnx41p8mzTJMp3Hc3Tl+/HjqcuCuDwZlAbMM0y4u1xV84Fmdhyzg4qUOL9O41ACmzt2v ug5Zo+5+croeL4Bd0+o67YO1bnez9nV4eHzik9Zl8KqkXqfnF2ifrS36WAb1buk2JGknzZZkngwd 9uWPTjt/Ie45ql66rqRGNGR7MM/FS71f8SAhzEs4gAcTPsOAuqxDP9CtWzd954RfxIMfz23Ax9uv AO+wwPCxrqqqKu1fu3at9uEZENkunyvBcyK8pGB9cNzexUeykMazJ8DevXuzysDkHR2ZB+COEeYf 9fO+bCHSOAZOyJnnwzngQqTxYmis31Wt7h+6Vtu9T81Q9/abmaRh17a+Piv/rkfG6+mNHXpllWP+ bd2HJNzVFureeEfPrLz6bOnmuPN45ZufrFZ75oLOr3r5+rIwwrUNJG/qbQ6kcZcGDxIeVJpPeiTL JPAwF4HyfOIUBx4GEwF0AnjOQz7whW/FwDdhwgQdJfBZEEQeGPiVBzuMH+viPMGHAxwasl1AfgoV nRHaQgfGMnhOBMvP503wnAl12FHV9yyJud6yIg+AmYBZuD4OEXLAlzPtw301Hhq+zmrtO/RUD7y8 Qh/w9N318FjVuf/MrHKmsZ7L9+CwNar9nb1Vtxfmqh6DF6lO/T7RU1neZss3H9Xz+1oUJZn224n4 +rVq2I1lYzXTn9PzlO/2MDnTPrwpNMxw3wWWkQcfnzKF0ccHxKRv27ZtOi0fb8cBKy9b0MGgrLy8 gCGygJ8Hv2wXXF62oPMA2BY7BXnZwo4K886H1VCOeoDkcl3BB550Hgzp0DtJDkheLh+cYX3JsUGB 3q+sb5B1feYTde/j71rzGstWbIk7jzfm/ZxlG3+u0f5jo25X1cP/VlaGuz1AfdujKbZ5MTQQovNW vgzXyXEWdnFAcnwOkxzlJK9kDbneuD2SzoMbBUjjcqMwz4ejHjmQxhuqARz47ZR65NUNFWMrt8ad x5vfH0js20yHcnxcF1U98payNAA7EuDaHk2xzYuhwYMMUxvHQUQOpHF5IDLPh1eChrneks6DYCZg Fq6PQ4Qc8OVM+/A0DeDx0RsrylZtiwfKxi04oG165l+2Jz54QlUj6ihTu3Q+PhBLvc3TONM+vJR3 W4A0zrQPbywNua7gA8+KPJgpOeDLbUI+HPDlLg3eRuwzZlNF2ertcefx9sJf1HtL41cCnPz2TVX9 2p1lbScmParntZTbvD4O+HC0j4OOnHo+HPDlzUED643prM6DSOOlDC/r4yuiS4B+YzdXlK3dEXce 7yyKl+HMhq/UsdF3V4QRru3RFNu8GBo8GDC18Uq4pPDhhWqY6y3pPOiQmTbOASnCl9d3fSx5QzSA CbP3qWfe3lJRtk683Pjc3jXq2Jh7K8b0PGcOSMDcNo29zcGLpSEPHh44JuSBxDsdGKCUfjlQCfhy 1CNnnouXQsO23rIiDzolB3w5xcCZ58MBX+7SAJ4bv7XibN2uuPO4cOQndWxs57xs5/COalyvm7N8 rzzwN3V49H2aP3H39Qk37bc3OqmZfW9XfaIySLMtPOzGMm1bX6OnXW+5LitNA3igmdujPg748sbe r9C+DPeBGTNmZBnAPDynwfd4APCjIwGQByANP26X8v0evGXKPPmwGW7fYsrbrHhOBGnCl5fksoUw VzDTPhyNkgO+nGkfnqbxwrvbKsaGflC3zoFj47rmbbff0FqtGhxdQmT44Tc6xwd/Jn/5oLvV7Kc7 JGnp/+nVTuro2C6qzz03ZOXJ+jSUhw7ydAeS8ROu7ZHGmfbhTbFf4aCTB8mCBQuyjJBlwNER4KVA eBsY8/AMBd8OBh86DT4BijQ4nsngw2KA+eAZHgJDHjjb9eHmcvhypl1criv4wLM6D1nAxUsdXro4 MHr6HjVo4vayteFT4vdwaJz6IdpD/5dMQqnj7/1THX+7R16265XOqu89N2qOAxvT5YOjCOIft2re +trYJ8tJq3qre46f7dBubttKT4+M7a6+6P93NerBm5M8oDletrggDyYXd11SoMNw6YFX/GULC0su G8SUD4iAsxFy9nqsLzke4JLtSs6y5A3RAGYu/EUNfn9HWVlWhHFqr1IL/1O2ZXDh0C51fPyDjWKI Fmz+Qk3Pd7RdbdsD08be5pgWQwOGdqiDqeR8RwY465CzLDkf0gJHOckrXQNTrDf6siIPgCsVAGfa h7Nxwpcz7cPTNPAHsiGTd5SF8c9s6txRpRb9r24jog17/N1eFWUAnkR0bY80zrQPb4r9Sh4kgC9n 2odXsoZcV/CBZ3UesoCLlzq8dHFeO74cnelLZWfOZkbpL9RGHcP/Xr/tfkYXxzUycPy9f1SMnf8p /u9G2rZp7G0OXiwNHiSAycv9ksKXF6JhW29J5+FaqSYv5f34+jiwZNNRNXTKriazpMO4FM3z4v8r P8O4R4Rvv/1WT/HmrkoxgJ+scG2PptjmxdCwHTySF/p8hA+vBA1zvWVFHgAzAbNwfRwi5IAvZ9qH p2lwZx724a5GtdrT8R/w1KVoBS/5Hw23CPj4Em8F4k3oJyY/WvZ2bs8qPb9Aqbd5Gmfah4fLljjt 4nJdwQeeFXkwU3LAl9uEfDjgy+vTAPB29BFTdzfIuj48WE+fHvWlurPTI5oPfGu5enPceN027kao Zf9qNeTZ8lu3ukr1f+hyzTvcdKWe6nSE559/Xn300UeaX6qtUiemPFH2RvhsDxcHfHlja6B9HHTk LjAPU9yihfEhMQIcg5Z86Q4BLjWY58MB6sE479DhX/QBlC9Ew4dDm+mszoNI46UML+vjUuOj7w+o EdOiDqGBNvDt5Wr0m+/otnSHsPzP2jZNvVzNGxcd+Jm0abLshaV/jjqJvyRT+OaMvlyXOb3qTtWj Rw/12WefaUuuRz98sqyNcG0DyZt6mwNp3KXBgwHT5EDJbMPEBPB8Bl6gA7A8DmrwSZMmJQc10vTj RUEAHhbjN16YhwfJlixZojkeKEMabx3D8yN8VwjKAuC4pMAbxeTHpJDPd4jgATPW5/MnyEc9PsTG d3cQJs/7ssXMtPFSD2ylcWocPZp5wc70PWpk1BHkY/sOnow7AGBlFCVE1u+hq9TpxbncZrqu4buw /ErVv2ddes4bV6rT+6fr90u89dZbauzYsWrdunVasmZa37K1S6frdiLCZ3uAM8/FS71fyYNHY+t9 2RZBHkjkOCjlQ2E4CfClOzh45asHUZ4PiIHjJUAAOhY5mMmOhhoAOxoAUzzhKiMcPr0KjgfMyAF2 IlJDlmc5yfMeMKVTcsCXUwyceT4c8OX5aACvfLSnXttzIB4r0Vh/s1KrW9dr/R66xur3tgzmzJmT GFDzUb+yNFfHUW7bXHLAh6P9fC9bZDlf3tiXFOAluWxhD47QTnKuZHL89Z0c5SRHqEMOSF6KDwCx p31r1r6cDmPLvroVojZFYeSa65vWIiBCQhhLA87/tEHVfPx0WZm6UPfW9EK2h+QoJ3kp9yvsJ5X8 QSbJG0tDrjf4wZPOA4ADlsZRmRzw5dyo4Mxz8WJq/Prrr3q6YP0RtWp73T9Y1ZYoNFz3t9JZhEWL FunbtDSNixdUzfRnysaItPVOmLxU29zF0zR48AAmlwci81wcZckBX17uGrb1lnQecNApOeDLKQbO PB8O+PJCNPSzGBtuLb39+IqeHVwPS+NLcGtmPFtyO7XwXT0vgFyHJi/3be7D0X5zuKQAL8llC2Gu YKZ9OBolB3w50z68UA2NXX2iS5UOpbParXo2MHgmbf369dpf88lzJTV5mcL15uKVsM19OA46HhSA L2fah1eyhlxX8IFndR6ygIuXOrxM4/loaGy+q9Gtdaurc3y4I4Prz4ULF+ZY69ato7P+BNW2zbWq 5tMBqtsd7dWeiX3VnJcf0unGtHM/xZ0XINdVc9nmaRo8SACTl/slhS8vRMO23pLOw7VSTY6BE3Lm +XAOuBBpvCk1NLbe2+h2dkNH1f/hdnE6AuZh8eLFOdahQwd1sfqgqv30eW13tG+rqqY/p758uad6 9dGOib+Ydmb9F3qeCNe6AmeeDy/XbQ7OPExtB08a5PdPeMsTQN3vv/9ef6xJtiWfqZB+yeWgJYCX AvGfrdIPjrLkzPPhpkYat2mY6y0r8gCYCZiF6+MQIQd8OdM+vNgaHFDV2N5dqW2dimqIMmA97r0u 9u18SLVv314/FETDPXiW49mhasZz6u2+nVXtzOgAjwx57dq0StLFsAsHt2stHlRA2rqy8Urc5jZu hvs9Xl6TZQTKyOcr8PwFDWlcfjItH/CSZfjwFzse1OHzIHi7GMa+8AwIOg90IqgD4AEv5KE8H/7C vPCjTfDzhUOEL2faxeW6gg886TwY0mFHkhyQvJw/+lQMDY2D46OOpEvj2JHPtASeJLTZgQMHdH7t zBcaxz4frNsH8H3UQtYVeHPY5uiweZZn523+nwnAQcOzN57sBGdUwTP1119/rQ8qAG2xjNTA2BY6 C3Qm8OM2PeqAo4PA7eeXX35ZdxTDhg3TdaCBp1fRhtRAFPTxxx9rLjXAUUdyzIuLA5K3uI8+FVMj wcF3o4O+W/HsQrxzLl++3Gpr1sRnudrPBhbPPh8SxazxICgONqDStoeLF0ODBxmmNo6DiBxI4/JA ZF59HBEDOgH6gTTeEA2g0OUw11vSeRDMBMzC9XGIkAO+nGkfXgqNBOd+V2pHdGlTiEXAmcXWcdCA c7uW2DsCTzuz+hPdjoRcpjTOtA9vLts83G2J0y4u1xV84FmRBzMlB3y5TciHA768HDSy8POrUafQ w98i7NixQ61YscJpwKVzp62dgsvOH9ii6xEI0VvK9nBxwIejfRx05NTz4YAvbw4aWG9MZ3UeRBpv 7iFsfdzUwEGaAzyM9usH0dq9P9t+HqGzV65cmWq43gRqZw3KslPz3lRmJ0G45tfFm+v2SONBo7ga SedBh6sgOQekCF+OeuTMc/HmooEBLw4uFQq0ZdNoLusqaFSeRlbkQafkgC9nOAPOPB8O+PKgEaeJ NB404jSRxoNGnCbSODWyIg/ALMi0D0ej5IAvZ9qHB4047cODRpz24UEjTvtwamR1Hq7CkreksAww edDIbYswedDIbYsweSVqJJ0HHOhRAMkxlZzX8OBshJy3iVhfcjwJJ9uVnGXJg0bQkDxolKdGVuQB sCAAzrQPl0KAL2fahweNOO3Dg0ac9uFBI077cGoknUewYMGC5WO7du2aaB3zCD1xnPbhQSNO+/Cg Ead9eLlroN9IxjxkRhqvxAdabDxo5Lbl4kEjty0XbykaOZ0HAI4eiZx5Phzw5UEjThNpPGjEaSKN B404TaTxQjSSzgOQmWhUFvTlTPvwoBGnfXjQiNM+PGjEaR9eiEZO5MGMNN5SwjICPGgEDV/eUjRy Og8AHD0SOfN8OODLg0acJtJ40IjTRBoPGnGaSOOFaCSdByAz0nglPg0HmDxo5LZFmDxo5LZFmLyl aOREHq6CkreUsIwADxpBw5e3FI2czgMAD2FZnCbSeNCI00QaDxpxmkjj5a6RdB6AzEjjLSUskzxo BA1f3lI0ks4DBRmmgOMFqOSA5JXyAWPwoBE0JA8axdNIOg8kCPAQlsVpIo0HjThNpPGgEaeJNF7u GknnAciMNC57Kea5OMqSA768uWrgq3D4SA/L0Q/kq4EPAoE35nLgI0Ljx49vVA0APGjktkWYvBw0 cjoPZqBHIgd8OdM+vBI0Xn/9dTVgwADNpV/yfDTQ1unTpzVnng+3acj5IkzOtA+3aeADRdAx/QQ4 0zaOutK++eabpAzgy5k2Od5Ez/mjvxL2Kx9e7hpJ52FmolFy5vlwwJdXggZ3enx/lDDL2DRQBzs2 QD8iBXzti2UAX+7SIJd+yQFfbtPAB4mgA0i/5ICLsy6waNEinZ46dWpWfR8OuPjnn3+eYbG/MZbD 5IXuV0QaL3eNnMiDSOMtJSzDN1Sww+H7oaNHj078QH0c9dB5NOZyQAO8MTUYeTRUg/NI4ECHD5B+ 8HJeDsCXtxSNnM6DGeiRyAFfzrQPL3eNQYMG6Uhh//79yUHAcuTwjxw5Uk95UJDTMM5BP86AAOqy XWnocNguDjTqYTng27dvn06zDDmAyIbtwDBWwTyWl0Y/y0Bjzpw5WWVmz56tpywDsFOlYQwHkG2R sy79WBfwEfAjqpPt4SPPLP/OO++ogQMHJmlM8UlO2a7knF8a1tfgwYOzfDBgzJgxVr+rLejCD4Tj w3LZwsbCOx3jg1Xy7du3a45y0s8vmUsN+PHRaqkBHzoEcAAfMcYODMC3ZcsWfYZkWXQ04KiP5YAP OzB8LIMpNDA2g04MQHkMdCJ/3bp1ugy+yo58rqs9e/ZkLQc4PmiMOujA4GMbMHM5cMCDA0jPmjVL c/jk9kAeOS8d0IGwLZY5dOhQooE0Pv4MznlgWWDIkCG6UwFYX3LbNqe2XI6ZM2cmHEA+v1YPn2wX 5SQPx4fxDlNkEmm8JYRl2NnkGQ8RCNIE/djByAHpNy9b4EO74EyTA3I5kGdey8OHM6ksA4564Ihk mIfpxIkTkzI4UMDT1tW0adN0tAXQb4b7U6ZM0WdyAGVgq1evTnQAczmkLV26VPsBlMF8mXeNcACj LAA/OL7hC840OhtwAGnJ+clOgH6fy5ZRo0bp5aPf1RaQxtM0TC7XFeDLy0Ejp/NgBnsgwpcz7cPL WQM7Dg50nOlhOGjlToopy9k04MeXz6WfbQIsQ85y5MjL57JFcoJnWwB+XF4gjYOE5TAlf+211/Sl DgE/DzqWMS+NpMm2yKV/8+bNSZqwXVLQCHZ8gLlMpga3Ewx6LGcuBwCOdcHyMEYjtrboB1r68QFL Og9mMiON8wkzIo2jLDnzfHgpNfBEntyhpM2YMSOrLfjITT86D6kBn4wmWBdAGbkcyJNRCgAfOjKA ZQDUM9sCbOMLKIvBX/hZDlPY2LFj9eWP9PNg5XLgcgHlWAYwubkc5DBENoiIWAeXbdAEqEFIznZQ H+swTQPgnR1e/pjLASA9adIkzYERI0bozgNAGWqYbbG+i6cth8nlcjDPh5eDRk7kQaTx5h6WYYfC Tir9KMvBRIB+pMkB6d+0aVOWBnyyQ0AaYTzroCwuPQAc4DIK4FkQU6kBjnrg2MmZx/bN26IoyzyA fgAHpelHZwEfl8O8pGA5yakBoCw5wMFWAH55yUMNcNYhx/bAZRXrpmmQz507NynPqEdqMA8choFa edkiNWRbAP2AydOWw+RSA/Dl5aCR03kwoyWHZdhJeK0LP/MwRR6+Yk8/0jYN7OwI8dE5YKAVQFl0 HgDKcEwCBy3GVMBxgCAP1/Qsz7MmzHXZgjEBpBEZQQ8HAtLIA8DRKaI+OiVZl2WwHPCj40I5nIkZ 1rMMgDSWDwc+IiFEDridLdsiZ136qcHnZlgG7aFjgi4iG/PyCesR5cw7L6yPKeYF7WBdsDwOeuRh myGNdc3oAmkuKy/peNnCtrDu2RbzgHLdd8GZ9uGFaCSdBzOZkcabe1gmw2oAnBrYqWUHMG7cuISz Djk7h61bt2o/7nggOiBQBmdEHKA4KOQlCQwHGHZqaOJSClryoKM2l+Pnn39ONBFiA/ADOHj4tKzr QCeHHg4cdGjQQ5vmusIZGm3B0GERKCO3h2394CDk5Rv98LE9c94BcMwH7r6AuzTYDsZScNDTD8O4 B5aL5QFcNrHDQeeFKYDyeBrW1VYaN9dVGpfLwTwfXg4aSeeBEIUi4Ly9I0MecuzI5KgjOSD5wYMH s9oNGkGDPGhUtkbSeQDIYAMhLIvTPjxoxGkfHjTitA8vd42k82AmM9I4eh5yII2zlwJnng8PGrlt uXjQyG3LxYNGblsuXp9GTucBgKNHImeeDwd8edCI00QaDxpxmkjjQSNOE2m8EI2k8wBkJhqVBX05 0z48aMRpHx404rQPDxpx2ocXopETeTAjjbeUsIwADxpBw5e3FI2czgMAR49EzjwfDvjyoBGniTQe NOI0kcaDRpwm0nghGknnAciMNI5bNuTMc3F5Cwjw5UEjty3C5EEjty3C5EEjty3C5PVp5EQeroKS t5SwjAAPGkHDl7cUjZzOAwAPYVmcJtJ40IjTRBoPGnGaSOPlrpF0HoDMSOMtJSyTPGgEDV/eUjSS zgMFGaaAh4/aBA3Jg0bQkBzlks4DCQI8hGVxmkjjQSNOE2k8aMRpIo2Xu0bSeQAyI43LXop5Lo6y 5IAvDxq5bREmDxq5bREmDxq5bREmr08jp/NgBnokcsCXM+3Dg0ac9uFBI0778KARp314IRpJ52Fm olFy5vlwwJcHjThNpPGgEaeJNB404jSRxgvRyIk8iDTeUsIyyQvVwDsVfv/9d83PnDmjjcDr7wH4 uDGBfDXAmefilbCuwJnn4kGj9Bo5nQczsBOTA76caR/eXDXYSRQTGBXni1sAqZfGmfbhYZvHaR8e NCyXLWwsfNQmPw3cvrLhk4W/qCfGbFZtHltiNWD+jmrV8Z2tOdZn+h716drf1LaDtbqcBDoTdFKY h7A9gobkLEveWBo5kQeRxltKWCZ5mgZRc+q8em3GHtXm8ahj8DRgQdR53Dt+q5f1n/mD2n34lK5H sOOS8+viLWF7pPGgkdsWYfL6NHI6D2awByJ8OdM+vJI1JIZM3qGuizqChhiQT+dh2vIfjus2CJ4Z ANe8u3hL3uaow3Xnw3nGJnw50z68nDTM9QZLOg9mMiON8wkzIo3nc1aUvFw1iKWbf7d2BvkasDDq PO4bv60gG/71ft2WCddygDPPh5fr9gBnng83NdIOHFwakjPPh6MeOZDGK0lDrjfwnMiDSOMtJSyT nJj87X7V9omlRTNg4c5q1WnCtoINuHBoh7p0um6DA3I5msv2KKaG6+DBh7/lwePLUY+ceS5eCRpy XUme03kwA5XJAV/OtA+vBA1i5qKDql10sBfbgIW7qlXnd7cVZGgDqHrhT+ros/+iqoe20WlCLpOL t+RtjjowXx4uW8JlS8IByS9duqSnVSfOqXZPRgd6IxmAA79L1AEUYgAiDnQc0o6/3UnnAfx2LiDX gw8v9fYwebE00g6cSrqkSOPF0pDrDTzpPBDOcYOA8/aODA/J8S89ctSRHJC80j5qI5/R6DVqg7o+ OsAb04DFUefRbeK2Btu4BQd0O9XDrlNHn/tXq104En+mEjtEsdYVOSB5JW1zhvQ8wPBPUhtwhmYZ fEnurrvuUv369cu6JJBtSf7yyy/r/Yr1pR6+5EeOOpLzQUIfDcmBYmpwXcn1BiSdB4AMGIDK5IAv Z9qHl6tG7anz6obowG4KA9B5dJ+4vcFGHH3u31Lt+NtdMiWV/hYugOXmsrfkbY46sDQgH53AyJEj w2VLZEnnwUxmpHH0PORAGmcvBc48H14KDeDj+QfUjX2WNpkBS6LO4/73tjfIXpi1V7dx7M17og7i 372MOHr0qJ661o/kzXWbuw6W3h/sTEwCZRB1kMPw7eKOHTsmeThjY8rvCuOD5zjDo1ynTvFlJPJR Hh8fP378uP4+78aNG7PyunfvrqfIY/swABrkQBpnpAHOPB9uasj1Bp7TeQDgrATOPB8O+PJy0SDu fXG1at93WZMagM7jgfe3N8iIowP+kJddrD6YqRkD66ElbXNylGV5iRc+25uYCZTHB8h5kOPgRgdA jk6DBzuAzgMRCzoPlhs+fLjO69mzp54iAsDHww8fPqw/qo0ymzZt0m3JjgV+tuvigC+HLjnzTG5b b0DSeQDmSpUFfTnTPrzUGrhuJm7rv0L9NTqYm9qAJbuPqYcm7cjbHp+2S9evmd7f2kHUZ6eXT9X1 ed3bEra5i6MOjBj93c+JEbIMDrq1a9fqAx2dAtsiR+cBoDw6CqxjdAIshw6FeeiEWH7v3r36a/0A LynQJjoRagNpnGkfHi5bGqhB/O2pZSUzYMnOo+rqq69WvSbvSKzNjbdoX8cXJmf5aW0y+bSjA/6o ljzyZ833Pv1Hnf7tuT+qNztdrrnLTs1/R88DOxDXumou29zUcB0sLqDDYP1u3brpOji4zcsWdgaA vGxhXXQaKI/LFtSBsdNgRLN9+3YdsTCagQ8GhMuWEmoQN/VbVlJD9DPolXH6oP/HlJ3abv/Hi6rX +5s0/+t9DyfcNOD04vdV21ZXqaPP/ymZdml/ZVa6Pju1YLxuC3ciAHNd1ccBX15u+xXKsjzATtQE OysA5WW4Ly9b2JaLA5JzDARAZ0SgjM8lhY0DvtxHw7begKTzAGRGGsctG3Lmubi8XQb48sbWAG55 ennJDVj+wzHdefzzw53arr3u+oR3f2WO6jToAz39W6d/Jv7jp+ID/eMHLlMrHvuz7gRubB13Fk/e 9hf1RGSyg6jP2IEQ5nprDtsc3KbhOnDk7UvAxdl5APCjHjnLufj69euTyAMdF/1AGs9Hw3c5TE4N ua4kz4k8XAUlL0V4mcbz0eDDXx2eW2k9mJvagBU/HNedx2NTd2mT/P5RX6oug6YkaRpwdvtCXfbo 8+g86mzJo5dHHcplOi+OPrLzXXZu31rdLgbtALneKnmbS25qpB08xQr303glacj1Bp7TeQDgrATO PB8O+PKm1mBY/tCIdeq2/svLwoCVmc7jiWm7tLW67oaEdxrwrnrwtW+SNOxAVRxab3vqMvVm5yjC eOGyxH57/jIdeSBvb//L1JLHLtdTWSbNLp2Pw1gOJmO9cZ26OODLy22/QlmWB3x5uVxS2Djgy8Nl i6cG8MYnP6jbn1lRNgas2ht3Hn0+3q3tode+VPc8OVLza65tpaf/HL9c3dz5Ec2BC4d2qdvbXqWq Xrg8y25qE/sOD7hcfd7zL2rkvX/JKVOfmcA6rNRtbnKbhuvAKTTcB2eei1eChlxXkiedB1YqQzpw hCzkgOSV+FEb4LfqM6rDsyvKyoDV+46rp6bvTrVer3+pegyZorb8Er9VrGrgFY1m1UOu1Rq4Bm+s 7cH6kpdCgwcI6vDgIceUHOUkx+WvPMAkx7zJdiVHOckxle1KXk4aWFdyvWGdJp0HEgQ4GiFnng8H fHlTagB3Prey7AxYE3Ue/T/Zk2rXtr5OT4GLNUejg/zKRrXTSz7QWniMnesUUxsHfHm57VcoK/cR Xx4uW1rAZQv/JPXQ8HXqrgEry86ANftOqGc//aFe+25rlS5/bNQtqmpQdHnSyEZgfVbSNk/jNg3X gYOzLjngy+VZnHkuXgkacl1JntN5MAOVyQFfzrQPbwoN4MdDJ9Xdz68sSwPW/XhCPT/zh3oNwIBm 1aCrm8SqX7pOawJyfZqcaR9ervsV6sB8Oc7Y5IAvZ9qHl5OGud5gSedhZrIiC/pywJc3tgZDso4v rCpbA9B5DJy1N9Xemh//7f74Oz1U1YvXNJmd27FY6wJyG0gO+PJy269QluUBX+4T7ts44MvLRcO2 3oCcyINI45UUwn4072d178BVZWvA+p9OqBc/35tqRNWL1za5ARg8A+R6d/FSb/M0btNwHTiVcEkB zjwXL1RDrivJczoPZqAyOeDLmfbhjamBEWWg04ury9qADftr1JDZ+5z2ylc/6XI10weoqsGtm9zO rPxE6xNcz4C53uvj5bpfoQ7Ml/uG+yZnmhzfRunTp0+OH8hHo3Pnzglnnsn5Hxvp99Uw1xss6TyY iQrgbBQcU8kr4aM2wIdz96sug1eXtQEbo87j5Tk/Oi3zUKyqGtKmZAbwFh+Q7/YgL7f9ClOUBzDl E8guoAz+HPfUU08lOviTGznbkO2aGpLj7I43koGjHP3gmFdyTCU3NfAfGXKWJef/dfAaAb4pD35f DRhgrrecyINI46UKL13c1MB9aKDrkDXa8AAWrdPzC7Svy4srEh/LmXbD7T11/jWtrkt8rANjW2YZ 1COvzwB0HsO+/NFpwMnvxqqql64rmZ1Z9ameD9c2kLwU29yX2zTkAULY7jqxDM7ysjw5Huvn/1QA +PEXe/pYbsKECYnvgw8+0JEHQT8gNRA1wM8/4PE/MegQkMY84d0gsi7+aIf0999/r9N8NQD45MmT dR7eIQLgH794Z4is3yIvW4C5qw6r7i+t0Xb1Na0STmv713v0tNuQVQl3WYdeb6qOfT/V3Gzrnj7T VZcXFugyXV9clqRlmTQDNv1co0ZElyY2O3U2vvyqeqltyY2Q69m1DVy8XPcr1IER1a/dmRiBfHQG 06dP12dmHqx4LSFeLo0pyyGawFkdBzeBTgJnftRHGdRHGV628G/6MHQGMgpgHcBsF36+AgDto0OQ baGjgN922dKrVy/N0XlIDUByc73Bks6DmcxI43zCjEjjjALAmefDG6rBBb5/6NrEcMDLdJcB36q7 Hhlflx9FDnJqmvS72rql8wDV4+XV6sYOvbLy6zNg84Ea9co3P1kNOLvpW1X18vUlt4vHftXzA/hu D+b58FLsV66D5cSkRxKTwEHIAxflkUanIV/ig8s7HMzyrWAA3/nB8QmkMT/oaOBnpABjZwA/jJEC 5h3tLlmyJGkX4F/72bHgFYYAymzdulW/DwSdB+YXYCQDQxmfd4bI9QaeE3kQabxU4aWLmxrHa8+p B4atzbFbugzQB/p9/WboKf3oHGQ501q3u1nd9/TMLB/bkj50LGgb7XV/cWFWnsuAzQdq1ahv9+fY 4RPxdWvV0BvKwqpfvUPPD3dA3+3hy0u1X8kDhqj55LnECJbhAQcgKsDBioMWnQj8HMdANCI7GkQY OPBxecD69AO9e/dO/ICNo1PB+h82bJhOww/jpRQjIHQOrDNx4kRdh5ctjJ4AlAN42UKgbou8bBk1 bZd+otS0B4etUe3+do/q9sJcdXuPlxI/DnpZzjTWS/O179BTT1u3u0lPr211XZKXZsCWX2rVa3P3 5xhw4fAPqmrYjWVjep6iA4VwbQMXL9f9CnVgaZBl0CnwzA3Ajzd/Ic2oAcDgKn0og4OYlwc42+PY 42ULwDZxkPOyxfQDqIs0OyxGM7LDYh1GFPKyhVHOe++9p9PoPNJedWiuN1jSeTCTGWm8FOFlGqdG bW38p7FeI9Yl1nP4GtXxsQma4wB/YPAizREdYHr3w2NVl/4zNb+29fV6Cus5bFVWPZRxtdVj4Nyk jTZRlILpX+/sraf1GbA16jxe/+7nLPvht/j7IVXD/lpWdnb7Ij1fPtsDnHk+vBT7letgAeftfnDm +XAz3Jec7z0FcDDjYAdkfR+epmHyYi2HXG/gSeeBcI4bBJy3wmR4SI4HhshRR3JA8qb+ANDR42dV 71fWN8jQodj8jWkAOo835v2cZcDF2ipVPfxvZWXHRt2u5w2fbfDZHthukpfbfoXQHAeIPMDIK+GD TE2hwXUl1xuQdB4AMmAAKpMDvpxpH15sDeCdz/eqh0etz9u6PfOJ6vnyYmteYxqwLeo8xsw7kNja H+ONeOzVO1T1iJvLziTStoeNl+t+hTowXy4vKQBfzrQPLycNc73Bks6DmcxI4+h5yIE0zl4KnHk+ vCEawCOvbqgoA9B5vPn9gcSAS+fPqeqRt5SlXfgt+1smru0BzjwfXor9Ku3AkWdx5vlw1CMH0ngl acj1Bp7TeQDgrATOPB8O+PLG0Hj0tQ0VZcC2g7Vq7PwD2uZujb/idmLy46r6ldvK0k5+84aeR5/t YfJy269QluUBX44zNjnzfDjgy8tFw7begKTzAMyVKgv6cqZ9eDE1AIx3PD56Y0UZsP1Qrf5YNT9Y DVSPur2sjXBtDxcv1/0KdWC+vJwuKUzOtA/31TDXGywn8mBGGi9FeJnGqTFr8UH1xBubKsqA7YdO qrcW/KImLok/Pl07e7iqfrVDWZuEa3uAM8+Hl2K/SjtwKumSIo0XS0OuN/CczgMAZyVw5vlwwJcX W2P4hztVnzGbKsqAHVHn8fbCX5I/wMlHo8vVAPN5DyKNl9t+hbIsD/jycrmksHHAl/to2NYbkHQe gMxI47hlQ848F5e3ywBfno8Gv/be983NFWcAOo93os4DOLVokqp+/a6yt4vH67YPp+RNsc2LqeE6 cOTtS8CXox4581y8EjTkupI8J/JwFZS8FOFlGucZsN/YzRVnADqP8xfjsOPY6Lsrws7tir+zC5jb oym2ebE00g6eSrqkSOPF0pDrDTyn8wDAWQmceT4c8OXF0uCDLk+P21JxBqDzAM5s+Eode+OeirBT C97V80y4to3Jy22/QlmWB3x5uGxpJpctPAs98/aWijOAYx3HxtxbMXbiw/jPXLbt0RTbvJga8mDB d11cYBn8DwT/C8Gf3wD6AfAWd9mClcqQDhwhCzkgebl9AIhvf3r2na0VZ8T5nzapY2/el7fd2OYa /Vj9uF436fRvo+/VaZhZVtrRMffllHnirnZq9lO3J2nkt211TVY+OQywbY+m2ObF0uABYoboNqAM /9HKt2zJg5gc8ybbtWmQY0qOcpKXkwbWlVxvWKdJ54EEAY5GyJnnwwFfXiwN4rnxWyvOiGNjO+dt 6DhMX9dbrtPTo292SrjNbr+hlXri7uuTNNpaPvDvana/O3Qa/KdX71UznrxNHR59X5JmeZiEa9uY vNz2K5RleYkZM2YkZgJRhwz3+Wc3cLzTA/+uxQt5kEZZTvGvVeYB/Bs92sI/beULhfDP2HDZEpUl B3x5PhpAdc05NWDC1ooy3FoG8C2WY+O65mVHx3aJOwfh2zniXjX76Q5JWkcWYkpDuVWD7446jxuy /MsH3Z3UZ1uvPHCT1upzT3ZZGGDbHk2xzYupIQ8WYs6cOYkRsgxfpgPg7+0EyjANzpfs4GU9rM+/ 56PzwJmdf9PHwD/bBKSeyWWkwDwXR1lywJdTQ64ryXM6D2agMjngy5n24cXUOH32gnrh3W0VY9t/ qttQl04eyzkw67PfxnRRra+NOwVwdCTy4IeZnQatbesoYommaZ2HNOggD+399GqnxA+4toeLl+t+ hTowYsGCBYkRsgzO2Iw48NYuWVd2Juw8GGXAyPn2L3QejEbgx8t6UAYasl1fzrQP99Uw1xss6TzM TFZkQV8O+PJiaXDMw3aQlpsN/SDuqDWOr9QT/Anu2Fvd87Kj47pFHUbbJI0DfOfITmpc71uzfOS0 5S/eozsBaTJv9tN3ZpXXHUw0ve36VnqqO55MnoRr25i83PYrlGV5iWXLliUmgcsO1MVBx04DHQQv W9AJYEAVly9I2y5b+LpC1scUkQc6I9w5RASCFwRBA0AZmC8HfLmPhm29ATmRB5HGSxVeujif8xg0 cXtZ24bd8XsmNFb8P5H9j0wi6kfe7pG33djmWj1dPrijGvePWzVHZ4DpjL4d1Ooh92aVM+3J6FJE ptHOF/3/nqR3vdI5aeP2G1rrad97btTTmo+f1fNt2x5Nsc2LqSEPljTIMmncdkkhL1ukv9BLCnDm uXi4bMkAnGnJgUHvRQdpGdpLk3dk5jDCqb1KLfyPsW2J71gAx995oNFMdygWfyF26vt39Hy7toeL l+t+hTowX+4b7pPLyxbAh+erAYAz7cN9Ncz1Bks6D2aiAjgbBcdUcpzpyQHJWZa8WB/nkZxlydEO MPj9HWVnyzbHj85rrPy3qNP4T3W2//VMRtR5jH+wUWz5kE5q/xvdrXmF2Jl1X2TmPHd7NMU2L5YG ptx/MJWcDx+yPcnRDjmmkvP2JzggOcuSV4IG65jrLSfyINJ4qcJLF8eHcIDBk6IDtowswbmoA1n4 n3OtOn6XJXB8Qs+KsnO7luv5tm2PptjmxdSQB4jklXBJAc48Fy9UQ64ryXM6D2agMjngy5n24cXU AIZElwflYPPXxTuoxtrWSi36X+12MT4jAMff7VVRduls/CSma3u4eLnuV6gD8+U8QxO+nGkfXk4a 5nqDJZ0HM5mRxvmEGZHGUZaceT68IRpTvv1ZvTR5Z0nt/IXMs+YXaqMO4r+kWwQ8xQec/PIVdXxi 74oxCdf2AGeeDy/FfpV24OBJTHLm+XA+wUmk8UrSkOsNPCfyINJ4qcJLF2fZ1dur1Msf7CyJzVkW v8hHY0vXqHP43+u3CFVVVXp6dtsCdfy9f1SMAXyDOmBuD3LAl5dqv3IdPJVwSQHOPBcvVEOuK8lz Og9moDI54MuZ9uHF1ABw1h86ZWeT25nM92R1tLH4v/lbhF27dunphaM/qxPvP1wRVjO1r55nwLU9 XLxc9yvUgfnycNnSzC5bgKFTdjWZfbrwYEY1wq5nog7h/8rPIuAL5sCl82fUiUn/rAg7s262nmfC tT3AmefDS7FfpR04lXRJkcaLpSHXG3jSeSCc4wYBL7eP80gOuDRe+Wi3Gvbhrka32tOZV/BdinSX /Pf8bcWfdHX+pwGQH1cuZyN8tge2m+Tltl8xpJcHGHn46FPcLteVXG9A0nkAyIABqEwO+HKmfXix NYClm49aD/Zi2fT5dW84Vz+NjjqC/9Ew2/qgbgL/2sRGAU5MfrQiTCJte9h4ue5XqAPz5eGypRle tgDDp+5qFMOnHWJEPffS/1mY7R+nW/rkk0/Ujh3xMyEnPni87O3k3Df1vPpsD3Dm+fBS7FdpB448 izPPh6MeOZDGK0lDrjfwnM4DAGclcOb5cMCXN4YGMGLq7gbbnZ0e0VM80k3fdW1v0O3i79nzPn5K qWX/mmObPvyDrjNv3B+z/HNe/6O6/56/aH520b/q/DHPXJY8IHbHHXeo5cvjB65OTHmi7O1iVX7b w+Tltl+hLMsD/JNlGviFerxJTNYnHz58uP6nrOknfDmiAoBf2ofJ/8jgtQDQAeBLa4swOTXAmWdy 23oDks4DMFeqLOjLmfbhjaWxcltVcuA31B4eMFENfned+vVIjZo4cWLUarRTLf+Dat3qKj1FR4Gp tE1T/xR1Dn/O8vW4+0rV78Erkvzq7/6o5oz+szpdc0S1b99ezZw5U++MwIkPnyx7A06fPq2ngGsb uHi57leoA0uw6L/WWQbIx8GKF/Y05SUF/onLf+0C/KcuYXKmXRyd0caN8QfHwmWL0GCINmJa1AkU YIw2Nm3apObNHB4d/OgU/pzpNGJu2qapl0edx+VJut+DUcQhpjDUR4eCKKa2tlZ99tln2oDaL1+x HrDlYqeWxu+cAHy3B/N8eCn2K9fBwu2lTQBlcPCSw/g3e3Ac5HhNIToZHvR4PwcGxgHUxd8p+Ld9 7K/sDCZMmJCUQZp/2ZdvKoNNnjxZv3UMkQcGPNEWXjBEcP5Yf+vWrUl9vukMnQfSANs1eYu7bOHg 42vT96iRUSfQEBs28jW1bds23c7BL69Q896KDv4VUfQQme48Mty0TdP+kpQ9u+QKNfHFKzXv92A8 pSFv3rx56vbbb1ezZs1KXh5zdtv36sTUPmVrEr7bw+Tltl+hLMtnYf3NdWYA5fGaQB7k8s1hMF62 SD8Pbv67FnfYEMHIjgX+w4cPJwc6Tlx4Bwg6D74DBH6+YIiXLeg82BnI+ugkUE6+nEj6wYt62UKk cR6g4Mxzcd7eIXx5IRoAbqXaOoY0G/fZXh0R6MuUYyuj658r1YXlV0aRQnSpYnCbbfroSjXv7dz8 fg9l+3QbEf72t7+pzz//XHXoEH++8cLvP6maaX3L06b31/PoeqpU8lJsc19u05AHS4Kt99VZBrIM OCML8+B8+eWXdUQAP+tgCmPnwfeV/vjjj8lbxAB0JmgTYF3osPMA0GngFio7KXYmKM/61APkfADo jFAekH6TQwOQ60rynMjDVVDyUoSXadymAbw+Y49+7sPH9h06qc8GiCxo/XtGB/mqa6JOIX5DeetW UdQRpWHt28V5Ms16Pe6pKwfr91BdusPNGR7ho48+0uUxBfBns5ppT5WlXawWD8RFyHd7+PBS7Feu g8cFHHisz4NSvjkMUQQvW+DngczPNPDVg9jXEL2kXbag00A78rIFHQU0UE9etnAMA+BlC+vjQUTW R0eF6ARTpAFMbbzFXbZI/lv1mahjQAfitjGf7s2UjlAbXaqsbl2vXVjZWvXvFXUCljwvW1t394ZG 1HzUr/xsRvzWMDx8xfWLqc82MHm57Vcoy/IAH5oywc4KQHmfcN/GAV9eLhq29QYknQcgM9J4qcJL F0/TsHUYtC376lak2nCbUmvaNo3tjO9afPnll4khjAWsB2+JTV2I//kLyPXu4qXe5mncpuE6cORT l4AvZ7gPzjwXrwQNua4kTzoPrFSGdOAIWcgBycvto08uDQBjH2ankRVtnInKrbm+ae0Abv3GzwvQ 9u3bp301Hz9dVnbyq1F6vnCGKnR7gJfbfsUDRIbo5JiSo5zkfMsW60uOeZPtSo5ykmMq25W8nDSw ruR6wzpNOg8kCHA0Qs48Hw748sbW4Nfzp847oF75OOo4Ilu1PT7Da2zuGl1CtG96q44fCvvmm28S 27w5/ug1BibLySTkNpAc8OXltl+hLMsDvjxctrSAyxY+MTj6kx/0VOPMQaXW/a10dvawno1vv/02 scWLF2tfzfRnysZOr4gHcrF+K2mbp3GbhuvAwVmXHPDl8izOPBevBA25riTP6TyYgcrkgC9n2oc3 lUYWdvwz+x5+KSwCOrW5c+dmGXByzgjrgdzk9unzen4Irk/A5Ez78HLdr1CH+4oPxxmbHPDlTPvw ctIw1xss6TzMTFZkQV8O+PKm1NDY/g+lNtxaeouAa2/c3pMGnNn4pb67UWojsA65Tl0c8OXltl+h rNxHfHm5XFLYOODLfTRs6w3IiTyINF6pIazGxttLbxF+/fVX/ZSpNODCkX3Wg7kp7cJvYkA5AtZh pW5zk9s0XAdOJVxSgDPPxQvVkOtK8pzOgxmoTA74cqZ9eCk09Mt7NnUorUXA3/DxcI804NLZk6rm k+dKZqfmv63nA5DrLY0z7cPLdb9CHZgvL6dLCpMz7cN9Ncz1Bks6D2aiAjgbBcdUcjwdRw5IzrLk fKsTOMpJ3tQa+COaxvHV0UH890a3TZ/dqrbNji5TzLwI8kPKzz//vJ7iMfXqqip19ONn1JyXHlKv PnJPclB3u6N91kHeKPbZQD1vvH3H9YZppW5zTCU3NTBFeQBTyfnAGNuTHO2QYyo51x84IDnLkleC BuuY6y0n8iDSeHMIYdXhGUptvqtRbdNnt0Wdx23Zvq//qfr3768WLlyYY/h7Pv6Qt/KNR9SBKU+r Twfdr4589Iy6sW0rVfPpgEY3CXO9NYdtDm7TkAeI5JVwSQHOPBcvVEOuK8lzOg9moDI54MuZ9uGl 1lAH31Vqyz2NZptm3ZH832XbF3fEfmhGWLRoUWIPPBB/T/aNN97QeTiQkUa0wQ7EPNCLbYRrXaVx pn14ue5XqAPz5TxDE76c6TSOp43xX5jG1CD31TDXGyzpPJjJjDTOJ8yINI6y5Mzz4U2hofHzGKW2 3tvo1uGWVjGvXqRl8VyHaXjvAqKS2k+f11Y1/Tn15cs91R3t2+r0U11vS/KKaRKuddVctrmp4TpY XEAZ/iENTwbzD2nww/DXe/mUp/mnNakBjrLkzEPn0adP/AoE6ZdcagBp3Kbhw00Nud7AcyIPIo03 lxAWj9/GiXeiA1v8BbsRLO48In7uiJa0dR6rVq3K6jwQeWB68/VtstLFNIm0ddVctrlNQx4wxE39 liVGsAz/Co+OgX+FJ9B5yEsKdDAsA0Md/gMXL+tBWXQUvXv3Tv5Ni3EIvuIQ/4CFn/+UBfDPXPyj F/+uRRnmg8MAycNlSwbgTPtwXw11fIVS2zoV1TbN/nty2XJ6QxR1RD58MgAdxJIlSxJjGe4gtTOf V3f8NYo2oils1ZhHdf4vHz6d+Aq1k1+8rLWAQ4fir921tG0uOerAiB4vr0mMYBl0HpiiY+CBy3dy MM1taZZBPXQa+Js9IxLkURsdCS9b8CwQ/rZPMBqR5TkvAN8VwrQPD5ctRdJQZw9GB3jnRjVey+L9 CjbTs7Hpm+gAf6HR7PSyupfPAK71I3lz3eaug+WZt7ckJoEyhV62YPujHDjKyoMefl62IOpglAKw jtRAR8TOCX6A5QHwRr9sQTjHDQLOW2EyPCRHuE+OOpIDklfKB4CSSxg8B7K9S+NZBOwcto4DBlw4 uN160BfDzv9cdzA0dF2hjuSA5JX80SdCfquHYBm8KYzvIcUfGnmAoS0e2GwXL+JhGdbHgc73iuKD TDzoUQcnF1y29O3bV6fxtjG2hTxTo2fPnll61JA8fPQpA3CmfXhDNDQOTogO9q7Ftwj4+/2yZcus Blw6dUzVfhYd7EW2S+fit57jeRcuL6bkLXmbow4sDSxju2yBATKNzsEsg7eFcQyEry/kGAby4Zd3 W3B5Az86DOQBkgNsGx0B/Mzz4eGypRE0NC6cjA74aAMX0yKsXr1af6vFZhqXLkYH+8Ci2bldS+J2 IzDCkuvBhzfXbZ524MizOPN8OOqRA2kcZRsyVpGvBjnzfLipIdcbeE7nAYCzEjjzfDjgy8tdI8Hv s5TaER34hdre+P0Ytk6DxjDS1gnkaye/ekW3JSGXz+QtcZujLMsDvhxnbHLm+XDAl5eLhm29AUnn AZgrVRb05Uz78ErQwPVngkPvRp1A94Yb6kewdRo03AIEbJ1BPnbxWHwHhZDL5OIteZujDsyX+4b7 Jmfah5eThrneYDmRBzPSeHMNYV0cg3NZ+PnVqDPokb9VL9DVV6xY4TS8ih+wdQj12ck5w9SlMzW6 PmEuU3PYHuDF0kg7cIoV7qfxStKQ6w08p/MAwFkJnHk+HPDllaqR4MQqeyfhsjP7dTVbp0HbsiW+ G2LrHFwm/wkLYMDNZzlM3hK3OcqyPODLy+WSwsYBX+6jYVtvQNJ5ADIjjeOWDTnzXFzeLgN8eblr cKUn+PWDaG1GHUSaZWDrNKQBtbMGpdqpRe+qizXxJQ6BSx7bvEveXLeHL7dpuA4cefsS8OWoR848 F68EDbmuJM+JPFwFJW+uIWwad2ngLJ+DmvVK7e0Xrd37sy0C7nasXLky1YAzaz7J6TDOrPk0ud0q USnrqj4eNHLbcvFy0MjpPABw9kLgzPPhgC9vbho48/NWaA5OxtEdenN8ycvWaWzYsEHnAZdOVls7 CiCfZQJ8edjmcZpI40FDRB6AzEjjzTmEdfGGaKAzwf8TigH+/wQw9ZrDugIPGrltESYvB42k80BB hingGGklByQvxcd5JEc5yYNG0AgaTa+RdB5IEOAhLIvTRBoPGnGaSONBI04TabzcNZLOA5AZaVz2 UsxzcZQlB3x50MhtizB50MhtizB50MhtizB5fRo5nQcz0CORA76caR8eNOK0Dw8acdqHB4047cML 0Ug6DzMTjZIzz4cDvjxoxGkijQeNOE2k8aARp4k0XohGTuRBpPGWEpZJHjSChi9vKRo5nQcz0COR A76caR8eNOK0Dw8acdqHB4047cML0Ug6D2ayMf7bDhxTyfFPU3JAcpYl51udwFFO8qARNCQPGpWl kRN5EGm8pYRlkgeNoOHLW4pGTufBDPZAhC9n2ocHjTjtw4NGnPbhQSNO+/BCNJLOI1iwYMHytdB5 BAsWLFiwYMGazJLAQ4KXNfJSB+Alki2vWP6g4e8PGv7+oOHvDxr+/qDh7w8a/v7mqpETeMhMCelH IxIyT6IQf9CI4eMPGjF8/EEjho8/aMTw8QeNGD7+oBHDx99cNXICD0JWksjXzydTYHzahHDVydcf NPz9QcPfHzT8/UHD3x80/P1Bw38dVtL2cAYegK0CgOjFlVcsf9Dw9wcNf3/Q8PcHDX9/0PD3Bw1/ f3PVyAk8mIGChKwEjj/g0c88ctOPP/LRjz/n0c86hOkPGkGDfpjpDxpBg37WIUx/0Aga9MNMf9Bo eo2cwINgJZhEvv5KGv4BXP6g4e8PGv7+oOHvDxr+/qDh7w8a/v5iaTgDD8BWAZDRjJlXLH/Q8PcH DX9/0PD3Bw1/f9Dw9wcNf39z1cgJPGyVZAUJHz8+R0fw03Q0iUL8QSOGjz9oxPDxB40YPv6gEcPH HzRi+PiDRgwffyVp5AQeRH0Vff2VNPwDuPxBw98fNPz9QcPfHzT8/UHD3x80/P3F0nAGHoCtAhCG mPz9QcPfHzT8/UHD3x80/P1Bw98fNPz9pkZO4GGrJCtI+PgrafgnzR80Yvj4g0YMH3/QiOHjDxox fPxBI4aPP2jE8PEXSyMn8MDwCYdT0DCFpB9/qZEzQD/rEPAfPHgw8Z8/fz7xs07QiAF/0Aga9LNO 0IgBf9AIGvSzTtCIAX8laeQEHhIUh0mEISZ/f0vQ2LFjh/r666/VokWLMp4YrvIuf2Msx9atW9Wg QYPUgAED1PTp08tme2B+YPPnz8/yu8qb/nJZDtj69euT5VmzZk295SWKsRw///yz2rdvn9amIX3k yBGdX07rSkL6N2/erBYvXqyqq6uz/BKVsBwSLn/Q8Pc3V42cwMNWSVaQ8PHLKAdc5kkU4g8aMXz8 xdZAp8+TDmzixImNuhwIJMaPH68++uijJOJ2aaxevVrP08CBA/XJUcJWHpD+xlwOrq958+ZlvJWz zQn6EDxxeXDCb8rlmDJlSqKdZqNHj9YBMtuSoA/W2OsKZmpgvjifOH4IWUeiPj+OkUmTJulAG8dI Uy2HzJMoxB80Yvj4K0nDGXi4KsAQvUjIPIlC/EEjho+/VBr79+9XQ4cO1R3mzJkzk84Tox9pbUlI v89yyKtrdNgSZvnly5fr4EP6y2V7cBk+//zzLD9gKw9If7ksB2AGHoSrvPQXuhwMPEaMGJHxxGBZ 7KNjxoxJ5g+jIK62CvGX6/bACArhKi/95bQchfiDRgwffyk0cgIPCVlRAo248orlDxr+/lJp4IoK ndvrr7+ufbjVwg7v0KFDOeUJ6Z88ebJ66aWX1O7du/VJAVdqbGPUqFHJiQz+cePGaR/z33nnHe2j oQ0CbWNkZPDgwXoYm7AtB0ZtsCxYDrY9duxYPfSNK0ZZHmnkYZ6XLl2a1Q4BjU2bNumgDPNbU1OT yalbduqk3WpBPQQmWDYGeLhynzp1qlq1apW1DkDfihUr9BU05pV6WCfwS7jakesKdbCOoI92sK5m zJihr67zudWCbfTVV1/p+UJ53AbD8qEtuf0A1nG1BWPAi/Us/RLYFpy/OXPmZLwxzDpY55g/zBPK Y7QM8wof8szyAPZhLAfaNvMAWQfbDmXNgJjHAfZV6Sewbrg/c1lQh+sMZXmMcBvBEHTBB8NyyPIw bFesQ7mPYF2iLLatBOvACLSHtm3zZSsPlKq/IorlDxr+flMjJ/CwVZIVJHz8lTT8k+YPGjHok1dV skOeNm2a9g0fPtxrmJdtMKBAPYyYoH10pLxFsn37dn0S5gkLhpMByuF2BTp9dnYEy7lGFaDDMtBH Wzhxwm/qcDnksHha0GCejCVQjnm2Wy04GTAfJ6m5c+dqLQQ6WBauKxiDPqmNkxfzebJBAId1yMAO QaKsA7Ad6ceoEdtC8IM02po9e3YSDElz3WqBNsvgJIXlQFnMG9YvTvDIw9QWqMHQLkENjnhgnRCy DvZBnojRtrmPAEhj3XL+cBLG+kZZbAsERZw/bA8zAOEtPRjq0S+BtLwtxJEILoesT8Avg3kELVhn 2J8wvwhE4Gdgzf3D3Hexj8HPYwTAlGUQOGCfR9swn+1hzhfac80X68AkfPy2bU6TKMQfNGL4+Iul 4Qw8XBVgiF4kZJ5EIf6gEcPH39Qa6DTZ6ciOEkBZnhjRIRGyLQm2A1u3bl3GG8NWJ59bLSzHwAPG 5cB8Mx8nF9YhWN702wIPQJaHRn2jAMzjvBEyaLCtWxpGlFgOIz8yD+sdfozMSL+Ejx+jKtTA8sg8 Aid2nmhgOHERLCvXNQIQ2Y7crzjfONnhFomErCPh84wHRxgIsy25rXDiNDVYlid0tGeOhHHeYbaR ERl4YX3QTzAP+4MENRFg+h7ncn0XcquFbeBiwqwj50tCtiUh/b7LUYg/aMTw8ZdCIyfwILgQaTMs 4fLz7zQwcAlXnXz9QSM2CZe/GNuDV5Do9G3lf/zxx6TTwtW6hNkWy8ngQMIsbwYe8LuWg+V4Aqcf hpMy8jAsLP0StnUlgy4zaABYXnb+OBnTz/LMk8Pz0OB8mcGEBH3QZzuYL/qxXnByZN57772XBD/5 bHMGFNjehK28GWSZGnzGAiMdOGHReAuAtwG47GzHnCfb9uCtFoy+oA4MQQZvA8IQyGAeJdgODOsa 5TDS8fbbbyfzBC7nV96KswVYHAFCe9KPIIrbA/NrWw62ax4H2K5yW2I+bNosD5jHiLk9bHVwuxHr Dvow7L+8/WI7zjFfHBWBYR+rb76AfP22dUW46uTrDxr+/mJp5AQevhUBH38lDf+k+YNGDN5Kycdw j92lwTIMDgCWtZW3Xc25loPlzAABV6vMQ6cqIduxrSvbiIesQ5gnYwmUY5681XLq1KnEjxOMRH0a thMrhr+x7Lh9xXJsGydD2RZganDkCidh6SfoM4Msc3vwBIb2eGLjyY0m/bidQ8h2bNuDIx6uWy24 JcR548gWTILPJ+ABVWwPzhNvUdDox/xJDQLPKFEL5QkEt2wf5W3LwXpon5AaGEVBnrktMdKC/VmW Rznm4xgxtwchHwiHoW0GWdjmDCxQjpDtoN185gsm4eO3rSuaRCH+oBHDx18sDWfg4aoAC0NMMXz8 zUlDDhfzGYG0OhwZQafEE51Znu2ho/ZZDvNqTsIsL9umnxroXJGHq1RZh6DP5ueJytUhQ8MMPJhH MI/zRnC+6rvdAA0O7+PELvMkpP/06dPJNvFZbp4wbbcWJOSJznbVy+dKMJ9mOz7bHHD5GXi4/tUC k8thuw3C0RFsV5+AjJB+Lod83gP7wHfffZek0/5RwzIyYAFkebmusC0ZGGJbSpiBByHb4n6GNuSx KTXYPkc8JFje9GP7sx6Oe0KWL3Sb+/iDRgwffyk0cgIPQlaSyNdfScM/gMvf0jXQoZhXQK7y1JCj AzhJAmYd5svgQMIsj/lgHXSw8LuWQ5aTfph8RgJD6GgXfomVK1fqkxFGeaSGvIrGaI4E2pFD8jC2 TQOYZ95qwYmRIwQ4meKfBaxDSA2cTHlyQTmcRLAu+fIsgNsDhtsHqMfbJ/TDJJDGiAm3OW6D4GQn yyPNExgNQZa5PTBPvA2BkxLnTbZFYLtgvzH9gFwOavCqnaMJZh36pL70wxAM8YpdrnNzOeDD9q4v 4JWBDKYw+YyJbTlYTh4HmC/su66ARQYP0m8eI7blkPso9jn6Ydju8raXeauF8yUvVKWGa74Alvf1 29YV4aqTrz9o+PuLpZETeKAxNoihFA6nSP/FixezhlnkDJh+7KT0YyjZbCtoVIbGu+++qzsTXhXS D6RpLFu2LOnA+LyH1GAeOjLf5Zg1a1ZSTxpO4qyD8ja/1EAH/cEHH2S1YRru16PjN9cV/mprKw/D SX3Dhg1JWt4GMZebt1rglxpYV/LevmnIW7JkiS7POoAMXFyGZze4HAC0OV/Sj3WFeeKIhc3QFoIN pnHScu1XCxYsyHouwGX4VwXryOWz7bsc9cFJLm05ZKCJbU5IDfyzI22d0xgsmhpsSwZaMLzsjhqu 5WBZHAdcDqzLIUOGJHk2w2gO25Ia33zzjbU85h2ALoNQmyF44HbnhQY1fOeLy8F5sq0r5hGmv5z7 xKDRcI2cwIMZMAnpD0NMMXz8QSOGjz9oxPDxB40YPv6gEcPHHzRi+PiDRgwfv6mRE3gQspJEvn5E PPQz+iFcdfL1Bw1/f9Dw9wcNf3/Q8PcHDX9/0PD3V5KGM/AAbBUARC+uvGL5g4a/P2j4+4OGvz9o +PuDhr8/aPj7m6tGTuAhMyWkH41IyDyJQvxBI4aPP2jE8PEHjRg+/qARw8cfNGL4+INGDB9/c9XI CTwIWUkiX38lDf8ALn/Q8PcHDX9/0PD3Bw1/f9Dw9wcNf3+xNJyBB2CrACB6ceUVyx80/P1Bw98f NPz9QcPfHzT8/UHD399cNXICD2agICErgZ89ezbxM4/c9B87dizxX7hwIfGzDmH6g0bQoB9m+oNG 0KCfdQjTHzSCBv0w0x80ml4jJ/AgWAkmka+/koZ/AJc/aPj7g4a/P2j4+4OGvz9o+PuDhr+/WBrO wAOwVQBkNGPmFcsfNPz9QcPfHzT8/UHD3x80/P1Bw9/fXDVyAg9bJVlBwsePt5UR8s1lMIlC/EEj ho8/aMTw8QeNGD7+oBHDxx80Yvj4g0YMH38laeQEHkR9FX39lTT8A7j8QcN/HYbt4e8PGv7+oOHv Dxr+/qDh7y+WhjPwAGwVgDDE5O8PGv7+oOHvDxr+/qDh7w8a/v6g4e83NXICD1slWUHCx19Jwz9p /qARw8cfNGL4+INGDB9/0Ijh4w8aMXz8QSOGj79YGjmBB4ZPOJyChikk/fhLjZwB+lmHgP/gwYOJ n1+2k20FjRjwB42gQT/rBI0Y8AeNoEE/6wSNGPBXkkZO4CFBcZhEGGLy9wcNf3/Q8PcHDX9/0PD3 Bw1/f9Dw95saOYGHrZKsIOHjl1EOuMyTKMQfNGL4+INGDB9/0Ijh4w8aMXz8QSOGjz9oxPDxV5KG M/BwVYAhepGQeRKF+INGDB9/0Ijh4w8aMXz8QSOGjz9oxPDxB40YPv7mqpETeEjIihJoxJVXLH/Q 8Pe3ZI3ff/9d1zt16lTG03RAxH/mzBmtL9GSt0e+/qDh7w8a/v6g4e8vhUZO4GGrJCtI+Pgrafgn zR80Yvj4i6Vx+PDhjCc/nD1/UW3Yc0zbpG/2a3v67a3qiTGbE+v44mrV5rEl6ptVdRrzd1SrAbP2 qhe/+DGxN77/WX2y9rfElu05rnYfzi/IwTcNJORyF2tdpfmDRgwff9CI4eMPGjF8/EEjBn3OwMNV AYboRULmSRTiDxoxfPyVroEAo7a2Vl28eDHjtePXo2d0oDB48g7Vdeha1ebxJQWbGXh0HL+1YHtk 2i711sJf1PIfjqtjp+Inv13AMmPZJdLWFS3sVzF8/EEjho8/aMTw8QeNGD5+UyMn8CBkJYl8/fw7 DQxcwlUnX3/Q8PeXWgPpkydPqkuXLmU82aiJTtRfLDuknnhzs7ouCgwa22TgsSAKPO6NAofGtAcm 7VBjvv9ZLdpVXW9QgoDMtn7p8/WXepu76uTrDxr+/oZo4ORAk3D5cRzTDy7hqpOvP2j4+0ut4dqv bP6cwMO3IuDjr6ThnzR/0Ijh45cauM1g3mog9h8+pUZM26VufWaFNShoCpOBx8Io8LgvCg5KYf+Y slN9vPqwOlJTt+4kEKjhv/Bp611C+pvjfhU00v35aNhOMPSl+eUIJbjMkyjEHzRi+PjLSSNtf4M5 Aw9XBVi+Ig3xB40YPv5y0jh69GhWp0dgJOPTRQfVfYPXqLaPLy0b+1YGHjujwGPCtrKwByfvUPYx oRiyAwBc26MQfzg+Yvj4K1kD7dLOnj2b8caQeRKF+INGDB9/JWmk7W9mnZzAg5CVJPL1l+uwYr7+ oGH3Hzp0KGfIDcADnpO/3a9ue3alavtEdJIvU/t2dXbg0Tk66ZfaeiLoEFFH7edD1NFn/0VVD22j Ti+boi6dz+4oCGwL23aqxP3K5g8a/v6GaPAEYp4kXP5SD+276uTrDxr+/jQN135l8+cEHthJuaPi ypXDdNKPqy05fCd3bNPP16rCj788mm0FjcrTwLMH4CaWbT6q7nphlWoXndArxbICj13Vqsu720pu Zy/UjWac/HKEDjpsVj2yvTqz7vNMyTrgtgyDkGJtc+YRpj9oVK4GTiA8iWDfgY7t5GL6kaYfevSz DvysI/1Bo/lqyP1K7m8oTz8sJ/BgBkxC+iEmIfMkCvEHjRg+/qbQqKmpyXiz8dH3B9RN/Zar659c WpEmAw888Nk1OvGX0mTQgdGNo8/9q5dVDfyzOr1oYqZmHfCeEQYhEnLbSkh/OD5i+PgrWQPt0ir1 9gGeI3vppZdUnz599Lt9wm2QGD7+Ymmk7W9mnZzAg5CVJPL1I+Khn9EP4aqTrz9o+PsbomECwYbt JF6JJgOPxVHg0W3i9pKZ/JdLPkGHaa4gBAd/S9t38/W3ZA2eQMyTBK6I84XZ1vz581XHjh3Vxo0b Ez9806dP1/lmeQJX0vTLK3HAVSdff9Dw96dpuPYrm98ZeAC2CgBEXXnF8gcNf3+xNY4cOZIMqRHb fzqh7hm0St3QZ2mzsrlG4NHjve0lsV+qz2TmQqmz2+dHAcS/FcWqBl6mzm76JtNyDAyRSrj2hXB8 +PubiwaufqFDM9E9CpBdZoJtYASid+/eql+/fnoEzqWBQAQjFvgCas+ePdVdd92lDcEJy3711Veq c+fOavfu3ap79+46f8qUKaq6uloNHz48SwNl2R702R7Km9qTJ09O8qVJ7bVr12blQY95MMw/561b t266DLQkZHkJlz9texTLX0wN136FcjIvJ/CQmRLS7ytWiD9oxPDxF0vDbKc2ugJ/bsI2dWOfZc3W 5q6uuxpcEgUeD7y/vclt/9HTmTlQ6ty+NerogH9vFKuZ+oS6dDp7G6ftO+H4iOHjr2QNtEvDSUjC 1Ozz8W6nSZj1kJ4wYUJy0maAwDwYAgXkLV26NMuPeiyPkztP6MgjbLdaOMqCQIBtMQjiSAvSCHJk gIC69KEO2kaQMXLkyKQd2Ny5c3Wgcfz4cV2P819osCH9tu1BkyjEXyyNtP3NrJMTeBCykkS+/nId VszX3xI0iDU7q9Wdz69S7fsua/b23Zq6dbBk9zH14KQdTWrr99c9O3Ph0M4oQPhDo1vVS62iAGdt RjUGTwKEa/9x+Uu977rq5OtvyRo8gZgnCYnhX/3kNAlXW/QxAJCBAU7cnTp1Sk7kAIbz4Ue5zZs3 W4MJGIMDBChom+3JwAA+jIwgQEEQQUycOFHrYn1Az9TYu3dvMoJhGssBrMfbSRJptyjoN+vk6y+1 hmu/svmdgQdgqwBA1JVXLH/Q8Pc3RAMPHJqRLk7Cf3tqWYsyGXgsjQIP/JW1qWyDCDou1vyuqgZd YQ0UGtNOzX8nMwe5CMegv7+5aKBPgA7NxLgFB5xmwtUONRhQ1Hfixm0QjmSYddi+61YLAwqCIyND hw7V9fAPvQcffDAnkJGwjYoA5rpyBUUS+frTtkex/MXUcO1XKCfzcgIPZsgGZSVwzCj9zCM3/Xjb Iv3Y6PSzDmH6g0bjaZjPb4yd+YO6KToJt0Sblwk8Nm3apK6++urE7n3hA9X7g51Zdv/Ypera665X HR4bkfjufvZdZ/k0+3bLUa0LIOjY/vRf1I2trlJvdro8Cgj+qH599o/q9rZXqlkPXabTIzteoZ68 DYHJHxODr0v7K9XBZ+p8DTUzAMFzIOEYbBkaNLSPsgA4TJbNB5xXANx8PgI2bdq0RANT3rrYtm1b 8vwGbOHChbodPOSKMgxOpAb+MsxbLWgPy4FAAO3hmTVqoBwCFBjSCCp69eql5wWABvwMcDAvBPoI Of9PPfVUEuTY6tAPbZYDqAE/54sw/bbtQW76S60BI8Dl/sY6LJcTeBCsBJPI11+uw4r5+puLhsTY z/aqm/stb9E2b23del6+55jqNnKODiTuG/iBenjKzsT+MWmLanPjrerOKOiQfljH595V11zbSnUf 9bVOs42/dfpnTlnY1BW/ZhSjg/f8WfXbsBujIOOqKLD4izr6/J+0LXn0MtU2CkT2Ph2nP37gsjjI ePZPalvfP6sbW1+lZvWMgpRM+WLZqQXjM3MWw/cDds3l+GjJGjwpwCRc/mIP7XOEwrzVwvLF0DD9 27dv10HEd999p/3QwIkYgQmCFqwjsw5An6+/sZcDKLWGa7+y+Z2BB2CrAEDUlVcsf9Dw99enUVVV lUnFwMn2lqeXB4tMBh4rfjiuerzypQ4aOg2aoh75cFdiLn99eaa9v/RQRi3G76NuVU9EAUccVPw5 OvnX2ccPXK7bhTEfPlvZYtuZ1Z9m5jAGrgwl0va3fPzhOPf3N4WG6woWKJY/aPj7K03DtV+hnMzL CTxslWQFCR8/3lZGyDeXwSQK8QeNGC4/sfdgrbp30Gp1a//lwTL2vRF43D8qDiK6vDhFPTZtV2K9 3l6mWl13Q44f5qpj2vCvfswoxTg6rlMUdFyp2ra6Wu3tf5k6+oLbfh1wmR4VmdXziiyOvJH3/iUe LTHqFGpVQ69TF6sPZuY2HrKXkPtbJR8f0t8SNWwnEPrS/PKWLbjMkyjEHzRi+PjLSSNtf4PlBB5E fRV9/eU6rJivv9I05DDYufMX1RNjNqnbn1kezLD56+rW88oo8Hjw1TiI6DZ4inryo92JPTF1p7qp 08PqhtvvU499sKVev2mvfJ391H/NR0/pgKH1NVeplY9foapeuNxp0x+4QnVtf5U69Fyc3v7U5eqm NnX1lj6WnV9sw7xK4PaLub9V2vHh8rdkDddJxOUv9dC+q06+/qDh70/TcO1XNr8z8ABsFQCIuvKK 5Q8a/n6pgX+rSODEesezK4I5DOsHLxhq3759cltDGgKKJ6ZsUX0/3q2t52txYELDsx29Rn+b5MMe Gb9cj47c3PkRnR7w2Q/qknj5Y81H/aJg4i+6/uc9/xKd3BFA5NrhAVfokY2xna/MyVv6WFwfhhGT ff2z8xvDzm75LrME8dVOQ1/FLhGOc39/U2iE2wf+/qCR63ftVygn83ICD1slWUHCx19uw4oN9VeC hnwoC6Mc/d/eojpEJ9dgbpMjHqv3HVf9ZuwpyJ76eJe6pfPD6pYujyS+iyLqOPnN66pqYBRsVKid mPBgZkli4G+M2A8r4fjw8bdEDdsJhL40fzkN7RfiDxoxfPy+Gmn7Gywn8MCwHIfpsMNyB5Z+/FVL 7tj0sw4BP64m6eermmVbQSMG/IVo4K9NxNboBPr3ASuDediC9Ucya02pNdF6e+aTPUW1cxfqtsvp hROjk/eVFW/VQ1qrC0fqbh3hiikcg5WrgSFzDqHj75Ly5CKH1k0/PhxJP/NkWy5/0GieGuZ+Jfc3 c9/NCTwkUIEmAWFXXrH8QcPfLzHhi33qrudXBvO0hSLwWLvvhHru0x+KZidO1z2MeWbldFU16Kpm ZWfWzMosXR1c+6jLH45zf39TaITbB/7+oJHrd+1XKCfzcgIPWyVZQcLHL6MccJknUYi/pWogmpQY MGGbuueFVcHysIUb6gKPdT+eUM9/9kNRTAYd53YsVlUvXt0s7cTkRzJLWYeWdAw2xF9uGrYTCH1p fnk1DC7zJArxB40YPv5y0kjb32DOwMNVAZavSEP8QSOGyy/fzYHnOXq/sl7dO3BVsDxtkQg81keB x6BZewu2Q8fq3hIYBx3XNGs7/k6PzNJmw7XvSn84zmP4+BtLA+3ScPUrIfMkCvEHjRg+/krSSNvf zDo5gYeErChBEVtesfxBw+2XD5EeqT6jur20Rt03aFWwBpgMPPDtlMGz9xVkP/1e96XZC7/uUVWD W7UIO/bqHfotrMTRo3WvhAdc+3Q4zv39TaGBkxB0aBLF8gcNf3+labj2K5STeTmBh62SrCDh4y+3 YcWG+stJg/jp15Oq84urgxVgizdmBx4vfbGvwbbzUN3/2i/8vl9VDWndouzYax2ygg88UGbuu659 2sdfTsdgIf5y07CdQOgz/fUBw++nT9cF34DZFj76Jr95ArN9Jh/WFLcPsH74gTl8y0XmSRTi910O 24ftAFd56ZcaWCZ+u8Z867CsI+Hj912OtP0N5gw8XBVg+Yo0xB80Yrj8x2rPqQeGrlVdB68OVoAt EYHHxijwGDrnxwbZ8j11o1AXa4+q6mE3RifjNi3OsNyXTtd9dRcjH2n7dDjOY/j4G0sD7dJw9Sth avrCrMdPy+OrsDYNmkQh/nw0+Kl8V/AjIf2NsRz4sB0DD/gbqsHvzTDwSCtfrOVI29/MOjmBByEr SeTr599pYObDkK46+fpbgoZM45mOx17bqLoNWZPYPU9OV1df00rd0/fTLL9p9z37rbq29fXqlm5D Et8dvd7UL6K68+HxWWXT7KZOz2W10fXFFap1u5vVNa2uU52fX5D4feaLdamPtm+4o1dWGfiu++s9 qsugZVn+Qm3JxrqrgU0/16jhX/2Ut+FV6wSu+I+9fqeqeum6FmvH3+6WWRsx5H4tQZ+vP+34cNXJ 19+SNXgCMU8SElVDo4DaYRKyLZzYevfurUaOHJnllzD9/Hjbhx9+mPjXr1+vfUuXLtVl4ONXb6dP n659AH348BuBURZ5Qjc/Yc/RAfnsnPkBOXxCH1/NhRbSNAIne/nJfQBtYLn5F1XOG5cBmDBhQqKB +UK+/EAdRkFkHbYhP9NvziuMozgIpuiDVn3rivPArwBLyL/agku49iubPyfw8K0I+PjzGfJrqL+5 a2CHJxB0PD56o+rx8pos69g3PsHf+9SnOXm07kPiE/yt3Yfk5HXoHQUfor5uLwpGbuzQK6esy8w2 YD7zhTIIWLoOXKDTaKft3+5R3QYvU52fiwOlv/9zfE69YtjSTXWBx+YDNWrk1z/lZV9sqKuvg47R d6mql9u1eKv55IXMWsmG3N8lfPylPAZhEoX4y02DJxIJ+kz/8bd7OM0FjnbIEyXA9nFFzsAEkOXN oX1+eh4nxLRAgIEFyqH9nj17Zp1w6YMG1o95q4XzIAME+HGiZsBCUBcjJ2gHJ21znjDvnN+PP/44 K0/CdqtFBjSYLy4zINv5/vvvk3nDMvncauHIiAwKuY65jLJ8uNWSQSH+StGQH+d67ePd6v6ha3Ps 3qdmJK/QTgwn/H4zc8rc9cj4rLr15dmsx8ur1Y139MzSuy0KaMxyPvMFuxNBSyYfQUf3Icu1j1yW LaYt3SwDj1o16pv93vbZ2rrbNMDxd3tFJ93rg2Xs5HdvZdZMNuS+Ho7zGD7+xtJAuzTbsLtEzbSn nCZh1sOVNk+opgaDAJxYAZ6gERRwvggZUKSdhOfOnZucPHniRkBAYx7K2m61MPCQIwGA1KjvFgWX g8udNr8Els+81SKDA86XLYiTAQPryFst9GE56cOyY70z6ANkcCeB8jQJ+sz9CmmaWScn8CBkJYl8 /eU6rJivv9QaAF529eCwtd72wMsr9QhH+w69dLrb8/Howd1RcGGW7dQvDhBseb5m6rmsvnLMx7xI jrxbugyot/18bJkIPLZEgcer3+73sg+WZX8T58Tkx63Dzy3dzm6em1lD8cflJFzHgctf6mPQVSdf f7lq8ARiniQaAltbHMKXtyIAnKBxMpV+lsVVPNv55ptvtE/easFJUvoA+mTQYHugFYZ6aIejA/JW C+eBty8A3NKQJ276AeS5TvRoFz7b/CIoY5AFTdxmwT8X2T5HUhgc2JbPnFcYtXmrhQGeDDKgjXoM +gC0xcAD9SQa7VYLdlLuqBiu4TCd9GOIRQ7fyR3b9PN1vfBjGMtsK2i4NbCjEMdrz6mew9flZQ8N XRWf4O/sHaeHrYlO2j1Vu7/dox58eUVdOYc/XzP1XJZW7q6Hx2bNR/cX5qpW17VXXfrP1OnO/T4p eD6lLd9c97fPrb/Uqtfn7q/Xxs0/kP3Rt5kvqqph7YNZrPqVW9WlM3UBB4+NYhwf9LMO/Kwj/UEj XQMnEJ5E8OkF6LhOLj6gNtphW74aph9p+tGu2Rb8rCP9UgMnap7MAfo5erBkyZLE31AN5hGmH2n6 m7OG3K/k/oby9MNyAg9mwCSkH2ISMk+iEH/QyMaID3eq3iPXOa1r/0/qbmVkrN1N96ieQ1fUW/aa a1qprs/MzCpz/6C5enTkr1FwIP00Xz3fcr2Gr1Jtrr9Zdbj/pSw/TLZxbavr1INDFuWUaait2JId eIz+7udUe2vBL9GBmqkQ4dS3b6rq4X8LlmInZw/PrK0Ycl8Px3kMH39jaaBdWn23D4hC/KXQ4EOU 0lwjF4BsS0L6m+u6knkS9fnT9jezTk7gQchKEvn6EfHQz+iHcNXJ198cNWTUOX/tb+ofr6xvMus9 cm0UcPRSf/17b2t+czIz8Hhj3s+pdv5iXdRxav54VT3ipmAedm7f2sxaq4PrOHD5m+NxXk4aPIGY JwmXH30U/bK/Alx18vUHDX9/qTVc+5XN7ww8AFsFAKKuvGL5W7IGviyJ4S/iqbGb1T9f3RCsEWzl 1rrAY1sUeLz5/QGnyS/Nnln7uaoeeXMwTzv2xj2ZNZeN0Jf4+5tCA1e/0KFJFMsfNPz9labh2q9Q TublBB4yU0L6fcUK8QeNGPi75yPRCTJY41hW4HGwVo2df8BqJ8+KL82una2fXQiWn53Z+HVmDda9 1TQc5zF8/I2lgXZpOAlJyDyJQvxBI4aPv5I00vY3s05O4EHIShL5+st1WDFff1Nq8AEe4MX3tqvH Xt8YrJFs1TbxwqAo8MCDo6YdqRHvRNizMjqJ3hasAYZ//ki4jgOXv7kd57By0uAJxDxJuPylHtp3 1cnXHzT8/Wkarv3K5ncGHoCtAgBRV16x/C1Zg8BJES8LC9Z4lhV4HDqpHx6VJoOO8wd3qepRdwQr wM7/vCWzNmOEvsTf3xQauPqFDk2iWP6g4e+vNA3XfoVyMi8n8GCGbFBWAseM0s88ctOPIVX68b9m +lmHMP0tVQN/USLe+/JH9eQbm4I1oq3eXhd47IgCj7ejYIO274j40uxv+1T1q3cGK9BqZ4/IrNH4 b5ehLym9Bg3toywADqOf2tKP90PQj2fS6GcdwvQHjeapASPA5f7GOiyXE3gQrASTyNdfrsOK+fqb SkPi6XGbVZ8xm4I1ouUEHgujoCOy3YdPZbxKXTxZrY69ca+qfu3vwYpgEvkeH/RX+nFOfzlp8KQA k3D5Sz2076qTrz9o+PvTNFz7lc3vDDwAWwUAoq68Yvlbsgawc3+N/jdLsMa1NTuyA493oqBjw091 X1e9hKBjzH3q2Ot3BSuSnT+wNbN2447MdRwUyx/6K3+/6woWKJY/aPj7K03DtV+hnMzLCTxslWQF CR8/3lZGyDeXwSQK8TcXDflQ6RdLD6p+4zYHa2RbawQei3ZVZ1IRLpxTxyf0VMdG3xOsiHZmzeeZ FVwHeRxISH9zOc7LTcN2AqEvzS/7K3CZJ1GIP2jE8PGXk0ba/gbLCTyI+ir6+st1WDFff1NoyM5i /Ox9qv9bW4I1sq3dWRdoHD5edx8UODGlj77FEqy4Vvt53ZtMT58+7X18NJfjvFw1XCcRl7/UQ/uu Ovn6g4a/P03DtV/Z/M7AA7BVACDqyiuWvyVrACOm7lTPvL0lWCPbOhF4SNR89Ex8iyVY8W1ct8xa jq+aXMdBsfyhv/L3pw275wvZDj88hi+nUgPfULF9ZZUmka8/3Abx9xdTw7VfoZzMywk8bJVkBQkf f7kNKzbU3xQaEoPf36GefWdrsEY2W+Bx8qvX1LE3OzW6zXjiVv39mdlP3W7Nh+0cfo+6sc01alyv mxKfT700Q/3W116tut1ynepz9/U5+csH/j35No5N57fR96nbb2iV+F+5/6857cDX9ebr1OHX783y 00y4jgPpby7Heblp2E4g9Jn+adOmOc0FfhUVX27FvyIImwa+8Cq/pzJiRN2/oBCk8sNusgy/MAtD MINvsID37t07KWMGOPIz/bx9gBMw6sjP8eMfH/jKK9thHQmWhUlIv+8tikL85aTBfc1cV/TlBB4Y luMwHXZY7sDSj79qyR2bftYh4Mfrv+nnX0VlW0EjBvwSA8ZvDdYEtl4+0xHh5Nej1bGxXRrdZjx5 u2rb+hr106v3WfNhv73RWZ/gx/W6OScP9RE8rHrxLp1ePvAuHSToAMAoK+2VB/6mukYBx8HXO6kn orJp5dnm7H4dcvxy3jEvaPPwaARKHXWgZNYxjcBf8nyPj9CXNI4Ghsw5hI7AQJ5czOH0zz77zGkS PEmxLbQzceLE5ATOz7UzD59+x6fpZaABf01NjW4L8zps2DD9SXf4YdSYNGlS8ul5fjp/wYIFWcsB bX6yHn58Jh9frP31118TDdz2Q+Axffr0ZJ4QMH388cdZy0Ft27qCn/NFwE8N+G1tufyVpGHuV3J/ M/fdnMBDAhVoEhB25RXL35I1qmvOqecnbAvWiPbZol/UafEadOBize/q2LiujW5HoxPvE3ffoJ64 63o9laML+gQeBRwot3zQ3fGJ/+noJG60kZZnM2r2uecGa9pmaRoz+tyeM8/wyflPMwnXcVAsf+iv /P1pw+7A3LlznWbC1Q40OArC2y+HDx9W3bt3V9999521Dkc6kC+BcvjyLNvBLR0EFEeOHEnagclb PUhzxIOfygc4T7bREQZM8vP6lXYbxOUvpoZrv0I5mZcTeNgqyQoSPn4Z5YDLPIlC/M1FQ+KFd7cF K7JN+Wa/qjkVX/3ZcOnsSXXsrW6NbkejE29y0jfyZvS5Ix7JGHKP2jnyPnVjm2ujE/+dOeWWv3hP JijIzTPttze7qttvaK3G9b4l8aXNA81Xg+2jnOTIe+WBm6waJlzHgfQ3l+O83DRsJxD6TP/ixYud 5oKrLdwWQTCwceNGffLDaANGNGR5XlXjlgdGPIYOHZrTFkYvOJrBNhFgACyL4EGOsqCceauFwY+8 1SKBtAxyCJa1lafJkQNwmSdRiL+cNNL2N5gz8HBVgOUr0hB/S9TgG+SA16fvUQMnbg9WoE351hJs XDyr1M5/KLXgf8k4iEvq+Ns9msRm9O2gb1fsf71rln/Ugzcn/qq3uqsno5N211vaRif0bkkZlz8f Yxt977nRmg9bPrijDjy+6P93az4MyyHnY9crndXNbVup1UPu1Wm0Yc5nzdSnMus77rwk0o6PhvpD fxXD5Ue7NAQAEqamL8x6OGFz1ICGWxqA1MfIhCzDQIMwnwExgwwGFNu2bdNBBMvZRlKkFurgVg2e 58B8sSzaYxkYAxzk2dYVTaIQfyVppO1vZp2cwENCVpSgiC2vWP6WrAG8/fk+Nei97cEaYO/O+TE3 2LgUneD2DVZq4f+vztZfl8msw8mvX1fH37m/SWzXqC56RIO3LPRJ/pm7csotj07isgxGRFa/FJ3Y RRm21bdjFEgIv8uqogDgySjoMMvb5ommA4ix3XW5I+N6xKMo/7gtqz5Mzq8OokZHQYfIP/lF3X18 BNuu46BY/tBf+ftxEoIOrRC42knTKNTvutUiUSx/Yy4HUWkarv0K5WReTuBhqyQrSPj4y21YsaH+ ptCQV3+Tv/lJvfj+9mCeNvHLH9Xvx7Ij9zjYGBIFGf/RbnueyRSsw9kdS9Tx8Q9WlFW980AmiGhv zS83O7Xw/czaroM8DiSkv7kc5+WmYTuB0Jfm9x12L8QfNGL4+MtJI21/gzkDD1cFWL4iDfG3RA35 oNOyzUfV4Ek7gqXYe1/+lBtsqEtKHZoSBRb/qX77bWamTh0uVh9Uxyc8FKwR7eyWeZm1Hb9ATCLt +GioP/RXMVx+tEvD1a+EzJMoxB80Yvj4K0kjbX8z6+QEHoSsJJGvn3+ngYFLuOrk628uGrjHSPx6 9IwaEp1cg2XbW7P2qgNH6j7gFgPBxodRMPH/z89O78/Ur8MlvCb93Z7BGtHkt1owJO57fDSX47xc NXgCMU8SLr/82yW4hKtOvv6g4e8vtUY+x0dO4OFbEfDxl9uwYkP9Ta0BvD7jB/XS5J0t3t6etU/9 Ij5RHwPBxjSlFv1vDbMV/5ppJ2rJeJfE8Q+eiE6QvYI1gp2Y2i+zlrMhjwMJ6W/qY7ClaNhOMPSl +ctpaL8Qf9CI4eP31Ujb32DOwMNVAZavSEP8LVVDRpHfrPxVvfzBzhZpoz/5wRJsRKhaGAUO/7Vw 23p/psE4isdf6YgzKz9Rxyf2DtYIdmbNrMxaVsnLiCTqOz4a4g8aMVx+tEsLtw9i+PiDRgz60vY3 s05O4EHIShL5+lvy0GW+frQrb7f89OtJ60m5uRqCjR9+qc0svUDVIqUW/x/FtZ9eyzSu1IEDB9SW LVsyKaXO/7JNHX/v4WCNYBdrjmbWcvzehHyPD/or/Tinv5w0eAIxTxIuf9qwu6tOvv6g4e8vtYZr v7L5cwIP7KTcUTFEx2E66ccQixy+kzu26efreuE/depUTltBI1cDQ//E1O9+VkOn7Gq29kYUbOw9 mL0Da5xYr9Tyf4uChP+zcezYyoyQUuvXr1eLFkXBTQaXTh1XJ97/Z7Ai28lvRmfWcLzvA6EvKb0G TiA8iaDvgY7t5GL6kaYfevSzDvysI/1Bo/lqyP1K7m8oTz8sJ/BgBkxC+iEmIfMkCvEHjRj7fz2l hkUn6OZkr03fozb/UPcPngQINlb8Qakl/3fj28W6j1XhWwyff/55JhUBB9ukR4IV2S78Wve2R4zs YV8Px3kMH39jaaBdWrh9EMPHHzRi0Je2v5l1cgIPQlaSyNePiId+Rj+Eq06+/uaogWiSwKjHsA+j k3YF22szXMHGhijYuCwKBv5H09n6OzLiSq9nvKkQVltbd5sHV+cnJj8arEh2avGkzJqtg+s4cPmb 43FeTho8gZgnCZcfV7n0y6tkwFUnX3/Q8PeXWsO1X9n8zsADsFUAIOrKK5a/pWscPVp3L3z/4VNq eHTyrjQb9dFutWH3scxSCOBvrGvaKbX0/y2N7X42MyNKvztlxowZ2n788ceMFy8SW6xOfPBYsCLZ pbPmX6BjhL7E398UGrj6hQ5Nolj+oOHvrzQN136FcjIvJ/CQmRLS7ytWiD9oZGPRhiNq+NTohN7E NmzKDtXhvoezXp19Z6d/WssO/WCrur79rVll583LvCxKBxs3Rif+f/GyC4v/RfV74PK4jbF/tJah ybL9H7o8K2/Th/+ezEu7Nlep6m//VanDdbdVfvjhB/2KZXyDAR+rIi4c+TE6YT4erAh2dtM3mbUa Q+7r4TiP4eNvLA20S8NJSAI+PCPCe/v1AeXwUjhzXuvToElIP16tj++o4ENv/FZKWvmGaEj4+AvR wPK89NJLybdfJGT5cl8OgL60/c2skxN4ELKSRL7+ch1WzNdfag3g3Tk/qRFTd5fcuj48WLVqfZ0a /O46nX714z3q2UEjVY8ePbLeRHnh9O+qX6+2qsfdf1GnF/y7Usvqt4Nf/EG1b3eVmjjosiho+FMc eIz7s7Us7Oyif1cdbrpSfTPmz6rfg1dEgccVSR7qt7suCjbm/kGn57z+53heqnbo+du0aZNq06aN /hrlp59+qhYsWKD9AK7QT0x5IliBVjt7WGaN5sJ1HLj8pT4GXXXy9ZerBk8g5kmiITDb4mfpEdzT D5/tQ3ESpb594Kpj8/MDdvwgHYGv58LPr96Wajka+mVdiTQN135l8zsDD8BWAYCoK69Y/qCR6z9e e06NmBad/EtsDDy+WrpXnb9wSR08eFC1b98+Ht04V63Uxo5KLf+Ttk1TL8sED5dnpfs/9JekjMvM uqYdnPNndUv7K9W2j/+sLiz9UxR4/CWrXeQjiGH9Mc9EgUnPK/XVBq6c+vfvr2bOnJllEic+fDJY IfZRP3XpdF3HhduH5j4djnN/f1No4OoXOrQc2J6ZohlgG7iixyfv+Vn6NA3zK7b4TD5QXV2djBDw 0/aAqzw18HVZ1AHHPLAcgwAJV1ucTzMfIzDMgzHwWLp0aZYf4IgNRziwPBzBwfKgHL+si8CAX9ad Nm1a0o6pzy/3UgMwv96LZaC29DMPSNse+fpd+xXKybycwIMZskFZCZxDM+DMIzf9x44dS/xYAfSz DmH6g0adhnzoceOeY2pkdPIvhY34cKd6oNfjql27dvrAITatWxYHCG9dET8oKmzTtMztEktefZZW F3ntrrtaVc+L0xeWXRYFHldGgUUUeBhlpW2a3UW1bt1afzYbBzLah2HkY+rUqfoV3sSppVHnNDXq tII1yC4c/iGzJuvAfbqYxwfrEKY/aKRr0NA+ygLgMFlWY3UbtwlwXgG2M2HChOSkhxMuNTHF7Ryc SHEylNoMVDBfOHk+9dRTyYmb5aUGTt64dcr3Ic2dOzcZaWG7sF69eiUndVy5sy38tZRtwcCpDZN+ XGjxS7hIMzBYuHCh1oaPbWE5OC+7du3Sy8tACvkAP9PPoIjaMMwf9dmu/BIv1wfKALblQFACffR9 0m/b5uSmn9sDMDVgBLjc31iH5XICD4KVYBL5+st1WDFff6k18B9oYv66I9bAoLFs7urf1OzZX8RB AJ/ZuHBKqR19lFp5pTr41ZXx7ZEXr9JpaXPeuFK1bnWV2jY92+9jmz66MtZ8O7td+tPMrHNh+ZWq 30NXqf6P36tnH6M0t912m+588FfasWPH6uBjw4YNOh84/+N6VTO1b7AG2LkdizNrMf4QnG1/p8/X X+pj0FUnX3+5avCkAHNi09/dJuBqiz6OgnDof+/evapbt276NoUEh/ZxYn355ZeTEQK8fA7lGchI Y6CBejw54yFyanO0gUELHiqntu0WBefNpcVbF65bLQDaReCFEY1ff/01CWawPFgXKI+gSbbH+YU+ R0BMY3muD2rblgOBkWwfoAZMwuXn9oCZGq79yuZ3Bh6ArQIAUVdesfxBI9cvH/Cavz4KPj6KAoNG sq9XHlZnzl3Uz0HgRD5x4sRMsNE3OpFfnWObPopP+BNfrPPNeeOqKOi4Ogo6EATEvoNfXa2DlP49 63wuY5vz3rbnS7uw/Oo4sLC0C81b2iP4ifKq4hMiIvBbbrlFH/yzZ89Wjz/+uD5wcXASF2t+VzXT ngqWp51eNjWzBuvg2qfDce7vbwoN1xVsgu1d3WbA1Q415IkWPgQiuGq31UGwIG+1sDxHB9I0cLKX X/5mW9AC6tNGYNCzZ0+tJUENWtqtFo5mMDBg8GPeajEDA2i49KUGlwHBlPRLMPCQD9ED5nJI5Ot3 7VcoJ/NyAg9bJVlBwscvr9Tlm8tgEoX4W5oG8d2a39QrUZBQLPsmE2xk4VI0T/tGKLWqVVFs00fX ZoKJa635jW7n6v6mjNGbL774IsuSER3g0kVV81G/YHnYmTWfZVZeHCgfOnQok4rh2qd9/OV0DBbi LzcN2wmEPtPfEKAN3oaQZgsaeIKmjRgR9T0RMEIwbNgwHXhwhAAwn2lgYEIw8JDLjbYYeKAdXtCZ 2gxMCHMZZNAAsy0jDPOEWysE9MxACoA+AwO5TgBb+3K0BIZ2bcsg25L55vKxHVkekH558Qsu8yTS 9jdYTuBB1FfR11+uw4r5+stFA7cIJGYtORQFDXsabJ8uPKhqT8f3+BLoYOMV+33cAmzTx63j5zLm t7bmN7pt6phZwPigmTNnjtVkx3Vy9lDrCTZYrp3d+HVmrWWD+y5MIl9/uRyDZp18/eWq4TqJuPxp w+6uOvn6g4a/v9Qa+RwfzsADsFUAIOrKK5Y/aLj95lVkPPJhDyxs5gw2fhwVv9irudrelzILGx9A uBqyGe7BEmc3z1U1Hz8drB47t2tpZo3VXWFLcN81/eE49/c3hUYxh91d/qDh7680Ddd+hXIyLyfw sFWSFSR8/OU2rNhQf7lpYOSDTyMDG/ccV698HAUWDps670BusKEuRo1NUmrtDS3DDtfdBsD6+/rr r60mA/ALv+2NTqz9g6XY+QPbMmsrRks5BhvqLzcN2wmEvjS/77B7If6gEcPHX04aafsbLCfwwLAc hxuxw3IHln78VUvu2PSzDgE/Onj6+f0R2VbQiAF/QzTkC7t+qz6jRkVBBm1aFGwcPVGnESPacQ5O VmrdX1ue1cYvDgNwH/Wbb76x2urVqzOllLp05qSqmR6dYINZ7WJ13a0/7Iv57Lvwh+O89BoY/eMQ Om4zypOLHFo3/TU1NYmfebItlz9oNE8Nc7+S+5u57+YEHhKoQJOAsCuvWP6g4e/HjkPg4dDcYOOS Ur9/q9T6m1q2CXz77bdOy/5L36XoBPtMMMNOfjlCXTpXF/QSrn3U5Q/Hub+/KTTC7QN/f9DI9bv2 K5STeTmBh62SrCDh45dRDrjMkyjEHzRsiIKNo9EJdMMtwWC7+mbWS/xFWgQXaSYPqNNLJqmaGdEJ N5i2szviFyQBeIkQXmBUCceHj78lathOIPSl+eXVMLjMkyjEHzRi+PjLSSNtf4M5Aw9XBVi+Ig3x B40YPn5TI8GZA0pt/Ht04r0t2C8TMytF6WE//G02zQ4ciNZdBuf3rYlOuM+2eKv9Yqi6dLoms1bq IPdFCR9/OM5j+PgbSwPt0nD1KyHzJArxB40YPv5K0kjb38w6OYGHhKwoQRFbXrH8QcPfn6ahsX9M FIDc0bKteklmZcRvKvz+++9TDa8VJi6eOKxqPnmuRdvZLXMzayMG3h9g299c+6HLH45zf39TaOAk BB2aRLH8QcPfX2karv0K5WReTuBhqyQrSPj4y21YsaH+StbQOPubUlu7KrXpzmZjmz7L/gQ/rd11 16jqZVGwIctj+TNYtWqVfpGONIxy3H///dnt8Js0F84lJ+CVo/+Z5Ldtfa068EG/rBP0senPqic7 36re6tMpy1+pVvv5EHXxZN13eSTk/lbJx4f0t0QN2wmEvjR/OQ3tF+IPGjF8/L4aafsbzBl4uCrA 8hVpiD9oxPDx+2poVC1UavNdzcI2fXZb/Er22bdZ8xPb/lBm4eNnEvD5ex/Dq9T5Qbmaz1+Kgo5H MsHG09FJeYD6dND9qtsd7dWRac/otJlf0fbZIHXh17pXNwMIwmz7lWt/8/GH4zyGj7+xNNAuDVe/ EjJPohB/0Ijh468kjbT9zayTE3gQspJEvn7+nQYGLuGqk68/aPj7E/z2iVJb7q5o2zTr9jjw+OJ2 az5t09xn9AgFPoOPfwDh65H12eTJk3Ud/Y2aCGc2fqX2TOyrbmzbSs15+SFV8+kA9eqjHVXfrrep YzOeU092uVVz+Cvdzv20Xi+zDa79qrkcHy1ZgycQ8yTh8su/XYJLuOrk6w8a/v5Sa7j2K5s/J/Dw rQj4+MttWLGh/uaggf/244o/Cwfeik7OHZuNjRnYXgcM896/tc5/5PPMwsbPJixatKhew3Met956 azLigav/2uikbNqqNx5Rra+9Rq1981HNeRumXZtr1S9TnrbWKVc7t31+Zi1lo779CtYcjg9YS9Sw nWDoM/31AcPv8t1CANrgt0n4fRMAbwmW3xWhye+V4Dh0leHH1OT3R8wybMdcDvpgvrcPbN9XAVzl pd9XoxB/OWmk7W8wZ+DhqgDLV6Qh/qARw8efr4b5ynX9uvSfhiu19d6Ktwub71X9erdTPe5to06v vyf219Y9KLpr1y61ePFiL8OXedFR9ujRQ52qPhKdnJ9P7PiMAapPl9vUU11v02mMhtzevm0m2Hg+ CkIejYKPVkm6nE1+2A1Ap4ogNRyDMXz8layBdmm2YfeGwKwnT9rMQ8BQX3CA4EQGGQDLsrytnca4 RcGPy2EZcAETbrXEoC9tfzPr5AQehKwkka+/XIcV8/U3R42jR+u+1JrgyOzoZH1f2duFzffpAGPe +7fn+PTDpSsQdMT+g7/sV+3bt9e3WpYsWZJjeJ7jpptuUm+++Wbiw6jHgw8+mIx4qEuXVO3M6EQd 2Z73+qqbr2+j1o59LPFVzXhO3fHXturLoT11GrdhdFCSyS9HO7dneWaj58K1/7j8zfH4aGkaPIGY JwmJu55f6TQJsy2ctPEZeJ604WfAgKDCLE/gTcIMKly3D8zgxGyL2vxKLYIg+Ul6tMvRF9kOv3zL r+iyHflVWH4xdvr06bqO9OHz+ASWg+1v3rw5443B8nh/EHD48GHVvXt35yf/6TP9abdBXHXy9adp uPYrmz8n8MBOyh0VQ3QcppN+DLHI4Tu5Y5t+vq4Xfnwa2GwraJReAy+AMqNedXJ7tHf0VGpb58q2 vc/pkQvc/pg7d67uDPIxrCPi1KKJ0Qn7hYq2U9+NURdPHMksUQy5/xRzv5JtwR80ylMDJxCeRHAr Fjquk8ujr21wmgm0I9t6+eWX9Ukbt2LgZ8AgT8SmNm61oAzOTVgm+jlfKM8yaCdtOfDcFk7wMH4u Hn6UQxDUuXNnfTEmNRgcQR8BC5ahb9++OmDBxyRlgEBtgPPEgMm1HPhrP9rAxQ7nF/7169fr8hih NZeDMP1I0+9aV6wj/Wnb3PQjTb9NQ+5Xcn9DefphjDfCrZYIMk+iEH8la2hciHaofS9GJ/EuFWmb FgxL/hZbW1trDS7SDFcfxLkfVlpP5pVgZzdlf7IenU1VVVXqvhCOjxg+/krWQLs027C7xIvvb3ea hFmvHG61TJgwQT366KP6RM/RDpaHDgKP48ePJ+VNv3mrBS8ZRFtytINmjua4lmPv3r2qW7duuq8h ZDvhVksG+foR8dDP6Idw1cnXHzT8/Q3RSFC7Sandjyi1PTqpV4odq3txGIKIZcuW5WU//PBDpnYU tR87ZD2pl6ud/GqknmcJXHVIuLZ5vv5y3Xfz9bdkDZ5AzJNEQ2C2VcpbLTix9u7dOxnl4K0WBhRo F23wVgjb4a0WfkLBdquF9Rg42HxA2nKwPG+1ANCW60oCaZoE2qXfta7MOvn60zRc+5XN7ww8AFsF AKKuvGL5g4a/vyk0clC7OQpCHo2OkK7lbWfrvp6KoVhbcJFm6CgSnD+raj+LTuplbPpWStXPmRnO hmvbuvzh+PD3NxcNnKShQysErnbSNIrlz1cDQRCfAfEpD5TjcgD5+oup4dqvUE7m5QQeMlNC+n3F CvEHjRg+/lJoZEEHIY9FJ/pu5WW7/pGZwRjLly9vkEnUfjaw7Oz0sinqYk32cxsEP4+etm0lpD8c HzF8/JWsgXZpOAlJyDyJQvzlqIFRB9utFld5WEtdVy5/2v5m1skJPAhZSSJff7kOK+brDxq5fnOo TeP8MaUOT4v2rAeV2hGd/Etp+4dlZiqO6m1BhY+xMwLOrJ9tPfk3tZ1ZNyvns/R4gAvDyOZ2qrT9 yuUPGv7+hmjwBGKeJFz+Ug/tu+rk6w8a/v40Ddd+ZfM7Aw/AVgGAqCuvWP6g4e8vBw188ZVPPGfh zH6lDoyJAoHuTW+/1704DPO/YsWKBplc3gsHd1gDgUa1z4eoMxvmqEuWb6bgvjPuA0ukbad8/OH4 8Pc3Fw0E6NChSRTLHzT8/ZWm4dqvUE7m5QQezJANykrgmFH6mUdu+nFCoh+dJP2sQ5j+oFG5Ghgh YPkcnItOknhd+57Ho+CgR+Na7ZaMaPxFWltQ4WPySfSLtUftwUER7eS3r6tze1ZEYvFfIiUQ3GHd tsT9Kmg0jgYN7aMsAA6jn9rSj3+F0I9/SdHPOoTpDxrNUwNGgMv9jXVYLifwIFgJJpGvv1yHFfP1 Bw1/f5qGFQhGjkTByA9RMLIzChiKZRfrhgLXrFljDSp8DP+pT3DpoqqdNbBodmrem+rstnk5/z4h cMCaL3pzrXeXv9Tb3FUnX3/Q8Pc3RIMnBZiEy1/qoX1XnXz9QcPfn6bh2q9sfmfgAdgqABB15RXL HzT8/ZWogb+24r0aqTgbnYyrvlPqwGvRnnp/fra3X6aRODJfuXJlQYZInzg1/+0oaBiUl51e+bE6 v2+NunSmJtNKLjCa4Xswh/3K3x80/P1Bw98fNPz9pkZO4GGrJCtI+PjlewPkm8tgEoX4g0YMH38l aMiTvBMYzTgZBcoITI58qtTPI5T64Ym6wOPQe5mCSr8p0RZM5GN42RZxdvv87KBi6SR1Zt3n+gVj F478aL1FIoGhTQRdeDajEraHjz9oxPDxB40YPv6gEcPHX0kaOYEHUV9FX3+5Divm6w8a/v7G0Mj5 sF2RgCAAz6TIf64UA3xlNeFavkrdHqY/aPj7g4a/P2j4+ytJwxl4ALYKQBhi8vcHDX9/MTXwt1KM nJif6EagwYepfIF2YPjmhQSCIZt22B7+/qDh7w8a/v6g4e8vhUZO4GGrJCtI+PgrafgnzR80Yvj4 g0YMH3/QiOHjDxoxfPxBI4aPP2jE8PEXSyMn8MDwCYdT0DCFpB9/1ZIzQD/rEPDzzYnwc/hZthU0 YsAfNIIG/awTNGLAHzSCBv2sEzRiwF9JGjmBhwTFYRJhiMnfHzT8/UHD3x80/P1Bw98fNPz9QcPf b2rkBB62SrKChI9fRjngMk+iEH/QiOHjDxoxfPxBI4aPP2jE8PEHjRg+/qARg+svzV9J28MZeLgq wBC9SMg8iUL8QSOGjz9oxPDxB40YPv6gEcPHHzRi+PiDRgwff3PVyAk8JGRFCTTiyiuWP2j4+4OG vz9o+PuDhr8/aPj7g4a/v7lq5AQetkqygoSPv5KGf9L8QSOGjz9oxPDxB40YPv6gEcPHHzRi+PiD Rgwff7E0nIGHqwIM0YuEzJMoxB80Yvj4g0YMH3/QiOHjDxoxfPxBI4aPP2jE8PE3V42cwIOQlSTy 9fPvNDBwCVedfP1Bw98fNPz9QcPfHzT8/UHD3x80/P2VpJETePhWBHz8lTT8k+YPGjF8/EEjho8/ aMTw8QeNGD7+oBHDxx80Yvj4i6UhA4/lTAQLFixYsGDBgjWe7dz3/wG+J1TDVftUlAAAAABJRU5E rkJggk== ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAmYAAAFxCAMAAAGZzqSQAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAD8UExURZ+fn+zs7O19MXl5eXp6eqGhoe7u7u/v76Ojo/Dw8MrKyvHx8X5+fqWlpfLy 8szMzFlZWdnZ2aamps3Nzaenp/X19YKCgs/Pz1xcXKmpqdDQ0Kurq/j4+NnZ2YWFhdLS0vn5+WBg YIeHh9TU1K6urtXV1fz8/NbW1oqKitfX12RkZLGxsYuLi////9nZ2bOzs42NjbS0tNvb22hoaI+P j93d3Wtra7i4uJKSkmxsbLm5ueDg4Lu7u5WVleLi4ry8vOPj4729veTk5HFxcdnZ2ZiYmL+/v1ub 1XNzc+fn53R0dJubm8LCwunp6XZ2durq6tra2p6enuvr68XFxUgfdX0AAABRdFJOU/////////// ////////////x///////////////3/////////////////////////////////////////////// ////h///////////////n2cQVZ8AAAAJcEhZcwAAFxEAABcRAcom8z8AAEBUSURBVHhe7Z0Ng9u2 0edXtdOoWT/38Pps11uvLqeNe0qkitvNNm2j2r5z3bOSppZz7X7/73Lz8icIEgAJiNTLyvyZpigO gBkMhwABktqz/3vbI2e3eY/sqLQsf8hzGLwdVEjVtlv6xwv/n+iHtQcfQYFbmiXEB+eu7sGHK3BL +w/FSvNKP/KR2eMXEI7fUBo7IhEqxPEbSuvitzWvCPryC2XyKqdF/r/Tj8nnxZ6AgPJraRmvCDIX pYlXoBMfI/0ICyo1Vb+hNHZEGG8aKqLut8I22mIJ//dEiKYJRcgzXhH0RRP+wkpDNZPNkdkD22oC Qks7l23aGek3pKkJHL8Vaqm0pgj5QagLitKe84qgLyjNSuPxm5YW8lvB7QgJf8hHv8pHVAX6/7l+ cIXkgwSapiYgan7LbzUh1WL7mgrit8I2K01qTf/+V1ox9EUT/mCl8USIpglEyDe6TTsLtVSLpghB mprAOQpb+A1tDm9apY1b/KaRw5tVv2G/pKnbZmoquYqUpUA2K34zaYhaaa8mmpByUev1SrdfkRGF gDZJoNu0s5KmUtrUMgE11W3ZLLZFoNtaU93WNFZp17qnC47fiHtZNyHV8uAt7b/kg7jJz7MNtm3k TFzJZgVfaV6yZZ7Nrj0l5Hf3m3ysm/XSZktsliBlBYpNH45tTx7Ib6UJ11RXbJaM8ofZyueB6JpG sZPS6Eohzy+L0ub6wYRiocIMn6VtWf7WlPYX/WCu8BnHI/AbtyjleWr8EMaOjzKEdmHbbR+Y0oif 85sMtt3bjchHfDLWWfH6EhvE05fYKEqj1i7PTGnUbqawW7/1xdl/hw974Qyf/XAGG3thp6XB4O3w 2cbHmAWVD27lqnvwURXUbcN/7cWRxvpoFNBGzbbb4gJK04xMcnx4rgxLgV0aN99Uey2N/ZBKpTSg pdU0J/lt84LXBI0Mi8sxe6wYN7osShuXrUAxvOPNyqUu9jQLtKbcLj/hr4HBYg1N444otbSfiisF 2qMJoav+gQjRNPY40Y6Qpalp9VI3FCGaRlVagqKmb2XNRPlN07BKr9+IGXp1JLTTaD2sPXqpy9fG vgj5uugyaA9Ks9JYH/AbSqsJaEOPwoLXzAiDRapibRCpmzqI1DTUM1UFKO3v1gUoEkInPpJqyl2e 9Hq0RxPaaayPqJq+5pVQDCxkk6pgkuNDI0TTqEpLgNLUMAFDKKQRZ9D/WiBoGlYZipACJLTTNPsN jY7IqqXRHk2ouThB8aGR4/GbEdCXmm1Vv2lC2awMInUbftNEtt9KEgaRrsAujU59UwvZLLbZAmxz llpNdZsE9MU5Cq2wmgJ7m3BLYyW4GrzRjxpFCdxKxJWmQ8p72p5u6oXe5uv8arbKokprIMvXOlo3 3ObZ+p72Y+aoubRz7itKtIVGaTLOpG2ZQMUsqqe0dXme0WBy+hm2DVTCJl9Qae48QFJNlWpNK2hp tZ3NtJf2H/9xVY72sjtsMGXrIkMnQkvQwVPQtreXRaXl2BeYNp5QLW5pZvCxk5rKdiTtpf3iFzf5 hewgKuPJ8nqnGEVqCRuZ6UBpRY6d2NYLpjQy9lJaKCYzxyjP/4BP5p22LR7bihEoSvvhB9s/FvM7 o4QoS7v7t3ToKK0Iyl34rS/6HgMm1XKfPCrTKOxutBk7MI5pm2ySZXNpLGUih6NTF+lnrW/WZu8C pumA3vJ19kguLumTls9181f6bYcCVd9oGv/Xa1AgO6li8qmLtdmjgLd9sbZGlykiGKXYea1NPQrF N2tzWwHjjbV7xJosMEoxeyUXuV439dq5P4HQfEA5NYxSJDHl1mIkKnSzbwF/K02bfShuEwOWmKG7 IjuDAdKjgLdL08bz4prqzo41GKXYea1NDZDim7VpC+B4pSUH4zugWW7HGoxSzF7JVQ2QNgGKUJpz CLZpWTmvItxSuskrlKXQDhnryXwWT24VmxECFKG05WD1pWlfP69dhvR8QFGE0pKDsUz7qbyNZoYC tKAsxeyVXHs7oKtnGGaUscapUZYiiSm3FkPlFZsRAh2iA1vASz0Hf7NPAyfW+D+MUmSnhIKWIZnN ZrMARim2wCSrbFZM+wc+CzTWUJZi57U2NUCKb9amLUARSksOxjYtkzrwNK8dayhLMXsllzekggIU oTTnECzTRuWg2I41lKVI4mCANAtQhGILeKnn4G/GtJ+KsaaBJb4SxblahmQ2m80CFKHYApOsslk9 DWrcTrhWKEuhsl7pwsV+XmxSy9kuQBGKLUDfJWgOVe8z7byINa4BylIkMalkQeiA4mQWbAGKUGwB rBKKogiPabPszvSh3hJbDiisEmwBilBsAdIKRVFE4wEVEcpSkFEEKEwo9rIASQVSbQTYpdgClCGw sbSLaTRNFpSlmL01QZm86mY6YEaAXUpIwIcY+E3Tp1laYg27BN5RCLBLkB1tsYZdAhfMAqLFa/0Q KqhZQYRpkzx7wk8m0GKx+ZjfXcyoC8k2Mzqli0djvXBBi3wss5TZOM+v8NxRZ9PSGJtHIEsqBc3R DRK035cc9G7aRf5kkc/yFbmYXKn3/EIF0X5Kvs7vr/P7bEMXY5XnwFpNW9JJQf/v6YjVHv86z1cz njG+5qdaGuGCpmTv+QMNjLIxhYE90RwixmuBp8/iCamINu32eFB7LNNkPfv5Mp/cbEZmh/A0v3iP zSov7QeTbEysE1ZBFez9Fx+wYaiYRt0rz8bw6IBPHCtnln8ZiCf7xodNwLT39uy/bdplebsXOF6z cHZsS6igZgWPxTTu+em4zfLvv+WbBFbOS26kfNg3tWy+wKdQFvRbaofKm5mWgsxV4Jgm93io6ftX JSe1Sb7nTQnrCc4K4dOgvJFWMc1RMMSanwTT6HpJ7o3Sf24qypybLJ94W4m5PJvkg7IYyoJW3L1i u2KaR4Hrtextfvm2Zhpd/VzZ91oN83xdPNdVgy+YCsqCxqP8vuz3KqY5Ch7HAT02yLRjpdf7ob0y WJbO47Jsmvj2wW7wWHbFwxoC58j+ESscy7JsScNgfJE5HEqoS2VzlwKlMc5MBspsfbM2dyMQGizr cGO6q4Bp9JlUxFSqsrlLgdJ6NHX2UrGz60KlWt+szU4CockySvOqMrsqntbMMi2nm7T0LWBcy1b5 12V7NvHM+0p25xAUmz0IFNeyRf47uz2DUYLu2TlihmMZT+oV7RklOaqjacFpYZRgMusnLVbY0mJt dhIIDZZpKhgloD4qkBKovrrZt6Bi2ROx2oLSvqvM4afe6dlSoNpLy7JZ3TKpA4wSTP30k5ZOB40W a9MSCJZlxb3PAk0Fo4QDHc0n3+u8883Uuj6bVCyzyqFaWN+szaAAsSpUBE4OxT4D1LKreeX6DEYJ umdLUIaAXQHEjIplyrjanqEsQTytlSPfF5u0xAhQhlAReHIwrs8q9Hg0UYZQEbQezbPySlbRZ2VQ lpD6SE5FgDKElhxCadmPz+o+I/OP4mj+/vmxHs2vzCPyQNOiLAH1UYEUQfXVzXYByhAqAlnqOWzL pjgDbsx4k1Idybmp3OVozzQtyhJMZv2khY6E9c3adAV6I1ipCLBYOQT3DNgU7ZmmglEC6qMCKcE9 aEEBjBIqAlnqOWzLnu/4DIBRQkXg5FBKy3627w4pnBpGCXZ2XdyDhsUVwCihIsBi5RDsOKv5TEep KEsQTweHry0ClCFUBO0jYTG6xiRUVecQFJtBAcoQKgInh1JaVrQaFpwaZQl2dl2sQ0CLtekKUIZQ EWCxcgilZa+Li7JlpT1DWYJ4WjMHm62gAGUIFYEnB+PG2fXStGdcEZQlWNmDBy0oQBlCReDkUErL JsXRXFbaM5QloD4qkCLcZisoQBlCRSBLPYdt2T/xWUKpjuJo/nS0Z4DTnmkqlCWgPiqQEtyDFhSg DKEikKWeo2pZHUr7rmJZpwEvyhBsAYZTighUe5NlUgeUJZj66SctPRxN2KQUewmPZWu0Z5oKZQlR RxN9rGALUIZg54BNihF4Lbvv1p7BKMEWoAzBzoGkCtIyrmUyg6ZwXpQlFIXhkxbP0YQOwRagDEH3 qgBJlWIv0RRnlCbcnqEoxRYgrUCFGAF2CVx6IUARCgRM4xnQdDRRlGILkFbAXhFgl1DsZQGKUJCW abBMx6UoS7CHr9ilhAQyroUAuwQd8KoAuxTvSNiFzA8fTexSuhxN7FIgYLyWmVOz4WhilxISYK8I sEso9rIAuxSkZXyWFbNUsiCLgPqIALuUkIB2GAF2CbyjEGCXYgQhy8zMng/K7CW0PxktqCnOAhyL ZSty4MM4n9OCPZrR/cGNRsuyPPCkjodoy6hTGGcTWrBHMmb8aJo8+Hx9d6FPnTVaxr+7Ib/rcM5V Kk8xH9GWXeX3ZEH52K9m5F9ovOJno+54ioZ/daPRspt8OctXZNkzquB56BFOJdIyl5AFsv889Cyf H2/y3Vi2eEv+4VP7ah7zKDMlf1jO+VHG6xs6KvqE/W4skwG1sazdtmn+sJ5zqNx9eENHOd4yDdVq 86YZl/rMpkXIYoM+BVp/grmw/lt8RlpGJ906v79a59d8aqmdhWX5A/nlem0MbLTs4bO7C7KM6nj/ JGuJxSjLvlyLZcv8Lit8bSyji/I5nXPmQcBGy/Lshn3Glt31YhnhPOobsqDZsgRiLXPYu2W3x4PY 8xh8pmT53eJFPqn21zTu1uAXbAus3ZX99i/jVHAvBBS3INsyGohyh8YnW9F7F2ysPZYFdM5ii7At C51984BlC/uBZq9lPL99TlaU/TcYeS1buQUqwXYh5LMrq7twLWNeUrtVDoUN9iSubYFNN8vwyfgt iyDGsk4MlqXzmCzjaYVJ/iUHY+0K5yb1DMi/w2eFWX5TecnPwlVQs0zeVqEzs3rJd3+zsE4q24LQ O1ZOgwjO7ywLbFwFdZ9d5w/UeNZfW7tZW7aGLKjs9/NZsNVwFQxnQAp1y3AFcgyIPY/naOpV0I/4 BmgA4L8KusabwYK1/yln8ZFVfone4LvMsi374QdzFVQlO7cvd2zLgi9XZd7GYRJ8e8tVULOsuAqq sbYvd2zLpiHL3IENsclXd4GWzlVQP5p6FbSoHou3lddmLQvugm99VbMUfHEXeq3Mxm9ZBJYFFUL7 kzlBy/bEEVuGZvf4ON6XEY+WwWfpDD5LZ/BZOq0+4/nscT6/o6u2dXWo98nSHmdypba5npPDqhdt nyxxPqP/sye8AMlDq9qC6+jaXlpOQmDYrj3jsaq9jHS3ebDqVAXKlj7jchg6IqZcs5ykwGJbn+mq tpCCExYYtvaZLhTFDIWu2XWqgpLu5yYe6nQxes2CHLW9tDwCgUWrz/j6bHNNPad9fXZL7sdjxhN4 yIXFn5NOWuSVOZPjkQoM7XFGPqNl/k/7+swcECoaHnLhhHs6b/YhKIny2XKSL39TvT5DLnI/PORi 9JoFOWp7aXkEAost2zMtRxZ4yIXFOD50tKwcj1egbNsHYKHS4SEXTki6TFqT43EKSgI++/pnbPiR PCgXHnIxKSTCrRzW8pgEBp/PfqI2bIN8fuxzEw/2u7AYx4eOlpXj8QqU0LnZ9igucpFn4SEXo9As yFHbS8sjEFj444xf/LbI8vl19foMK17gIReTQjRbOaxlJwK0DS52cloSdRgCcVZ9zXqT3eWV+bNb fdlY/lIsPOTCAY1F/rKsybFrATzk0klHieOz2ft8fPXsmX0bnIYB+VVt/gy56IjAQy56dOwFOWp7 aelXAP0uXXRY+OJsc8M33JuQPFrWEZ6b0O9iJ6clUYfB57MxRVv9V42qmHKoh4E9LpyQYtqkNTl2 LYB+l046SgLtWb7xP78GhnOzzvf4DHPc12fQ7xLMEStQfD5br58/P2uJMyxUOuxx4YSky6Q1OXYt gH6XTjpKfD5b/uk8X1FQGuTC7PFcn0G/i52clkQdBp/Ppt99n9nP/M2+ybJJ9frMAva4QL5/oN8F 8q1AzZlQH2A9WClvG9zUrs8mFLS0vGs4qnS0+M1ufuEbC3LsWoBXjl266LAI+SzwhxaA5KEVL/CQ i0khaq0c1rITATzkYienJVGHweez1fPnz5EtwHH3m/CQSzBHrEDx9gEfyG+NTjvu6zN4yKWLDgtv H/DxPxfV92/rSB4tq/2o0kKarRzWshMB9LvYyWlJ1GHw+WxOA/RWn+lCUQx7XDghxbRJa3LsWgD9 Lp10lPh8djE9H5nLCmH9tH59hlx0RGCPi9FrFuSo7aWlXwH0u3TRYeFtz+pjAH4pPnh9BntcIN8/ 0O8C+Vag5ozXZxlR9dvSef5MFwpd2OPCCUdWWpNj1wLod+mko8T12df/wkYDw7lZ5SdZmrGvz2CP C4txfOhoWTl2LYB+l2COWIHi+mz1jFlEz2vAHhdOSLpMWpNj1wLod+mko8TXnrUjeVAu7HExKSTC rRzWshMB9LvYyWkxOXCLxaWS3LClz6yyYI8Li3F86GhZOXYtgH6XUA54yEXFZQ4lymd3fJVxuOsz VMAhlAP6XUI6UJ6LZZVFZJwtDnl9hvGrA8QO0O8CuQM85AI5g5ozUT5bX9ffD7BumcIeFw5oLF3u 8Oafw0UOoRzQ7xLSgfJcIu8JR7HfcxMVcAjlgH6XkA6U59Lp3KwhebSs9H4T9riY5LTYOVCeg5W8 kgNiFzs5LSYH9LtUkhu29pku1PXAHhdOSDFt0hY5YI+LFO3JgfIcSLk3B8QubK4vB/S7SAWRo+QA 5ybELvXktEgOiB1IeS05LQTELmxuLTktjYfd5LDY0mdajiwo3oXFOD7mSogXiF1E7MkBsQPETg6I XYoU9RwQu6i4zKHE+6y3eQ2IXaRoTw6IHUi5NwfELmyuLwfELlJB5CiJ9lnw+uwTATVn4uMsy9fm dzVj8xhSMxy1gm37gJJ1luU8SZndj3l9pWsIC0yGUfam+KPzTbccOlTpLPv437BZwj/ZW6GDgh58 Jrf1yKS/5fmYAnGCdRWTIZvwTyaT5/LRH7l+b2dPX9I+3pHPyicetq7SGEdktria6Cq/ZH/Rf1Km MmZrBUR/Pvu1+GwmPnP+wqKV4TKTtpHzyMOUWb65kx3TIgCJrau04JKW51Pqrlb/5tU5mUPWQZlh awVEHz47z2dk1eguX1KELbGuYjJkP3NaOnkn0yyfZtkN+Wz+RHbkq/IuRKngMnvbOP0JTIaLj5PZ 4jxffpiRPbzitoJ/v0uUGZC+WvqFabBdrCr34LMYUjOY9GOKFarVV3T+8pk2e/qBtrLrWfYwy/6E NExYQfZz/hKbFppeS3/9sHifv75eTM7utaXYZPxr0dJwvCiurywFx+4zbvse5CJHTrdz2pK3FdYP LzL718K2VcClrx+oRCqTWxVuKehEpksENBwFloJOPqOwv5tRhylfnK7JxlLCdwJ//II2otKP33BN 5ln2RM+07O2Lh3x6M/squ5ysrdPKqQX5AkxhYAVNr6WvuYHg+a4VHx1pKbL3RcNRYCnoGGfzmzk1 9xLc7IPXpEviuRrX1SrJLefsnPpNPh+ks6RT7zv8ALoSMmpmJ7IxGc4+fia98Fpskp6T3HKW/Va0 IVFVQdHXFqypEnxQK1gZup6b77kSEtzcNU0oBPjY1OK6aqL4bMG9GWWSzlJSVryRbJTJkP2o3TLZ tMD5TD57QXby2WfYXgFtdvHZL/n0WjzR4KauiaKAOkyqfC2uqyZevs25oaX0cj5QZymn3sK+QNm6 SrP3OWmmXpiCh5TI+bx62NyMsneszbC1AqKXPqAe3C6pSrpUKYouCnrxWTv7rFIUXRT4fNZeXheN URy1gsFnkVgZQj6T23v0Se1onn/J4x15owc/9+vXSI3+/D7fmAsjC38G6jTtaywLf3oqP9RyhjJc Bn7fO5CezClnvCpYGVp8xq8lChcZW/sCfaFfIwsvxMkO/gx0BGb+OvnTp/vsPlB+KD2Nlfn6xIOV oS3OlmzkA/+us1xzYezt10g+o0sh6txd/BnoqHqjMpR+izhL9BlhXyJZWBmG9iwSK8Pgs0isDF6f DXiAc4ghziKxMrT5bJb9nF/e5YvJi5t8wzOeQkAjtbcvfRMvwQw0Lm3t2W1ocOr/uwTeDCO5v3Dp /VMKXgXvntKqvQYhn+FxhSkmuYp3eZr6zTn1UUsae8f3m3QQ/B4IpGcCHWcgA79CWbsToPjTU0hE 1KDFZ8V8FVWNL7yKPxDo0/ie+3Uyz3t94zeRaL+CrOL9cz6EP8O11N/3vps/PdU2ogat7dnLjG9x nV/Smk4MxK1fI18LXRVDhSr+DBdvZ96/ZhFK3/BaqS/DgtuS9f2L+IEJR0h7DYY+IBIrw+CzSKwM g88isTIMPovEyhDyGR6/qs0FoRf1a+QeOjS7483AA27qpnyjaG96Ue+7DiC8GTh9qoKIGrT4rDYX 1OgzvjAJze54M5DPNuQC53VRwq9A1Ptv13kyzK4mL6+SFUTUoC3OqnNBzT7L53ybNn7OkeOMzPN1 7X4Fqp7vqDp4MnDVl/wHa5MURNRgaM8isTIMPovEyuD12YALfMP4fDbQzOCzdMhnA4n8vyHOkhnO zXQGn6Uz+CydwWfpDD5LZ/BZOoPP0mnz2Zyfs+ffJJG/izXAtMaZvs+1Pl8F70V+ckT6bMFBppsD cT4b3/NkZ+kzDLw+JVBzJspn/DYC//01M6lc/u4BdpnvZjk9gaHNZ4ssezLLsoy6Aet5Gfl9DXth qPTaXlpOSVDQGmdeKM9It8xvVJjlVAUlW/pMi6GFDorscJbTExi2jTNTpi4MlV7bS8spCQq6nJu8 dPtls0cksBjOTV0iBIbh3KwsjYKCLuemKVAX6mGYExVYdD835S0fH5rSWegwPk6Bofu5CQ+5iJgh tWXyYnmEgoLu5yY85KJiWg53QvUosGjzmcyf8c/5VubPbq0/vw4PubDyV/IX2XXp+U+871tQ0hpn NEbn33O4qsyfDedmI+Qzntrgt3asuSArdOEhFxXTQseJ2d15sw+BRYzP+Lm/LDh/Bg+5QH4ioOZM jM/kZ6Or82fWIYCHXETM7OO82YegoM1nPH9GHcEVn532/FkZuvCQi4ppOdwJ1aPAojXOvFAeKpJ5 1dBvGn26mByPU1Cypc+0GFqGcUAslIcOgxYKD7momBY6VIzJ8SgFFsO5GSso8fts9hwbAYZzs863 eTbx/5hJwa31J1HljWIf7t9KRY5HKbDw+Gx6Pr/Lv8QXP5THhC485IIDZZYdnjf7EJT44uzsKv/u Pbb92OcmPOSiKZ2FjuHjFBhCfcD/wacfexwAD7mImCG1ZfJieYSCAp/P+F39tvasDF14yKWi087x OAUl/vYszz/DF4aGnLXnz4773ES/7dJNh8EbZ+fZP+3XPsfn+Ypf3/TPn8FDLiJmSG2ZvFh2KICH XEyKeg6zNAoKAu3ZP/CpLCjCPPNnvPwqHGctN1l3J4CHXLrosHB8NtOPP+uHML6nC7bg/Bk85AL5 /oF+F8i3AjVnHJ9dTPLs2bNn9rlJ7lrfB+fPYI+LiJn0s6CbAPpdTIp6DrM0CgoC52aVjF/gD82f wR4XFdNCXQ9jcuxaAP0uwRwRAgufzxbn+cichl6Ou9+EfpduOgwen03P6b99broM52Ydfno25ppW S4M9LiqmpduZli6AfpdgjgiBhc9no6z8Azh+7HvCsMeFlTfdZN2ZAPpdOukoCfUB9rWGy3Bu1pjV rzVcKI8JXdjjomJa6DgxsWdBZwH0uwRzRAgsfD7z/cRQFcpDRTLHOEaHfpdOOkp8Pjt7/vz50G9W Fxtfe3YV4TM+DFoa7HFRMS10qBiTY9cC6HcJ5ogQWPh8NrqZvcFmAMpDRTLDuSnMnvxU+7lRnjh7 RPNn0O/STYfB47Pp+U/53D435XfnavNnfBi0UNjjomJa6FAxJseuBdDvEswRIbDwnZuXf/yq8vvE y2X2pDZ/ZgF7XCDfP9DvAvlWoOaMz2d1lhxitfkz8T0tx3huym8E+uimwxDw2dSe16Bzc3xemz8r b5nCQy56L5UWGn5Qzh3er60J4CGXYI4IgYWvPaNxwKJyT3jBDyK782fMMfab8JBLJx0loXPTvu/k MpybNWZ0Sfu3xzwOgIdcTIp6DrM0Cgp85+ab58//J7YDUB4TuvCQS0WnnWPXAnjIpZOOEt+5OZM/ Qt3EcG7W4B+KDvxhqILh3KzB9wPMb0b7oTwUurz8Kmxhy03W3Qmg36WLDgvfubn665l1XeHDPjdh j4umdBY6jDsWQL9LNx0Gn8/qjx642Ocm7HERMUNqy+TFskMB9LuYFPUcZmkUFPh8lt3w3zdsgvJQ tGppsMdFxbRQ18OYHLsWQL9LMEeEwMLXnt3/1Hp/0xQ1nJvKw0/5qvqnDa7uavNnZZnDuSnMnmbV x2nHv7kLz5/BHhcV09LtTEsXQL9LMEeEwMLjM+fPNMzu+A/gh+bPYI8L5PsH+l0g3wrUnPHFGYfT T7oprPjvkFbnz6xDAHtcRMx0O9PMEi2AfheTop7DLI2CAl+c8TPI1Vgjn9Xmz8rQhT0uKqal25mW LoB+l2COCIGFL854Hugb3QT8925D82ewx6Wi0s6xawH0u3TSUeL4bPbaRFOY4dysML2f/fOflK0R ykOHQUuDPS4qpoUOFWNy7FoA/S7BHBECC9dn5zJIb4byUJHMcG4S8FnLs1RaDC3DOICYXj1jYuaC tFDY46JiWuhQMSbHrgXQ7xLMESGw8MUZU+0361AeKpIZzs1YTuvcxFsqLiwucxi29Jl1yxT2uOi9 VFq63eFNF0C/SyAHPORi67DY1mdl6MIeF05lL9FnQVcB9LsEcsBDLhUdJcO5uZtzc5zPDzl/hgq4 FCnqOaDfxaSo5kBxLiaF5iiIjDP5y+f1+TNmD+cmbv25hHJAv8tez00NsgPNn8FDLpA7QL8L5HXg IRfIBdScifPZlbyQeKD5M3jIpUhRzwH9LiZFNQeKczEpNEdBlM+4IfPMn/Gyh3vCqIBLKAf0uwR0 oDgXFkfeE66zzPiXCSvzZ+p8WvbQb6ICLqEc0O8S0IHiXFhc5jBE9gE1hnMzHcpD0aqlwR4XFdNC XQ+DHLDHpUhez4HiXEzyWg6IXcrklRzQ72Int9jSZ6ao9HMT9rjQgffmQHEuHCq+HBC7SHC5OaDf hcVlDsP+z03Y44IUTg4U51KkqOeA2MWkqOaAfheTQnMUDOfm3s5N6zVa2OPCVnlevIXU5Z3Uw80B sQtPTfhyQOwikxluDkhdtILIUbL/cxNSF6RwckDsUqSo54DYxaSo5oDUxaTQHAX7PzchdSmS13NA 7GKS13JA7FImr+SA1MVObtHFZ0z6GB1SF6qENwfELlxtXw6IXcRRbg5IXbgwk6Mk3mcrfhkFDOdm FOO+nteA1KVIXs8BsYtJXssBsUuZvJIDUhc7uUW0z2rzGqyLGc7NBoLzZ58IqDmTEmeVedokUtMf t4Jon82veeYRHHWVouiiINpnFY66SlF0UdDdZ1n2MOYnI69oi7jXNYSgTH+ZvcVTRxe1NBW2r9Jo kX3hvHw6dd6r2V4BbXf2Gb9ONiaT5nLbIH/AuoJJPz7P561PahFbV4n/jG/uvuDGBlbYWgHRn8/o 4o289bdiXcGkH1Ni8tlX2SQ/u89n2cf89cPle92Rn2VvkWz7KhX3YF/z4/qy2mTfioGsrGRrBURP PqPTkSpNa/qi6wpl+gX7Zck3TJf3+TWFxfqBumTZMS5rvHWVNhzkWXZNXTwVzSsu+Jx9xso0EbOt Aqa3OJtpnP26WFew0o9oCCauGd/z39rKxWeyY8UrsG2VNlzS7CZfTfLpjazIHPIdlJVsq4Dp79zM /4u9ld9jXcGkv5D0C27SqBo3ef6Z+Ex2rM7zqSQitq4S/5gK+YyCeHonq/xD9sYoQyJiawVEd59t qJkg6+j84heMR3e6hhCY9OM37N85n72rBxr2Z+fj6zybyI6p9VaCyTDK3lQDxI9JP8u+yF/c0Afb wytuKt4XypCI0Ay10vloB7Br3N1nMSTrMBnIi82PqSoNCqgHWGPTQjNElk7YCo7dZ9S1UCRQPGgv +Pph8Z56nHyZ5Wcfo0619ft89gW2LTSDlD57+iGbzJ6+eDL6I3rxSw446dSvF5jLsRUcu882fIUw u8svzrUrfOB2gBr6bPrQpXlCBimdiqP2hMqktbSu1M9S9HE/OzdtjK3g2H3GIwedUJFekOpEA1/2 WZ79qHJhawVUOoqjL4XPuB+TfpZ0AVvBsfuMOpfVRH6FQXpBqhPFm9ZzxNUEWyqQ0rksibPCZ/kz Omeln92Bz6hLopZFext3SGdh6ZC39r6njbjxZvYz98M0mp1IL7i+4cqt3r7OPr63m2+nEtTmFax8 3aFmQOlvX8g14zTLpRfnK3TKRv1seRVsK+gWZ8u7fFYUK9doAWwd/ErtjEcNNYx5TMgoigMvbvrS Z95LCDuDlVSgkXPVGsJO3/HczM6/JA9wx8M+my2uJtLXVPucqkZ5DZni5eye+yoZZFK3SOFnX9OF jKI48GLSz7I/6eg1e8HHRUacV7SX/rM2g6WAArhK9nP+EpsG26COPlN90vFIy0mb3NdU+5yqRvEZ nQba//EgU7rFsulgUo0y6Vc0lpDRq/zVGx1xXuXLifYcJVsrIDr6bD1mz5A11BTc8yhqxZWv9TlV jeIzGkuTjykfDzKlW+zJZy+yD+oc8tmd9rV8KBcfjsZnGzoH6Awga9gH3J6uuPK1PqeqUXy2ui58 RoNM6RZ78hldPTzI6FV8piPOK+oLqfjj8Bl3fXNqj6TjoSHd8gOdZtzXVPucqkZy6OySLuspPdVC BpncLW7u7Em3rau0nKzPefRKjcb8CTcdS24HFudf3b09kjgDFWt8JOvoUqUouijow2dOx+Ow1ypF 0UVBL3HWyl6rFEUXBYPP4rDTe3yGm+0DFeAcxuczfDYQkaRCavrjVjD4LA47/eCzOOz0bT67eJ+/ k0tqurj+V36JuxBejX+gi9jZwjNjEbbwMvR3pAIZ3j3FRp2QAv3bBx4CGWYL3yQIYacP+EzfX6Sr fJ4K2ExoDCJ/jWeDqRivRh798NAOX20CFtJgk4dNHgIZglfPofTTyh9CsAhkIHP8TrPTt/hspZNi Gxr5Eu+KX93wamSfLSaehyVCFs54TI/tGv4M6T57v0zyGZ1P1hOwNnb6Fp/JcJeY8cwlRS7GkF6N Msrm+SqXBgv9dfJnSPbZRaj8QAaZZejqs6WejOSNC4kfnEpejeyz9cT71wH9Fk7JZ34LAxlSfbYJ HpOQgpfZe78KO32Lz2Qo+YFnBrmCZiLbqxHt2RJfbQIW0hHwtX5EIEPyuZnqs+DsuZ0+4LOSr7JL irOXtKbzs7i56tXIE7OrL2R6rE7AwvX9i+j5fWXXPptdBu5q2OlbfeYlIkmF1PTHrWDwWRx2+sFn cdjpB5/FYaf3+WzAA5zDDHEWh51+8FkcdvrBZ3HY6dt8Zs8FLbLitVe/Rp538c/uhCxc4aEiB3+G aVb/IfACb/pLvgZ/6X9eyZuBZ7MiahDwmf5WAl3bW3NBNHrjMSzj1cjzLoHZHW96yuEfbBL+DBdk gf863Zd+ORll59Nr/xSaVwGP/iJq0OKz6lyQ/FY549X4fnkemt3xpqfBZuXVEJtABoplfNYIpJc/ 5ygj5TreDOSzmBq0+Kw6F8QHWvBp5HmX0OyO10Jm6asPEcxQ+XuNJYH0f+Y5gPgRMPkspgYtPqvO BfHDbIJHo8y7hGZ3vBYKSe1Z8NQMpKegpJjhx5UcvBnIZzE1aPFZZS6IXDbS4vwm0vGhQ5owt034 6kOEMgROTX96OozcmBUT8hW8Gbg9i6hBwGcl5VzQC+q1mvoA9llgdsefPn9jTvY6gQy5dxaY8KVn e/mBPe8UnVcBz2ZF1KDVZ14iklRITX/cCgafxWGnH3wWh51+8FkcdnqfzwY8wDnMEGdx2OkHn8Vh px98Foedvs1n9lzQ/CnPlTBejTKxkzAXJA/5JE/V+KePvOnz2dO7Pc4FFb9lVX0uiMcWgk+jTOwk zQXRuCx5qiYwfeRNz28o7HEuqPBZdS6o0Wc8sZM2F0Q+S52qCU0f+dLL2HyPc0GFz6pzQY0+I/vu 0uaCqMjUqRrCO33kS7/8fb643+NcUOGz2lxQs8/yq7S5IPJZ6lQNE9uekbumN6kKOswFFT6rPhfU 5rMnaXNBVHbyVA0R6wIKl9mTA88FUauWwWk+jTKxkzQXxMcjdaomMH3kTX+Vk9HDXFCIvSoYfBaH nX7wWRx2+sFncdjpPT4bJoN8wDeMz2cDzQw+S2fwWTqDz9Ihnw0k8j8Gnw3sAQoznKUDAztiCLOB PTCE2cAeGMJsYA8MYTawB4YwG9gDQ5gN7IHOYTZb6ruc9Ilfyp6uaMt3237gk6VjmG0W13MrpMY3 5/n4yYSDjtcDA0r3TrMWZpuFfLX3Dnzy9BlmsyU1ZvjqCzPcdhg4ZXCsa/QYZmvZoG5Uvlw5by/c 3r7ijvTzVxP+wPqdrAfBKQk89BZm8+KJZNnwRBmp0v+8qWuxSXcNAl0/eoGf7mEWDawZlduvVDPW g4B4/AIvew0zUTSqWPZK1oNAvuj60Qs87Lk1gy6sD9OsDwJZ70jgZ+g0dT0IiF4EXoZOcxDwuk+B h/22ZrBMPnQ9wS5dDwLi8Qtchk5T14OA6EXg5Qg6Tf0rKylwWZx762Z9EMh6RwIPR9BpInYSkOy8 qhclX3Q9CIgDCVz23GlOJq8+p83JKz4HJu9kjdhJYCL5PEUNgoML/HQOs+J5s/Ixs9DzZkOn+YkI PHQMs/J5M/OYWfB5M9IDy+RD19TkInYSkOy8qhclX3Q9CIgDCVy6d5oaZuYxs98FnzdjPdCFtc4h I3YSkOy+ogaBfOj6MAI/fYWZeU7jn8WGJ8z8IHYSQMaBIwQHu0Z/rRkeM3toeN6sOAfkQ9fU5CJ2 EpDsvKoXJV90PQiIAwlc+goz+sBjZsnPmyF2EpDsvqIGgXzo+jACP93DLJpbmSUejcr156PRr7Ya adqF2EUNgsMLvOw1zIpzwIp+anIROwlIdl7Vi5Ivuh4ExIEELvsNs8IMrLXJRewkINl9RQ0C+dD1 YQR+9hxmtJaGVbf1xitiJ4Gikk5Rg+DwAi9DpzkIehe4xIXZ9LtnX57zzxdcObNh8bAe6MJam1zE TgKS3VfUIJAPXR9G4CcuzGbfn+ez5dV9Pv3J93eQ4oA1TpOrf2I3haKSfbf3g4DXHQVeIjvN8W9f Lngq7MKdDosm9DowYicByrejN1kHQQ8CD4nXZv/A5zawHujCWmy6RewkINl9RQ0C+dD1YQR+IsNs dvZMWNwMneYgkHVI4CVyCLD6MPuO+8vfBaNsnhFyOzP1eTPETgJcFud2ijpZAcY+CUi+w5jrIXII QDE2478WuflzIM7wlNmd9eAZJAbWA11Ya5OL2ElAsvuKOlkBYieBQ5nrJ7rT/HKSrxsmNDbUncoP T4V/3wzWOE0uYieBopJbNuuPUIDYSeBg5npJHALMNH49rLMfFxk1YeaBDU+Y+UHsJICMnxCInQSQ ce/gYNdoDbPpipooudwSAkOA8lfNmn7frIh6+dD15HarazPKzqt6UfJF16clQMUTCBa1B4FLZGu2 oT6TCU3PytwtBRv/ueqm581oPSq3tcmFXxIo6uQUdbICVDyBg5nrJbbTnP3Mq7+91W9bcauKnHEK /JIAl8W5tx4LPToBKp6A5DuMuR7iwowaqw/8OV25A8hoSA8skw9dU5MLvyQg2XlVL0q+6Pq0BKh4 AsGi9iBwiQuzoq/k8aRsbAPr8b1MCr8ksO9XXA8vQMUTOJS5fiI7zenq41//82yReS65ohk6ze0F qHgCku8w5nqIvTYj/vGPScOERjukB5bJh66pyYVfEpDsvKoXJV90fVoCVDyBYFF7ELhEhtnosnlC IwbWA11Y6xwy/JKAZPcVdbICVDyBQ5nrJ/La7O/oLLs9byaKnCYXfkmgqNPWzfqjE6DiCUi+w5jr IbI123yrn9NvOrVmsEw+dE1NLvySgGTnVb0o+aLr0xKg4gkEi9qDwCUuzOTPywlDp3kQASqewKHM 9RN7bfaZFNixNeNZYvdlUvglgUohdlEnK0DFEziYuV4iw2yu7di8YUJjs6DGju9nhp83K84BK/qp yYVfEpDsvKoXJV90fVoCVDyBYFF7ELhEDwHk4l/uo3vBHXNieN6MP3TdmwAVT+BQ5vqJbM0uHjjM Riv9+78uZVgNz5vtQoCKJ3Awc71Ehlk+e/00y67eI5YcpivuTvmW5/C82S74IRlk3Ds42DViwwx8 HYgztGZtz5vhHCiiX5tcxE4Ckt1X1MkKEDsJHMpcP5HXZuaxxkCnaT1qNjxvJut+BYidBA5mrpfo IYB8zv4m4bsdw+vA2wsQOwkEi9q9wENip9ntZpP+501di01Dp8nrFgFiJ4FDmesntdMspi22ANY4 TS5iJ4Gikn2398crQOwkcDBzvUSGWYfJf8OtKnJuvCJ2EuCyOHfbPdzTESB2EpB8hzHXQ2Snicdm RyvP7H4srAe6sNYmF7GTgGT3FXWyAsROAocy109ka4ZLsvBdgAhgjdPkwi8JFJXcsll/hAJUPIGD meslsjUbyzXZbMkv/G7LrSpymlz4JQEui3P3394fqwAVT0DyHcZcD5Fhlo/OeADwsdsLdIVl8qHr ydYu5FW9KPmi69MSoOIJBIvag8AlOsy+ujmfXbzpGGa8dppc+CWBok5bNuuPUICKJ3Awc73Ehdls +eRP+oTG0GkeRICKJyD5DmOuh+ghgIwC5k1Pz9KVm9yKSn3eDH5JQLLzql6UfNH1aQlQ8QSCRe1B 4BLZaU4vv/vj91/RxVk4yqarD/zzZs3Pm/leJoVfEtj3K66HF6DiCRzKXD+x12atbP54L7+i1/S8 mShymlz4JQEN2V2098cqQMUTkHyHMddDZKe5arvJNKfeVMIs/Xkz+CUBZPyEQMUTQMa9g4NdI3II 8PXZm+fMOPCjoPLLs8xD+vNm8EsCkt1X1MkKUPEEDmWun8hOc321ljA7a7oLIK0ZRVzweTNR5DS5 8EsCRZ36b++PVYCKJyD5DmOuh96uzdohPbBMPnRN4xT4JQHJzqt6UfJF16clQMUTCBa1B4FLe5hN V8E3ANJgPdCFtTa58EsCkt1X1MkKUPEEDmWun4gwk9vmNJDUr9sTeh0YfkmgUohd1MkKUPEEDmau l9gwwzMa+NgK0oNzwIp+anLhlwQkO6/qRckXXZ+WABVPIFjUHgQuMZ0mBpFCxweBoAtrbXLhlwQk u6+okxWg4gkcylw/sa0Z6Nia8VoaVt3WG6/wSwJFJZ2iTlaAiidwMHO9tIdZb5AemCMfuqYmF35J QLLzql6UfNH1aQlQ8QSCRfkF+KMVCQSL8rHfMCvMwFqbXPglAcnuK+pkBah4Aok6EDsJSD63KD97 DjNaO00u/JJA4a++2/vjFaDiCSTqQOwkECrKy17DzP8yKfySAOXb0ZusxypAxRMIFuUXIHYSCJvr oa8wk99zlMfNmp43w+lURL/YNHSavG4RoOIJJOpA7CQg+dyi/PTamo15uqPxeTNaO603/JJA4a+W jmB/Ang+nlQdqHgCifWAXQmEivLSe5h9ks+b4f3ReMJF+QWoeAKSL14HYieBsLkeegwz+autn+bz ZgieeJAvGlQ8AWSMBXYlgIx1cLBr9Bdmaw2s5ufNaD0qt7XJhV8SKE4kp6hDCeD5eFJ1oOIJJNYD diUQKspLX2EmT5mVW5/Y82bwfDzhovwCVDwByRevA3YlEDbXQ6/XZs2QHlgmH7qenMRdAHg+HsqX pAMVTyBYlF8AuxIIFuVjv2HGa6f1hl8SKOrU0hEUAvglAcnOq0gdsCueJnPli66NANkSaHaJfNG1 ClDxBEJFedlrmIkip/WGXxLgsjh3S0dQCOCXBOI7GxXArnjCRfkFyJaA5IvXgYonEDbXw6fQacIv CcR3NrqGXfFQviQdyJZAsCi/ABVPIFiUjz13mr6XSeGXBBJfWIVfEggWFRDArniazPUJkC2BZpc4 AlQ8gUBRfj6FThO5EggWFRAgWzzhovwCZEtA8sXrQK4EwuZ6+BQ6TeRKIL6z0TWyxUP5knQgWwLB ovwC5EogWJSPPXea0IW13niF2QlIdl9RfgFyJRAsKiBAtniazPUJkC2BZpc4AuRKQPK5RfkZOk0f 8Z2NCpAtnnBRfgGyJSD54nUgVwJhcz0MnaaP+M5G18gWD+VL0oFsCQSL8guQK4FgUT76DzO5qYkb nBVYD3RhrU0uzE5AsvuK8guQK4FgUQEBssXTZK5PgGwJNLvEESBXApLPLcpP72GGHw/y3jrnWWL3 ZVKYnUClELsovwC5Ekh9KRbZ4mky1ydAtgSaXeIIkCuBUFFeeg+zpgeBitPJin5qcmF2ApKdV/Wi 5IuuLQFyJRDf2ega2eKhfEk6kC2BYFF+AXIlECzKR+9h1vhY48Dpg6Ndpfcw08ezww9p75BBQSuH UtD/EIAasizzPG42HKR2TlbBDsIsxNH48MJ3EsRwNDUIMDpr+92mQ9XgGMJss5If6J4t9fCPlnRZ Z3+pCBpwFWwWd5P8hf5Zsx44xEFaZ/w3P355Efy7zBaFo8IcogbMMYRZ8UctxraT7C8VQRhHAdw+ +/7RhtlmUVzjzn7tXOy6tDpq/zVQji/MNl86XyqCMK6CzSK7+mC2P8hR26zkynH61Rf5aHVzPs6y N1/odHKRohQia8HeD9J0VY0bGVm94L/PVm6Rydf5y4W8jC2OChgv7L0G4LTDjA7MBQ1IeMIYEy0M FydvyRN3RYTdWSlKYZW9H6S5GUtNL8VocRSdCr8xWxN9b1Fvu1Rr5mHvNQAn3Wnm13JKX/BJX756 JcVNV8VhMGFWpiiFVfZ+kIq/T8RbFExwFG3/22zR3stvJiP9Xq2Zh73XABxjmMm1lP2lIgjjKhiL x8XxfMRIy5xiSooby19tXD+UYWanKIRVDnCQxvgLpkWbVTTM5VY+L8OqWjMP8TXYcjgeUHAEYbbm Jv6BvGOofqkImnAVXJ+/vMyyS/3zjBvapFEbXa9JNzr6jr5Sl8Pf2AQ6nEhBqFCyWbgK9jCUHZ09 Jesuv9Boo2uAq9/zZrklFSIeqjXj5A62gp5tVwIH+Rhas77Yv4JjGMoWl6x/0pOpGUtB37YrgRoM YZaAq8A3lKUDSCseBfIo9p5aa+7VpJebjbmlvqZP//XTVjV4+RU1Ymix27AVWLaXhvLW2/XNvQzH +YsZhZvhrD1Gp6TVKA3UYAizBHwK3KFsOR6c6PhP1jrAoE1qRb7gZD72XANju5oo62IgJJd5sluv W/XSkL6WI1lrVGUI1GAIswRcBb6hbDkePNejJ0+rmDDjq63AdMN+a2DZjjBjQ/1hZg1ny5Hs4w6z 9jtzAWIV9HhP0zuUtceDfPTkhwXlYLFIpvPLOboK7TWYvfbljHaZrcCy3TI0EGb2cLYYyT6KMBtd ZlfisXlW/aNQ7XfmAoQqMr28Ib/MXjxt+uPGJZtvseHgKvANZUlVMQpcZ7+/zD5qHzlf0OFZ//j7 3/z1f9M+/6VUxKHQgKgR7TJbgW17Yaj0iNQ/yqD1t9Yo3AxnKbE1RneGqYEaHLI1m67YavdqWE6k LQhVRC8sCFLonn91tC3ykuwpb0w0EKHAX2Ssy0IK2gyNHs4GFBy20xxnX32jEWAPysRn5U27YkTT OMJhQhUxYUYn6dW93tOsF0oijBN9XQFI9JT81nN7XFu4CophqTFvbQZ/lovEZVTNt/lfSBJ0UKgG EYbGDmcDLjrwtdnaNLvqOVmrz9h79oFvHuEwoYqUYYb2k8O4Vmh5sdRfmKXjKCiGpaV54iG5XLJd hNZs9mLB1oersP8aKAcNs/l7OvDqIISZDMrYZ9ZwDV5rHuEwoYqUYbY2p3690LLM8DE6yEHSYWlp VBlmtoukSjy0kYThKhyiBswBw0z7ex6g8TcNMxmUic/sm3bqtcYRDhOqSBFmpEoOjBVmplA2g2Q0 TgwfowMcpGJYWppXhpntIq6SGF6uvOy/Bsqhwkz+Bj87gy4kCHYfBmXFnbliuCb9msRJ0wiH8VdE 0jM/6u3KchBlFcr7i3HiRWgceICDNDPDUjVPKlPcgjUugss+LK6+pd5hHXTQIWqgHPjarERbs04c yof9cbIKjiTM0gdlHk72IPXHoRQcTWvWA4OCVg6lIDLM8EbxwEAbiJgqcWHWy0nQSyFNDApaOZSC IcwSGBS0ElAwhFkCg4JWAgo6h9nobJFll682n/G2zO3Ic0y8WZt+Olkf9sfJKkgLM/wpRUZ3jDEL MVve0ReZE5zTWl+RLm/ECdFVnP/4VIudLZ+8zUd66y6CNB/Or77IX1YtbCNRQVGNeNIUEJvEN0bS FODefEolAgo6hdlsaeZUObDwspc+lUnUHvFJqCLuluhPPk5XkbGQ5EMtG3+WMZIkBUTDfSs/qQou fmtu18aRpAA3fPXOViQBBZ3CjJ+rkf2Ab3qgp5S7ItXHFROqWBwfvuM4j3ybIs2H5r5zbFPJpChg dhxm02/Oy6cC4khSYN+bjyWgoNcwI/iarGh8ai16QhXN8dk8W9SCtYEUH+IUTTtMKQqY3YbZmgrf aZiR/Tdv89lfAi8ueAko6HZtpo8hCn87zy8k5nAOMOtKU5FQRRwfeSxoVlz/tZLiQzRj5dNFMaQo YHYaZvIWNbPLE4Xo5UzsOASYXspTDb+8YH+Oszc/U1RQCzdafXyVzy7eayKQUEUcH72dLsOLGJJ8 qFdl/mdMQyQpIHbbmjG7bc2YdVa8hxpFQEFamHUiuhB9vYGPED/Tp0/nxJBo5Qt+BwTbcaQpKKsR TbKfdxpmdH39o/x8QgIBBccYZtsyKGjlUAqGMEtgUNBKQMEQZgkMCloJKIgNs4GBOBAyVYbWLIFB QSsBBUOYJTAoaCWgYAizBAYFrQQUdA6zpgeBqr/jdbI+7I+TVZAWZr8o0R2hB4GWv53ko2X1PkhK FXE7NO1hnUQfyt2alHtNaQrkTdREDbEKdOZX7pHsyEXlU0y9KOgUZi0PAiHuCqKraB5wSXxYJ0EB Mc4ug7+aGCBFwfR/yUfrHzOoEKlAfxpLfm1qdy4qbvj1oqBTmDU8CMRs/mxHWXwViwdcUh/WSfAh 84/Xi6TbzskKiNl3FQe1kaSAe5AdukjDrCcFvYYZYT0IxA+q2MRW0TzgkvqwToIPwTTwN2cCpCuo +6CFJAUX5OcdukjDrCcF3a7NGh4EkjFBhcgqlg+4/DLxYZ0EHxbUGtwWkhWkdZlJCuboOHfmIg2z nhR0HAIEHgTipx8E+2ROqCLOnsSHdVIUAD0zYklVkNhlJiiYyzNWo39NduciXJv1oyAtzDqRUkjR SCc9rJNkJZ8I0Y8YgVQ3jGPHZwWRCl7oOax/N2w3LrKeYupDwZGG2VYMClo5lIIhzBIYFLQSUDCE WQKDglYCCmLDbGAgDoRMlaE1S2BQ0EpAwRBmCQwKWgkoGMIsgUFBKwEFncMs8CBQ/u4PT2XWpeRk fdgfJ6sgLcx+KNEdgQeBGMwil8RX0Tyi8ziecnGxfgwo6XGjeBflLxYf5e9Sn+KDQAgxhr82Pgi0 fZiZR3QeyVMuPorapz1uFK3AOPckHwRCiDH8tfFBoO3DrHhE57E85eLD1D7pcaNYBevs92fi6tN8 EAghxvDXxgeBOoQZwY/oPJanXHzYtY9/3ChSAY79mv+i2eNwUbdrs6ZfBOoWZvyITk8PofhQ43au AEQ/bhSpAAbTsd/hs1K9uqjjECD0IBAxr1/4JlSR4Jjt5yEUH4iCnStQoh83ilUgv8hF1j88Fhel hVknYguxH9F5FE+5uBgFdl0iiPfzh0V2pX8s+1G46AjDbGsGBa0cSsEQZgkMCloJKBjCLIFBQSsB BbFhNjAQB0KmSlyYDQx0YgizgT0whNnAHhjCbGAPSJgNDOyW29v/D8B10dRYp6xkAAAAAElFTkSu QmCC ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAqEAAAFXCAYAAAHlhqdRAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AAP+lSURBVHhe7P0JlLVlfeUNs9719buyeq1OtyYx 3Z1oumOvJN/qtZL26zfTm3S33dggkhgFUQRkEHCChxmCgjLJPIMKgsgMgqiACgrK/ACiyDxoklaT OEZNojgP93f2XbVP7bPPvu7hDFX1wKm1fk/VU8M51/2/9v93/Ws6tdktt9xy/K233lotmA2Del64 GV7YuHFjde+991af+cxnqgceeKB6+OGHq8cee6x68sknq7/6q7+q/s//+T/VF7/4xerv/u7vqi9/ +cvVV7/61errX/969Q//8A/Vt771reof//Efq3/+53+uvvOd71RPPfVU9b3vfa/6wQ9+UP3whz+s fvSjH1U/+clPqp/+9KfVz372s+rnP/95tZpPuD/cL+4f68B6sC6s7/vf/369Xqwb68d14HpwXbg+ XCeuF9eN60cdUA/UBfVBnVAv1A31Qx1Rz7qod999d3XfffdV999/f/Xggw9WjzzySPX4449Xn/vc 5zoX9Z/+6Z/qxX33u9+ti4oFs6g//vGP16SwXlCsg0XF+rBOrBfrxvq7FhV1QX1QJ9QLdUP9UMdh Ue+5557q05/+dPXZz3622rBhQ/Xoo49WTzzxRP3Bf/3Xf13f2Je+9KViUb/97W/Xi8JuY5HYfSxa 05oKO6/i8rZLBdWUYr1YN9aP6ygVFdePOqAeqAvqgzo99NBDdd1QP9RxWFRtfbyTFxW7k4r6jW98 o/rmN79ZLyYpoK2w80gti9lWUKzPWx/XgevBdTUV9fOf//ywqK6AYVE/9alPjfkUH4QPZlLZ/nj9 V77yleprX/vasKhJAVpYFtULO8vU8jZYTC8oi6oFTa3PouL6cJ3e/lpU9yrqOCyq+rSpqH/7t39b /f3f//2wqNi9pAAs9IUvfGGNp7VUWC0uaXry9+VtNBVUU8qCptbXouJ6cd1NRVWvDosKH+ghhXfG CddWVHoVz6mAUlpLhU3FJV44xd9Xi9lW0JRStj6vp62onAD0sEIdR4oK2XYtqnt1l/Meqt50yePV /ld+rtrnsserA973+epAcBX4q+qgq/+65uABv3vwDcPi4sJTcYkXTvH31WKyoLifpoJ6SpNPuxaV h9WwqPABXolDqq2oelhhN1nU/a98si4qCupF1cK+6s3vrrnmni8Mk+TFJV44xd9Xi8mCophtBfWU svX1kGorKicA1LFTUQFu7Atf+MLIBKAK2PndD1b7X4GitheWRQVMkheXeOEUf18tpqYzFdTb3lPK 1mdRcd24/t5F5TjFokLEHP7/5m/+ZlhU/B83ijtlWhuLaoXVojJJXlzihVP8fbWYpYL2San6lEVF HTj886BiUTkB9C6qe5VpRVH3ufSxTml95aHnDovKC/fiEi+c4u+bipkS6gVNKU0+nUtR6VVXABYw TKoUlYX1tKKohBfuxSVeOMXfNxWza0FTSrX16dOZFRWtzsOKCtC0jhW1VNhQVF64F5d44RR/31RM bfe2gpZSytZXn05VVJ0AXAGa1qaiAk2rFpUX7sUlXjjF3zcVs62gqe01pd76ekh1KipOL8xb+AwB n9PiqzAsakkBTOtYUUuFtaLywr24ihdPC6g0FdMLWkopC4rrKrU+i4r68HN/zqmdi0qvJgUwrSjq fpc/0VhUFlaLygv34ipNBVSaipkSmtreU+qtT59OXNTkVVWAppVFbSvsAQO2+8tzhkXlhXtxlaYC Kl5MFhTF/OOt9qz5/ZceWv33Pa6s/tsIV1T/bfdR/nSZ1Prq015FTV5VBXhatagjhQ1pRVFZWKbI i6s0FVDRQhKmk0UFbzrryWWeqN545hPVG854rHr96cuc9mj1OnDqI9WeA5hSb331aWtR/bBKCvC0 orBe1KbCsqgAF61FYGGcVDxHbwe3y4J6UVFI8gYW8/TlYp62VMw9T3242v3kh0ZS6q3PovKQGisq v0rFolIB+GBVgKcVhU1FxScC+172+BKXgydq9hsU+RWHvGsIk94GFEPS2x3cLtaH5+CPXrxH9Ydb 7l6Dwiks4tLzR6o9Tlkq6O4nPTiWUrY+fapFjV+lYlGTV5vSirenpBJPqyYVBwbTBJgwJ6XQ0dvR wwhoUusWHxRPqQs6KCYKuscpD1WvHRT0tSc9EFPK1lefNhY1eZVpxQ2ClNamooKloi4VVouKC2YB vMCOF4584p3Pq+698PmNfOD4f1199JR/WRd1qXCJQToHCUUxdztxiVJK2frq07Gi4ivWyattaWVh 24oKUlEx0jBNXuCuoKi3nrFZ9dP7fnuJT5PfGfKlD/9y9aWPgF9Zau0Cr10u5m4nfrba9YTPDlOq B5S3vh5SI1/5Z1GpAPUq08qi0q1aWBQV/tQibrjk0SFwbM1lj1XbHPSOIbjtafnYWb9WF/VH9zxf +E8jfOnDv7TML1e7HP+ZCArJYu56wv2D190/klJcP1PK1lefxqK6AjStqgAWNhUVBXzjex+s2eM9 gQserF684fQhN190WiPHHX1EdcwxxzRy7BEb6qI+dduvZm7/1eoL1z1rwLNrXvG2uyOvPuqeISjo Lsd9ZqSgTSll648UFd8FxCtdAZ5W3LCnFezwzvuHxWzjz/c9vTpxz5dVH9nrT1o5/PDDO/HBk39j UMDnjnL7KN+46derL177rGr7I+9u5KVvvmv55Y11DXC9LGhKKVsf9Rv5bir+4wrQA4uF1bTeeOON Q7Y4YbCIs+/rxE17/ufOXHDBBZ1AUr/64Wd3YusDP9aJ/7n3DSPXyIKiHqgL6uOtP1JU/BBASQGa Vtyg3tEzlVLrj/wwBf6TFIAPRDHTDS+4cfiTPWz9kaLiZ4BUAfghCE9r06GljuXhpXMsP6Xlp7X6 mZR+tgTwVaK++G3oZ1aA9821YF1cI9aLdfOkbzqc6FJNqbb+yM9S4T+qAE8rbkjd2qWwLC4uoEtx iReoC34bTcXsW1B1KQvqBxRbf6So+BFAKoBpTW6dtLAsLi8uFZd4gbrgt+HFBF7MvgVtSynqN/Kj lPhPl7S2FZbFZWFLqdUCswDEC9QFvw0tJNGCcm0sKNfepaBNKR0pKn4CuCmtkxa2lFotMAtAvEBd 8NvwQgKugcWcpqCllI78JPVdd901TCuLyrQ2aSAVlsXFgptSS1gA4gXqgt+G3r4WkwXl2ljMVNBU VC0oU4p6MaVjRcUrqIBUFC+IFwCJ0ZZU5/FASSc3vi80a9L9pENN1+uJ183RjfFNYeujfqjjsKh3 3nnnUAF4B+ycFnUWhQVNxSWpSG2k2yGpmEDX2aegWlTUSVOKOo4UlWnFO7CFN1z2WP3Bm2++eXXh hRfWN4w7uOiii6qLL764+sQnPlEvAC9fddVV1SWXXFIvEGzc4VnVN0/5s3rRaBssFheD9nrJS15S g4u95ppr6oWkgtSf13/wgyOvu/zyy4cvY57my/hU9Scbf7O+3W233XZYTLy8//77jxVzv/32G64V b2cxwY5H31sXFLfPguL6UdBTTz21uuGGG4bqYEFRv5Gi3nHHHSNpxTuzsKXEorCaWKC7jcXyAggv TOHFExapD34bevuf/OQn6+e+FqxP18traEsoPMuCalFRP9RxWNTbb799JK166HhRtbCAi2BxdaFM gl+QXrTjBepCuh3i98016Tq1mCAVFLAWrA3qpClFHUeKyrTiHVB9HlqlaQD4qJUmA04HnBB0wwB2 XeHC++C3obfP++QauCY/4fWU5+hUOu15OKFOLCjqN1LUBbNjM1QY1cYOYEewU9g97CwSgPijNdAu aDOctPgRGXxvCd8fwjfj8D13/IADfnIEP+eEHx7DjzriZ0jxw7n4qWf8ODl+Th+/ALFaT/xlC/4o O39QGGvjD7jxp11wDbgWXBOujT9XhWvGtaMGqAVqgtqgRqgVaobaoYao5WaILWKMWCPmiD/aggWF U3Bj8FBTQfEDDlgcfsYJi8WPOa5lUZuKyR/B5M9j8YczSgXFtaMGqAULihqhVlAEaocaopabobJw A1yBNyK2eGc4CEJuKyi+NYzvwWNR2GkskinFwr2gq1FULaYXlMXkTwzyR4dwDbiWtoKiJqiNFhS1 Qw1Ry80gWLY75rC99967lrMWFC+nguLbyCyotn1bSrWosywsb69UzJROtjsLimvqUlAccjjUUCu2 PWq5mbY7nIB3wjs3JRQ/YogfN2RBte2Z0jPPPLNYVBYWFz6LwmohWUzeTyqmp5PtzoLi2vhjlG0F Rc1QO7b9ZoiqFhSyxTtjBNGCQsyY7zBU484wt7HtsRhNKZKOBWvrl4qaCtuluPq+WsiuxfR0qj9Z UFwrrpmHEguK2qBGPJhQO7Z9XVD6s09B1aMQtaeUrV8qalNhvbgJfd9UyC7F9HSqP/sUVD26Gf2J V0KyXQpKj7Ltt3vng/WP7KRf4+Fv8oE/PPzmYVGbCuvFTej7pkJ6Mb2gLKamk+1Of3YpKA8mejQW FGNBKmjyKHZUf2pvu3c+VCwqCorfjdrm0Pc0FtaLm9D3TYVsKmZTOpM/U0E5i44VFP7Ef3Ba4Y3X XXfdMKH4INwIfInPfVlQb3stKIq5y3selYKuFJUFBWfd8PhIUbWwXtyEvq/eBgupbV4qpqfT250F xbXzc/2UUJ70qOVYQdnyOMn4mZIWFEX2tvefhEZBPaXAC4qLZpq8uECLpvj76W14KtuK6en0dteC 8jMlnvJTF5Qe9bbnT/DFgkpRUVD87D4Liotmmry4wAtH/P30NrSYKGSXYjKd3u70Z++C4thvKmjy qLb9MKHLKWVBPaUsKDjzo4/VF80CeHGBF474++lteCpTMZvS6e2u/mwqKGfR1oLqwcS219MeC0gF pU81pV5QXDQL4MUFXjji76e34alsK6a7M7W7HkidCppa3k/61PYs6khBB+zynkfqgo4U1Qp6xkce rS+aBfDiAi8c8ffT29BUdikmruGggw4aS6e3OwvKw7q1oDj6MaTi0yl+tYkFpUe17TWltT8LBQVM qRcUF8wCeHGBF474++ltaCG7JFNb3dPJdqc/taCoET/1REHHDiUWFJ824ptw+KDk0ZRS/jj5sKDn o6CDl6Wo+E09LejpH36kvmAWwIsLvHDE309vQwvJYqKQXYvp6WS7qz+9oJxDGxOaPJpSigV0KSjw guKCWQAvLmkqHtHb0EKymH+81Z7VH229d/VfX/Z2+9XHAfJrj/rrj//7dRcN08l2V392LmjJoyml KKoWlEWtC4riWlFRUP42yWnXP1xfMAvgxSVNxSN6G1pIphIFJcNffeRv6p3xWLXHqY+O/aYeC8p0 arurPxsLqgcTPdolpVpQ0LWguGAWwItLmopH9Da0kGxxLejKrz0+PvyVx91PeWSpmPKLZSiop1P9 qQfSSEHx+Se+UqKjk7d9W0pTQTHs1yz/yiN+3fEPDrtp+OuOJ7z/M8MNaQNdQLe1gdsEWCOeY43F X3lcLuBrT35oqZCnLv1S2e4nP1gX1NPp7c6Conao4fCLI1pQetTbPqUUr8fzVFA895RqQk+97qE6 PUwSYLoUTZ8mUNHbwG3y4OHhown1X3dEIXc76cHhb+gt/arjSkE9nWx3+rNYULb9hz70odj2eK4p 1dYvFZSwqFrQU659sL5gFsCLq6TCEfxITvr1RgW/6njqwb9VJ3XlVxtX2PXEQUH5m3nLv+qIgjKd PIy83dWfIwVNHk1tz5TijlhQtL4WD3hB97tiqaheUKSHSfLiJt71rneNve7Nuz9/5VccS7/mWP+K Y/nXHHc54YHB8wdHfsURBdV0ltpd/VkXlN8CwSub2p5FTSnlF0fIzuc9HH+9EQ7lrzceddnGenEA cy9f7sshu/6H6kd366832q843stfcRwUtPArjjsd++mlX3Gsf71xwPH3DwvKYja1Ows6/BYI2x5v RMXxztr2LKqnlEXlAcTftnvNufIrjcLvv+Xjw19tPOikS+pfYfz4e0+ttt/mL8Z+tRGkX2d0Djt0 v+qp254zIPxqI7Bfb9wu/GrjNoev/Hpj/auNgyK/aM8Lx9yJWni7qz/rguI7dSxoavuUUi0qvnXK Qm7/ztFfY3RQUPxqY/o1Rsd/fbGJtl9rfOr259W/1tj2q42vHBSXL79wt/OL6fR2Z0Hr73qyoKnt U0p5B/pLU+nXFxMoaPr1xcR73vOe+CuMifTri4nPv//fxF9hTKCgvD78iI2n09t9WFAkjB7VtveU 4ga1iM9UNJ1sd/qz/kEHFpRt/7KXvawenZhSvD3d8IIbR9p9pKDa9m0pbfIpDik9/TlWYVblZ1X+ 2RE/CwL4as8k6G3obfP+eP/86hHAGrlerB3XoCMSvclWd3dqOtnudUHxA074j6Y0ubRrUfX0Z2Fx IamwTcXtg96G3rYWksXkuljIPsV0d2o6UcP6h8XwT1tKvai4s1JRNa1a1FTYpuL2QW9Db1sLmYrJ 9aZiglTMpnTWBeUvLZRSihtoSmlbUZsK21TcPuht6G2nQrYVkwVN6WQxS+lELesfuGVKWVCmFB9Y SmlTUVlYLLypsE3F7YPeht52KiSLyXV2LSbTyWIynagZ01n/wC3+QWXZ9qWU9ilqSmsqbFNx+6C3 obedCslicp19illKJ2rH3wqpf8aebY834A64e1oQL4YWgElhC7rjeHikExrfy5kl6T7S4QVcGbpB aVN0QwBqxXSihvXP2OMfTSlTNm1R+xYWpAJ1Id0WaCskmLSYTLemsy5o6Tfq8GuK+AsNO++8c7Gg aBN8pQgLuemmm4aFxUL5a4r4LiouAu1y22231b8WyAvV4uJXDNFWWhD8miI+V8fH8HVbbrll/fys s84avg7g1xTxHLeJ28LvDV122WX1Onnf+KlqrAktjZfxNqwZv4rJYuLXFPmrivjNwZtvvrnaZ599 hgXFr0q+973vHdZJ04lablb6bbquKQWaVBbV0wo8KUCLqwUuwYIS/3i/fWyor8NTCTSZANeIgmo6 cVuaTtRK04la1gXV36RjQbsUVQvrRQWpqMAvWvECtZFug6T79kKC1OagqdVZUBaTv023GVrBU8oD Sk99HaX05PfTnxOATgE6CeiGcdMULrwr/vF623qfXAdPcZ7kfpqnE11HJJ7qbHVNJ2o5/M1kvAHv xCLiRnCDLBwLhgWxKLgAplZTihQgIUgQ2hIHB346Az+lgZ/W4Lc+8C0MfF8I3y/CN+DwLWF8qxjf f+cPNuAnRfDjN/y5JvywGH4Cjz/ayJ8ZxQ/h8qeb+WPj/Hn8p/OT/86B/oS3/zwtf3JRf0ZMfxKH P/fAb83z+3jYJ+xXn5+2QR7Y4Qw6csNAI08ML3KGvDGwyCHyiFwin3VIkVokGGlmQJF2JJ9dzW5m B+OO0XVYBHXKkEJX04RUg8ofaWJQ+VON/HFRD+ozJaxN4WwKKEOqP3enAZ0mpNh3DSlywSMIeaF9 aVyaFjmjXZE/nUaHIWVAkWL95DNZFHdCi+LOefZPG9JkUw0qitoUVIbVg5rCuqkGVtfv4QQaUA1n CihDyoAypBrQSUIKm2pIkQ+GFLnheMCRQG2K3CF/PP6Ry2FI0zFPi55wwgn1ZIv06w+Q4k7RJfi/ HvccQruGNNlUg4oipqAyrCmobWHdlAKr6wRt4SwFlDXzgDKkDKiGlAGdNqSlI99tymOfQUUuhyHl Md9kUT3qcWc86t2kWCTflkLax6ZdgzqrsIL18ORr0vXqdXQJZ9eAMqRdLDpJSJEJhlSP/JJNeewP Q8pjXi2KD+JnmLhBHvW4Ex71KaT8xMltiuf4uBRSDSqK1BbUM844oy423r8pqCmsTYEFHhAwz6d0 f74mXa9eh4cTNAUUtWsLKEM6qUV9JtWQYv8ZUv0ECjlD3pJNhyEtWVQ/YZo2pH7kM6i4PYa0T1AB zcCN6BLWpsACDwhIQZoV6f58TbpevQ69vqZwThJQhlQDOo+Q6pGfbDoMKS2KN9KiftQzpJxHJwmp BxUXr0ZlcfBxeN8UVA+rBzWFtWtggQcEpCDNinR/viZdr16HXp+HE2hANZx9Alqy6KQhRX48pHrk I3/IIW06FtJ01M8ipMmmGlQUYuUPai/9nD4fMYLgdfgtE/ymXs37yMr7KPwVSf5o+pbH3lIX3uGm EGzUWuNrSusmGiSH9iOsO/aAaOAA7y8FlB+rAZ0kpLCph7R05I+ElEc93olHPZ7jRvCIGvgMv2tI +9gUoBB1SIe/obMUVKDBw2+U73P5k4OwLjN4/yU+V+135efHQEi3PeScMc6+8YkxuxK1FnGzzZJ0 f2ldyZpN5myzZx+DMqQe6hTQaUKKvDGkPPKHIeVR7yF1k+L1PpMyqACvx9vxtjabelDxV5/qkIag MqxjjyMB6seSAEuPekL8IWWU9GgoIIUDpCDNinR/wNfWFsymcJYC6uZuCyhD2seiHtI0k5ZCilzG kHIeTSHFjeNOuh75yaa8QIYdL4+FtBBUDWmXoCKk+F3zFFJssG488GCQFKJZke4P+Nragqnh7GrP poA2HfPcQw1oKaTJok0hRf4aQ4oUTxtSDypD6kGlUVmEsZAuBxW/+rhP/ZvPT4yFtC2oDKmCkKZH 7QEeDJJCNCvS/QFfWymYGs42c2pANZxNBm0KqIZUAzptSJHDmYe0ZNOmoOKiNagxpMtBJXyUIx7/ bUFNIQXpkZCAB4OkEM2KdH/A11YKZls42+zZNaAMaSmgGlIGdM1D2semGlRcZApqMaRgGNLRBzrS sKaglkKaHl0KeDBICtGsSPcHfG0aylIwm8zZFk4PKPYkBZQhZUAZ0i4WnUlIm2bSNpuyc9SmGlRc VFNQEVL8Yn4M6TJLIR28bEFlWD2oTSHF5vrGezBICtGsSPcHfG0aylIwu4YzBRRfvcFPPncNKEPK gDKkfSxaCmnrJ05qU/xwCW7gqKOOqm8Qr/eQJptqUHERbUEFDGlTUOuHO1q2agoqwNdQGdRSSNOj oAEPhpKCNC3pfoivTUPZJZhdw5mOdwaUe9MUUIaUAWVINaClkJYs2iuktOm11147ZtJkUw0qFt0n qBrSUljrkOLlDkH1h+dLIXU8GEoK0rSk+yFpfaVgzjqckwSUIWVANaQM6FxD2nbka1CxyD5BZVhT SD2ow5B2DCpCyu84aUjx4HK64SQFg6QgTUu6H5LW1xTMP5aHCFP2Ovtzyyw/UuCQJ+RRAx+vHzlw z/qRA/Ggd0sPfLfyKILkkfohx/A4Q6WAMqRtFp1ZSFNQGVIPKhbVJ6gMK4NaCikZC2mHoGpIFT6k pJOCQVKQpiXdD0nr01ACGhN4OEkdRmHlURiXHtLyDcNQ4uEtH1l6DDwN5YClBxRcYo9THqpD2hZQ hlQDqiH1gPYKaV+bziKooC2kYCykLUEthRQPgugbDlIwSArStKT7IWl9DOSLXvSi+rke5x5O8saB JZ0VWy4bczmUSw8ZumTLlWA+XD90KB5fkA+Lh5D2CShD2tWiMaT8AZNkU9xIsqkGFYvpE1SGVYPK kOIR4/BQe/5wfAwpX+4S1KaQcsOVFAySgjQt6X5IWh8DiVkSzzlnAg8n0UCuGNJZCuRrTx4E0oK5 xCCcy48iykcS7RJQhpQBZUg1oCmkDOjYD5h4SEs21aDizrsEFS/zfTyoDGtXk/rrmoJaCikerJMb rqRgkBSkacHtbnzP86q7z3vO1Nxyxv8VQ4oQrlixieVHYpVg4lFZGUw8Mutr6wcUXXp0Vg8oQ5oC ypAyoBpSDWjnkCab4vHf8HU0tSnAIhSGtMmotKoHddKQKh7UppCqhUgKLvHQzgLc7ife+bz6kWlv P/tfVHed++xG7jznWUVuPOUXxsBDCNdh68iugwDqo91qMPmIt3igVoRUA8q95t4zoEADypC2WTSG lD+Z38WmHlQaVYPKsLYFVcOKkKYjXmkLac0VSzSF9OQPPTD8UoySgks8tLMAt3vzO55bhxSB+ul9 v7WMPJRyYvjwymD54ZWXHwl4hI/8spiwnZ2P/2z9fCWUK8HcdcjSowhPE1CGtM2iIz+Z7yHVoDKk paBiEV2D6mHVoDKkhKHDy3tf/Ej9YLt4VGN/AN7IhUvwwXmdA981+giY55+/9DiuOC309U2cfPLJ 1bHHHjs9R2yo9t/x1+qQ4kF9G7nD+Y0hX7zu2aNcv8QOR9/bme2PXHkZj8K8FMqlYC49KvMSeGRm Dyj33APKkKaAakiTRcdCmmzaFFTc6SyCyrAypCl0uwzell7fSCGkH3v9C+IjSPcBj0z11sMPy6Gb gMMO3WcppPHRqJ1BOAt84bpfWXrk6utWePVRePjvfvz5oXfF1yO8Ox+38vDhfQLKkJYCypBqQEdC yt+5Z0g1qLgRDSrupC2oDKsG1cOKj1Mz7fDO++twvf6CwdFzXgjdBDCkt7/m38WwTcrFF15QXXXV VRNz9dVXj7EU0l8fffj0PliYv8CHWT9i40x40f63189fNeCF8gjigAHl3jcFlCFlQBlSBlRDOvLb ogypBhUfpEHFjU4SVIDfn9aLWvD0B7lpCihDyoAypGrRkZDyIXYYUg0qbqRrUBHItOAFCwAeIc8D ypAyoAwp8jjy4BAMqQYVH8SgbrXVVvWN4Q9QaFDPO++8+ielTjzxxCEnnXTSCPgEQznllFNGOPXU U0c47bTTxjj99NPHwANElMCjjjaBRzWdlLPPPntq0u12JV2PkupBUh1TvX1PfM98T33PNQ/IBzn+ +OOHHHfccTUMKEPKgI6FFI+5ozZNQe1iVFoVR3/T8V+aVTmv6idX/gmWfkWA8GuthN/J0u9oKfx5 AYc/8dMEfzpoGtLtOml9wK/Fr9VroXXS+rGmWmfWXveDe8Q94x5yT7nH3HMe721HvBpUA8qQIo8j jwWF/0wTVIZVgzrPsDYFFugm+SYC32iSQuGkQJXAfaXXp9t10vqAXwvQ6/VaaJ20flrXWYXTA8ps TBLQsZDiIfYY0mmDyrB2DWrXsHYNLNBN0g0kaaNBCkUihaor6fYSaX0gXY9er9dC66T107pqvUvh BF0CygzMIqAjD/2I/0waVIY1BXXasGpgtahAC64b4ZukG0jSRoMUikQKVVfS7SXS+kC6Hr9mrYfW yWvowQSThrMUUGZkkoCOhFQf151BxQf1DWoprLyYWYS1T2CBbyBIGw1SKBIpVF1Jt5dI6wPpevya tR5eK62j1neScIJSOPsGlCFlBpHHkUd69j9A0DWoDGuXoGpYebEprBpYFm7SwALfQJA2GqRQlEjB aiPdTom0PpCux6/Za6L10jpqfT2YwMMJNJxdA8qs9A0ocjkW0lJQNSR6wV4MFsmL6IXmRqSNVOuk 4xKkWY/4Jynps+sS/P2e9UBaXwm/5lQXkuoJtO5pX0rN43vdp1GQq1JAx0Kqfx8nBZXdxhvHX3fi X3jCneKvPOGvIGExF154Yb1IX/x+++1X/8qsXiBusxRWoIVjMTfu8Kz6r0PxL0Rtu+22cTOIbyDQ Db7mmmtG/t8VfP8ef2GKf2UKa0xhU9LtOPj2KP4aFf8iFaykb0/Xg+vEX7nyayesHUzIlwH2gPVN 9QfYH/5VK/5lK9yX7y9IAdVwekBBU0BH/voI/tMUVN4gQThJCimec8G8ABwf+PNfeNx9hhTHy5VX Xln/9BFej4LgZfzJsksuuWRYKBYSIKQEhUbwcaSw8Hh/bg7uH8cVioo/OYbX4blu8Pvf//76dbht BgF/SkyDkUAwlVtuuWX4NgQfX3jHc1wP0Lfjbbj+XXfddfg6gpASXSdqx2sAWDduF18kx3MNKerP euBl/GwAvtCPkEIWeP9LL720XgNrjI/XP7dG8D6/t905Q/B/HOtYD/5qmIYTf46N+w9wP6glnt9w ww0jf56NNAV0JKT8a2MpqMDnQ8CO8E7hAomHleBiHS0Oi+doYAE3owQ3rgsaiq54yBLp49pI6yuR rlvxmqW6Aq1/2h/fQ+6t77lnwu1JkCtmLAUUuRyGlH/BTYPKsPJGmHjOqUA/oSp9UkVKn1wB/wRL P8kqfaJFdNDn8K94YQCL5nhxu+AblEgf10ZaH0jXk65b6+I103pqnbX+/gkR8E+K+IkRSJ8cdfkE iQFl5jSgyOVISPsGdZKw6sU1hXUWgSVpA9NGkxSMNlLISHr/NtK6SLqedN1eG62b1lPrrPXXfZlV OPsGdCSkCxasV4Z/ShiJphnRBegM2g5dRYOhQ9G56HZYgrMm5hXMNJwRMSdhrsJntHjoFjyMC34N l79HhN/vwS+i4Tcm8au9+B10PmACHtkDD0GDx0rig3rh0efwMIl8TE8+AC0eKZkP680/isA/mMC/ 7vF0ffK/XuJ/FEIfRVofC1UfyY+PR6WPpsLHA+Bvs/J3sbB3fFgePhwPZ2fOvcgAZ1dkgycJbU+L I1M0M7KGzNG2yCIyiWzWfzwcquXxDTVD1zyWoXketTxKcdzMOqAaUg0oQ8qAMqQaUA8pN+zpHFIP J/BwekBZPwaU9dWA6oNVzDKgyAzHD44XyBZHBmQO2eMogEwim5tx1sQr1Z74IM6JuDEk3wOKTwQY UH4WPklA3aIMqFoURZ3EouDpFtJSOD2gGk4GlHVUe6aAcl8mCSiywIAiIwwoLMqZmAFFxjjP0qIM KLJZB5THOz/Z8eNdA4o7wZ2hM7oEFF9yKQXULaoBVYuimMmiDClt8UwIaddwMqAaTgaU9VR7poAy nNMGFFlJAU3HPC3KY34ztWc63tP8OU1ASxbVgKpFUcRkUYaUlngmhLRvOBlQDScDyrqqPUsBZTg9 oPx6bwoojvkUUJ9D0zGvFt0MSdXjnQE98sgj62/tIen4cX98d4AB5fzJgGIxTQGddA7VkLLrPaCT hnRTCqquWa+lSzg9oKwjw6kBZThLAXV79gkoMuMB9WMe2dNjHtmsA+rHO94ZH/TJT36yvhHc2PXX Xz8WUHQFmEVA3aIeUIaUFnimhFTXqtcwSTgZUNaT4fSAcj/mFVD/RMnnUD3mN/PjPc2f+P/ee+9d 3zgCqQbF8Y7F4M7x8iQBVYsyoAwpu5wB9ZCWAtonpGC9Pfn6dO2lcIIUUA0nA8q6MpweUO7LNAFF HjSgyA4DWppD/ZgfBlSPd50/cSO4MdxoU0BpUICwdg2oWhTF6WJRhpR26BPS9R5UX4+uVa+hazgZ UA0nA8r6ajg1oNyfeQfU51A95jeDShlQPd4ZUH6ChBtF8NoCqgbF6/G+KaBuURSlzaKYg1Fk3N52 2203s5ACD8ZqP/n9+/p07X3D2deeGlCGc1YBRYYYUP1EqXTM1wFN8yc+CAmfJqBqUHws/o+LdIui GGpRFCtZFAFFgdFteJnFnzSkwIPgQQHzekr35evx9U4bzpI9NaDcD7fnPAKKjDUGtDR/ekCh5mkC SoMC3I4GVC2KIiWLYuBGKPG+eI4HmkDRJwmpB9VDAVJ4wLRP6TZBWoOuUdeu1zRJOEv21IByXzSg 3L8+AcW+eUCRpRTQNIfWAUVidf7EO3P+bAoo7rxrQDWkNCjejo/VgLZZFKDQLLwHdNKQghQSkAI1 C9J9AV+XrlmvpRROkAKq4WRAWWeGUwOKcHpAGc5ZBhRZY0CRQZ1DOwUUSp7UoBpSD6haFBeCtzGg DCm7XENKG/QJaZ+gghQckILWh3SbIK1B16hr12vqGk4GVMPJgLLeDKcGlPtUOt7bApqOeGQJmWoL KCy6Gf7Bfzh/4p2g3GkDmiyqAWVIGVC1KO6HAWVINaDzCClIIUlhmiXpPn1duma9lr7h9ICyvgyn 2lMDyv1KAWU4pw0oMseA6hzaGlCouCmgMB8W02RRDyhDyoDufPZd1R4XPla9+tyHh49Xj7/1ief4 E+BNf6QWHHT1X49w8DIvOfC86pp7vjAWUqCb7oEAKTgghawP6TZBWoOu0dc/bTi72FMDyn0rBVTD yYAiG00BRbY0oLBoDCiUyoDinfoGtO2YZ0Ddorh4gIDqX//Y48LHB2F9ZBhMUAcVwa3DS1be7iDI fHz7/3f/y4ZWULghhBZZa3xdae2AIWKQFFqPaMAUhg3ofelt8uP5/m0BpT2nCSgyWQcUSWVAOX/O I6AMKS6SAQUogAdULYqw4u/Ta/CSRd2kMOir3vzuEfBbqW02JcloJBmwC+m2SFqDr5PW7GrOLkd7 F3t6QLmf8wgoMsiAIpuNAcWXc3AjeL7FFltMHFC1KAPKkI4EtBBS8qZLnhiY9MklBu9L9rvy85Ft Dzknwk32AKSQgBSoWZDuC/i62oLZJ5zpaGdAm+zpAeW+ThtQzKGdAsr5MwX0ox/9aDQoXm4KqFuU AXWLdg3oPoNg4nmTRdWkblCiGw48ECAFh6SwdSHdFklr8HXOKpyT2tMDynDOOqDIYq+A4sY2bNjQ aFC8zLdjkW5RXFTJoiMBbQhpOaBgPKQpnICb7AFIIQEpULMg3RfwdWkwwSzDmeypAeU+aTg9oNjr uQYUSk0BxQczoMmgGlA1KC0K8DEAb9OAMqQowmvOurMxoAwpA5pDOhpQkMIJfMM9ECk0SgpbF9Jt Kb4OX2cK5izCmeypAeV+qT09oNz3WQUUmZx5QDWkWDQNqhbFReL9cVt4jgKMBTSEtBhQUAgp/v58 Cig32QPgASEpTLMg3RfwdWkwQd9wlgKq4WRAPZxqTw0o9zUd7+suoMmiDChDyoCqRVkABBR/nQ5/ PRmULKoBHQlpQ0BJCijxQKTQKClsXUi3pfg6fJ1twewTzrajvevxngLKcM4koDjrpwmoW1QDqhbF RalFeWwwoGMGXQ7pvpc/Xn8NtDGgIIRUA6ohxQb75gMPCElhmgXpvkBa2zzC2WTPPsd7KaDMx6QB RTZ7B7RkUQ+oWhQXoxbFxapFmwKqFkVA8TyGtENAiW52CgNIwSEpbF1It0XSGoCuVYM563C22VMD yv1Ue5YCquGceUDxRdQuFtWAukVxEWpRXKRbtBhQICFlQDWkTRZN4QTYXN14kgICUqBmQbovkNbW FsxZhJMB1XAyoNw3tacGlOFsCmgKZ/pC/dwC6hbF4tWiuLhk0W4BfXIkoDGkPQJKUhhSaJwUuCbS bThpLbpWDeYk4SwFNB3tJXtqQLm/bs91GVC1KAOqFsVFlSzaGFBQCChDWrJoCifA5urGkxQQkMI0 C9J9gbS2UjA1nAxmn3BOYk8NKPdZA8o8rJuAqkUZULUoLqbJoggoPouP4QTDgC59stQY0o4BJSkM KTROClwT6TactBZdK0jBnDacBx10UL0nDKiGkwHlvjGcGlDutwaUuVjTgLpFGVC1KC6izaKtAQUN AQXJoimcAJvrGw9SQEAK0yxI9wXS2jSYswwnOOCAA6rddtuteLQzoNw/hlMDyn3XgDKcqx7QZFEs yi2KxbdZFDCgbSHdcNnjgzAOXg4BBX0CSlIYQAqOkgLXRLoNJa0B6FpBWzD7hpNzJ76t3XS0M6Dc R4ZTA4q9TwFFVmYeUPwRACwaN4LX84Eb3KIM6DQW1YA2hbQtoEBDmsIJsLm+8SAFBKRAzYJ0XyCt TYM5bTg9oGrOWdnTA8pwziyg+CAGFDd23XXXxWMei1CLpoAypOw+BpQh3enMO7oF9FIGFOSA4gea uwSUpDCAFBwnhS6RPtZJawC6VlAKpoaTwewSzlJANZwMKPeP4WwKKHPhAWU4ZxpQPHgY/mRJCqha FIvTkGLxbRYFHtBSSLsEFPAn71M4ATbXNx6kgIAUqFmQ7guktWkwPZzJmtOEkwHVcDKg3EeGkwFl ODWgzEcKKHI1VUAZ0tIcijtVi2JRfS3KkKaAppDWAcXLHSwK8OsepYCSFIYUmhIpeEr6mBJpLbpW oMFkOE+/5M7qj7fac8gf/Nn+1e+/7Ij67xz9tz2ubOCK6r/tvsKfvHb0/+RPhT/e9bLhfjKcGlDm QO1ZCijD2RhQ/WGRZNEUULcoFqMWxWL7WLQUUDBJQAEDSjSg2FjfeJACAlKYZkG6L5DWloJJTrv4 jpGAEgR0r7M/N+DJaq+znqzeNOSJmjee+UT1hjMeX+ax6lVHf7Z6/emPLfNo9frTHq1eN+SR6nWn PlLteOwDw3AyoNxvtacGFFlpCqiHcyygTce8B9QtikWoRbHIvhZtCigYC2iHkHpANai60SkMIAXH SaFLpI9NpHXoWoEGE+AobwroSiglnINgIpxLAX2sesNyKF9ZB9SDuRTOPQfhBBpQ7i/DqQFlLtye XQLKcA5/3K5rQNWiDKhaFIvrY1GGdB4BBSmgABvrGw9SQEAK0yxI9wXS2lIwSXNAl2zpwXzjmQNr Dm3JgN4/FkxYk+Hc89SHqx3f/tnhfjKcDCj3X+3pAWWOZhpQtygDqhbFovpYVI/6toCCsYB2CGkK J9CNTmEAKTiJFDwlfUwirQHoWoEGE+CToKaArgRyNJwaTFpzu6MY0PFggt1PfqjaYTmg3FeGkwFl DtSeHlBkaWYBdYsyoGpRLGYai3YJKJhVQLGxvvEpHEoK1TSk+1B8fRrKgw8+ePgZemtAB/Ol48Gk MZcCqsFcDucpD1d7DFgK6P2d7KkBZV40oAznVAFVi2pA1aJYxLQWbQvovpc9Xv+k/d6XPFa/PEL9 A80Av5K8xH6D8IJXHPKuCBsDcA6eBn45xknv2xddKzjggANq+H/U8ITzP1H90Yv3qP5wy91HQEBr GxbwIG535GdG/s9gLoXzwZpXH3P/cD8ZTgaU+89wakCZGw8oc9YroG5RBtQtijuf1KIaUgaUQQQe UgCD4nlXiyZ7AlhHjQTcWEoy3CxI90V8fWpMGpRf2zz1otuLBtWjfGW2VAZhXQ7lK+qALh3nDOYw nCc9WL12AAPKfWU4GVDmgOHUgCI7KaAMZ6eAukUZULco7rRkUQ0oQ8quY0jxOnwsPqbPEa//bwtp CifQzfYgkBSaEil8IL1vibQGoGsl/oX3xoAihIPwlVgx5iPVtkfcN2LNPU55qNpjcKwjmEs8UL36 6M9Ee2pAmQeGUwPKcKaAMn8xoG5RDahalAEtWRSL9JBysfg/Q6oW3fGM20eCV8IDCqYNqJICQlKo poG3e/vZv1Ddfd5zpuKWd/xS9aET/lUMqAawzNJxvs3b7lsJ5gDMnBrO3U58oNp+ENCSPTWgzAXD 6QFlrjygDOcwoHx0u1JAAf4EjQa0yaJcGBbKgIJkUYZ0moCCUkhTOIEaKAUVaDi74uHrwpt3f351 74XTcdM7nlt94Ph/XXPbGZuNBHTFhu0sBXTJmivhfKB67SCYCOdSQD89Zk8NpwaU+WA4PaDMVwoo Mjl8dLsUUA0pvif/4Q9/eMyiDCPBwrhItyi7LoV02oCClYCuhDSFE2hA24JKUrimgbeLgB79xt+o 7jr32a3cec6zIp848xerG0/5hREQ1KWALtmwC9u89VN1MJfCORrMJT5bveqolYByf/vaUwPKcPYK qFsUN/byl7+8aNFSQBlSdlsppLMIaM0VDGpzQPkDEyCFFWg4JwG1QWOntykIKPjpfb89zqed34l8 +7bfrL70kV82fqUOKAPXhZe/lQF9cCyYu53w2WrXAQgo99PDWQoo86L2TMd7p4CqRRlQhpQBVYtS 4wxok0UZ0hRQfAYfQyd0CaiGNIUTaEDbgkpSuNpoCihvdyWgv7XMIIhNhNDWAf3wIJQGAroyQ7bz ssPvrZ+nYC5x/yCg9w3DyYBqOBlQ5kLtqQFlrjSgzF8MqFuUAVWL4sbVorhzhpRdoyFld2lIk0UZ 0LaQvuniR6sNl4zDL03VXEYer7Y56B0RrptstdVW1fnnnz/2+mlBQNPrlUN2/Q81P7r7+dWP7mni PxX51q3/YRDIXxJWArrL8Z/pzMsOv2cplMusBHMpnLsef3/1yiPvGwknA6rhZEB5jWpPDSjzpQFl OEcC6hZlQNWiuFG1KO50GotqSDWgQEOJ0L3xvQ/WvP6CpeetXLjEn+97euTGG28c4bTTTht7XRtv fetbq2OPPXZqDjt0v2r/HX+teur257Vzh/MbNd+4+bnVF6979grXL4GA7nD0vZ156Zvvrp/veMyn xoK5yzKvPPJTIwHlPmtAmQeGUwPKHKk9U0CZy+HfSfKAqkVxY2pR3Nk0FvWQekDBmy58aCx4rz3v wWqP93RgEGTw4g2nR26+6LQRtt/mL6qPv/fUsdeXOOaYY+qA4vm0HHbohmr/HX65euq25yzzq/24 /Verb938nOoL1z1rwLNHQEBf8ba7O/Pnh26sXn3UPSO85thPD8MJy77yiKWAcl89nAwoc8FwakCZ J7VnCujwz9BoQN2iuBG1KO6kzaIMKburKaQa0L0vfmQslGCXd4+/rpVg0Ct3eUH1kb3+ZGqOfcuB 0YaTcPThe9UWfeq25w7C1sbAmgW+c+vzqi9e+6yBQVdAQF991N29+fND7xp//ZF3Vzsf95lqu0FA NZwMqIaTAWU+GE4NKHOl9mwNqFsUH6wWxY23WZQhZVdpSFNA8b4vO+6GsYBNFErFAvrJ3X8rhq0v hx9++FyoA9pEDKyyFNQvXv+cpaAOQEC3HwRrUrY86M6x1738sLuqm2++eSScHlDmgeFkQJkftacG lOGMAVWLMqBqUdzoJBZlSNWi+D8ukvOcBnS7d1jQpgDBfMvrd41BmxSE6X3ve1911VVXTcTVV189 xqXvPWMQwl9fZhC2SZCwfvnGfz8I6L9ZCugRG6dm28Pvql7+lrvql182eK6zOPKj4WRAmQuGkwFl jtSeHlDmcRhQhlQDqhbFjc3CovjjoHpxBAF96Wn3VdufPVs27vCs6qY9//NMQUDf8573VBdccMHM eO8F51Vf/fCzZw4CuvWBH5sp//1NN8Q9BAwnA8p8MJwMKPOk9vSAMpfDP8fNgE5rUYaUXQXSxSx4 +oLTcRJ7ekCHf46bAXWLekAZUnYDA+ohRSj1CF/wzGXjxo3DvDCcpYAynDGgalGmmSHFjXWxKG4r LXLBAqD2ZEBL9hwJKEPKgCaLnnPOOcP0q0UXR/iCvtx0003DXKk9NaDM5WZ33333SEDVovhghvQD H/jAiEXx2E0nnHBC/agjykknnTTk5JNPHuGUU04Z4dRTTx0B39FxTj/99MgZZ5xR5Mwzz2zkrLPO moizzz57JqTb7kK6FiXVgqQaglRz3xffN99X3XPPAzJCjj/++CHHHXdcjQaU+WNAkc2RgKpF8UEM Kb6n/KEPfWgYULeoH/WcRfkJk37S5J/Z65ef0tdJ+cV8wh8wAfx5UsJfIQH6ezwg/b5P+j0iwscm Wi3SGkhau1+fXrvXRWumtWR9WW/APeC+cJ+4b9xH7iv3mfvunxgBHu2AR7vaUwPKHI4FVC2Kd04W 5ezAgHpI0ydMswpp16DqRgHfSJA2PAXDScGahHTbTlpjuha/Xq2F1khrpzX1YIJpwukBZU4YTgaU uWI4NaDM4zCgalG8U7IoU8+AMqQa0FJISwGdV0iBb1za3BQCkkIzT9IaSFq7X59fv9ZGa6a17BNO 0BTQFE4GlHlhOBlQ5ovh1IAyl5vhywAa0NW2KOgSUg2qFhzoZvhG+UaCtOEghcNJ4SqB0chfl27T SWsD6Vr8erUWXicPJtBaTxpOD6iGkwFlbhhOBpQ5Yzg1oMjmSEAntShDyu7pG1IWpE9IPai6McA3 Lm0uSEEAKTh9QUDT6xNpDSCtGfj1+fVrbbRmWkutsYcTTBJOBlTDyYAyPwwnA8q8MZwxoJNalCFl 10waUg3qpCEFvlG+kSBtOEgBcVK4SqSAptt00tpAuha/Xq+H1kprqLX1cOqeTBJOBlTDyYAyRwwn A8rcMZwjAZ2lRWcd0rUIKknhmQfpvpW0dr8+v36tjdZMa6k1nnU4PaDMDcPJgDJnDCcDylxudtdd dw0DypB6QBlSpp8BbQtpKaDzCinwjfKNBGnDQQpHIoWsC+m2EmltIF2LX6/XQ2ulNdTa9gknaApo CicDyvwwnCmgzCEyiWwOA8qQMsVdLcqQpoDOM6RAi+8b4xuXNjeFgKTgzJO0BpLW7tfn16+18bpp TWcZTg+ohpMBZY48nBpQ5nEY0EktypCyW+YV0qag6kYA3yjfSJA2HKRwJFLAupBuK5HWBtK1+PV6 PbRWWkOtrdbcw6kB7RNOBlTDyYAyTxpQilHtWQf0zjvvLAbUQ8r0e0BnHVINqhZSC6yFB74xvnFp c1MIlBSeeZDuW0lr9+vz6/f6aO20ph5M4MEEk4TTA8r8eDgZUOaPAUU2RwLKkDLNHlCGlN2wWiGd d1BJCkcihawL6bYSaW3Er8ev1+uhtdIaam215vMKJwPKHGlAmTeGMwa0yaJdg+HFSwXmJqQN5FGY PsEA/iUbxb8gnr7F6PBPrqx30todv/5UI5JqC5pGkabm8X3v2ijMF8PJgDKPw4C2WZQG0zsBugB2 sC82XdBqhRSkzSyRwrEWpLWVSNecakNSTcEsw+kB9dwgS8gUw8mAMn8MZx3QO+64YxhQhpRp5gcz oB5SXQSYdUjXKqgkhWcepPtuI11jqgVJNQRa67QX04YTaGaYI2RKw8mAMofIJLI5DChDyhRrSHFj DOnvHnxDteGyx2p4h7oY/DAqFom/TMeFo1P84vbdd9+JQvrNU/6sBr8Qh/+nzSBpE3WT8TOteI7v +OjrHVyLv+6DH/zgEITswAMPHAue4h9f4icbf7Pm1jM2q/+P29W3p2vCtaLmfv2Adbv00kuHL5Nd dtmlNZz4xbsd8WgjA/Ay9nsW4WRANZwMKPM4DGibRZsCitfrglJAAUKAC8NQffHFF9cBfclLXlIX 4ZOf/GQdFgzRKAxeBnjZQ+oBxcfzB3axIbvuumv1/ve/v77Nyy67bLhRuqFYG54zoJdffnn9cRpE vIwfEubLfD3RgPJ1uEZcE17mc9QWz3EbW265ZX1NWDc/xvGAAl07rgm3jWu67bbb6ue4dtSc143X 7b///vX94H3xnAHFJy14jvUwoNgfhpJQHh5QygUfg0+MLrroovq2cP/4RAqfHO2zzz7VNttsU3+C hQwhJx//+Merj33sY40BZf4Yzjqgt99++zCgDCnTzA/mDQIElLQFFM9xIbwggNdjI/E6BBUXzJCy OLgIBhQwpADBJCg0OOCAA+rbxE9tI2h42QOKzcNG4jneB5uN98FzBFEDes011wxvBz8VzrAp+qAL +D8+A8b7Iez4P58D1Be3ibcDXBvWzbcrCCbB2rAGhhNrx//1uvB/vB615nXjthG+/fbbbxhMPmcd 8Tv6eB8ECT/hzloDhhN7g1AqCJnvJfdaA4pHTcHbaE981o+P1SxpOBlQ5hA1QzaHAWVImWINqd4o oKp550BDCrBgBlRB1+HCHRZFC6VoSAGKXYKb1wY3vkQK0DxI962ktROEAHXGy6kWitYv1RhoOJ20 l9xn3/8bbrhhGFDmxXPk4WRAmcdhQJNFGVLcSOlrkhrQPiEFqQAsTtegpk1QfDPbSOFoIwVOSR/T RlpbE+naFa1ZqinQ2qe9SXtYCqfnIgUUmWqzZx1QzDEMKEOqAQX8Iq7ewXoJKUib4qSNbSOFZx6k +24jXaPjdUq1BFrztCdp76YNJ9BwMqDMITKJbA4DypAyxRpSJB1gqAX8Amv6LlOX7zSl7zYB/46T fteJ6Hc4+F0PwgsnWhTCgiW8uG345pRIH9tEWhtJ1+TX7XXRmnk9tdb+HSLAfdK9436m7xSVvlvk X/OkPTWcDCjzOAxosihDypSnkHIBDCkXOIuQNgVVCw58Q3zDQNrYFAAnBWiWpPt00trTNXodvE5a Q62t1lz3YpJwAg0nKIWTAdVwMqDM5Wa33nrrMKAMqQa0FFJ2hQZUQ8qFzyukwDfANyhtYtpsksLR Rgqdkj6mjbQ2kq7Jr9vr4nXTmmqtdQ/6hBNoODWgzEkpnB5Q5hCZRDZHAspwMpQaRoaQ4dPQMWga LgZKg4NiosjcCGwgj0GdUzH36BzKGQpzFWcwzm/4RIRfDP/qV79a87Wvfa3m61//eo3/oQT+IQP+ SRj+fSP+hTj+wVf+xWL92+/f/e53a5566qkh3/ve92q+//3vD/nBD34w5Ic//OGQH/3oR0N+/OMf D/nJT34ywk9/+tMhP/vZz0b4+c9/PsLiadN98r30vdYceEY0P5orzZvmUPPJzGqOmW3Nu//Vbv8r iv5nldhj7Dn2IHuSParfwPLPxfTzJ/0cST8n0s9/9CCgxFXWlLKKmPJ14VKylCvFSqGqSEck2keg KlEVqEqUAlWJ8kSiRHkKUqCUKAtFga6lRJNIGTQVKQM5T5ECbzBvwMXTpvPke+d763vv2dDcaJ40 Z5o/zaXm1QUKSgIFayFRitQlSpHSJSpRilSnXIpUJ1kVqU6sXUU6lGibQNMUSoH6FIqFNk2hKlGe JBToepGoitQlOm+RAm0WbyZvNuANuXhav0++V2k/fc81D54VzZHmS3OnedScNgkUuES1P+YtUYq0 JFGKlA5RiVKkdI9OoypSStRFSol2EelQokmgaQqlQH0Kpdm7TqFtEkXBXKIs7DwkmkTK4LSJlEGc VqRAm0MbB3hjpebzBl08rZ8n35u0f77HngHNh2dHc6V50xxqPjW3XQQKSgIFqyFRirRJohQpnaMS pUibplEXKSVaEulQohRomkJVoD6FYgFNU6hKlCcEBUqJohDTSpQi7SrRJFKXqIqUgVKRMnjzFCnw RvJGS83oDQsWT6v/lPYh7Zfvqe+5Z8Izo3nSnGn+NJeaV82xCxS4QIFLlL3UV6Ls3WkkSpHSKZQo RUqJUqR0lE6jLlK6zkVKiapIxySaBOpTKO6ozxTaR6IokEsUhewqUYqUG9Yk0pJEVaQMkIqUQZul SIE2hTeNN5U3HUjNmZp48TT/p1T3tD9pH32vPQuaE8+Q5ktzp3nUnGp+NdcuUOACBS7RNoECCrSr RClSlShF2lWiFCndpBKlSClRFSklmkQ6JlEXaJ8pdIsttqgX9PKXv3woUfw19o9+9KNDgVKiuEBK FK/D83lIVEXaJtEkUgZGRcpgrZZIgTeQN1hqwtSsqanB4ml2T6m+IO1H2jffW997z4ZnR3OledMc aj41t5pnzbkLFJQECtokyt6ch0QpUjqGEqVIZzWNukiHEsUr0hSKG2iaQvEbVJxCt9pqq6FEr7/+ +uqSSy5plCgvnEXgReNtqyFRFalLdDVFCrQZvFm8mYA3XGrK1LwgNTpYPPV/SnUEqe4g7ZPvZdpv z4TmxbOkOdP8aS41r5pjzXeTQIFLVPtqtSRKkXaRqE6jLtG2adRFSomCEYmqQH0KxQ3qFLrXXnvV v8lHsBgsiv/nFEqJ4oIoUVyoS5QFYYFYMLyNH0+RTirRJFIGoE2kDNQsRQo0/NoYwBsnNZc3YGpS kBoaJAGQxdP4U6oTSfUFaT+A713aX8+AZ0Tz49nS3GkeNaeaX8215r2LQEFJoGA1JUqR0jlJohQp vNU0japIKVEX6VCieEXfKRRwCqXZsTiOzRToNBJF8TiNsrD4P24Tt4X3KUk0idQlqiJlMFSkDNAk IuWBQpGipvg1cgQcr2fYtRGAN4o3Umo2b0iQGjc1OUliUJ6JT6kOSqojSfVP+5T20/fcM+GZYZbI rAUKXKDABQpcoi5QsNoSpUjppjSNukQp0qZpFIxItDSFqkRxB5Qox+DVkihFykKz8NgE/J9TKz6u TaIqUgZBRcrAdBGphhFoUClRinTrrbceESjxpvCm8aYCqflSk6ZmBqnxlSQN5+n0lK7PSXVSUp1B 2pe0f2mfPQueFc9SX4GCrgIFLlDgAgUlibpASxJVgU4iUYq0q0QpUjpOJUqRpml0KFG8omkKVYnS 2BQoJYqFUaJYsEuUFzatREsiBdwgbhjeF/eP+3WRcuNVpAxIF5EyeE0iVYlCoAw3/7S0N4A3iDdQ arLUjKlpQWpwkITgJKmUWM9Pab0lUh2cVE+Q6g/SfqV99b33bHh2VJ6gr0BBV4ECFygoCbRJokmg 85IoRUpXUaIUKd1GiapI6USdRsGIRGnY0hQ6D4miAPOUKOAm6sbiPrEWvK9KtCRSDRWD1lWkQAMN NOzeDN4swBsqNV1qTpAaGaTGJ0kWiSSePszyKd1+H9L1JVK9SKozSPsC0j76Xqc8eGY0T541zaFn VPOruda8NwkUuECTRLUf5yFRinRaieo06hKlSH0aHZNo2xRKifIOKdAmieJCVmsSTSLlRgJurm44 Q4DbxXrxXAPTR6RAQ6oB9nBr8IE3Rmoeb7DUhCA1LEgNDpIQlCSTJpKk1gtpvU2keiipniTtQdov 4Hub9t8z4hnyjGn+NJeeWc2z5ryrQFWiLlBQEiiYt0QpUpUoRUp3JYlSpHQgJaoiHZEozZokSiNT oE0S5QJXS6JJpC5RFSk3WEWqQdCAIDD4GFwD1tAkUqCh1MBqkIEH3RvBGyU1kzccSI2ZmpikpidJ Fk4SziQk0fUl3e4kpOt0Ur1IqjNJ+5P2Me23Z8Iz45nyzGkeNaeeYc03BaoS1f7QvnGBAhcocIm6 QMEkEqVLppEoRUrHUaIUaWkaHZEo3kCJ8gOaJMo7Xk2JJpGWJKoi5YYCl6iK9OCL7xv5ixLrnbNv fGKsCVOzgtTYJAlBSTJpIglqvZDW20Sqh5LqSdI+AN8z0EWefQWq8pxWoCrRJFDgAgUuUFCSqAsU zFOiFOkkEqVIxyTqUyglihtskigXNKlEp5lGuRFJpNxAFSk3Ool057PvqnY576Fq/yufHLLHhY9V 273zoerV5z5SvemSJwav+1x1wPs+PwZev89ljw/ffmDiKuevRjjo6r9u5eBl/vDwm6tXvfndNZsf fEm15bG3jDVmamCQGl5JsnCScPqSJDcp6fb7kq7TSfVSUr2B7w2Zhzz7CFTl2UWgKlHtH+0rFygo CRSUJNpFoPOUKEVKF1KiFOnEEsUddZEoFr4aElWRukRVpNzYkkhHJHrFikRH+dyQPS58vJbrju9+ eEyoZBKRdpGpS1TZ9pBzqhfsf83YlJoamyQZKEkmTSRBrRfSeptI9VBSPYnWX0niBPOW5ywFqhLV ftI+c4ECl6j28TwlSpG2SZQiLUlUp9ERieIVlCjfkQJtkigWsNoSTSJ1iapIuZElkTIIYESiHUSa xEm57vKeRytMrnsts/elT65wmfO53kCif3Hgu1rZfN9zx6bU1PBKkkUiSWcSkuy6km5vEtL1JVK9 FK2z01WcoE2e60WgoEmgwAUKXKIuULBaEqVISxKlSF2iYESiOoUmieKGKVH8FVX8dVb8HCQlet11 19W/7kmJUqTTSjSJ1CU6K5GOSbSDSEsyhUT3ufzJ+uVJJ1KSptHSJFoiff0UJBE4SSZtJFGtNWmd baR6OKmuJIkTdBHnPOTpAlV5rpVAgUvUBQqmkSid1FWiFKlKlCKlKxslyg8oSRTgTlWigAvE67tI lBfMk4Lvj7epSEsSVZFyY1Sk3EAVqW42A0CRQqI7v/vBUYkWZdosUpUomFakYBqJnnXD48MGTs1O kiRKJOlMQxJfifTx05Cur0SqG1FROkmcYFbybBOoytMFqvLsK1CgfeUCBS5Q4AIFJYlSoJukRHFD XSS6995714vD//HweJQoxegi5YUDFoPFYbFUoni9CpeyxdtcpNywviJtlCjoIVKXKJiFSMG0ElWS CJwkkjaSqNaatM42Uj2cVFeSpAmSOEEXeSaBNslzvQgUuEBVoi7QJNGSQIFKVAUKJpUoRdpZoniH PhLlArggLpALVuG5RFWkbRKlSAELraeXShT/x/vj9nn/uE98LDe4JNLXnHVns0RBi0gp0yRRMguR QqKvPPTcKMwEJIrmTY2uJEkkknBmRRIgSe8/K9J1JlLdFBem0lWcYN7ydIGqPKcRKGgSqEpU+9gl qv3fJlEV6LwlSpGua4kmkbpEVaTcEIqUcPP0VPSNxsdjDVjn9qfdUr3m3Aeq/S5/IguUdBBpk0TB tCKlREkSp0KJOkkCThJJG0lSa01aZxupHk6qq5LECSYVZ5LnehQoaBIocIECl6gLFKw7ieIVaylR 4CJ1iU4iUm5gk0g1CE2TKMQK9rn0sZp9L3+82u8K/NwoJAr6SRRMI1KXqJIkeuZHH6sbNzW5kiSR SMKZBUl+Tvq4WZCuM5HqprgslSROsFbydIGqPGclUDCpQIFL1AUK5i1RilQlCholyg+cp0RVpCWJ qkhZYBUpN0JFyg3rK9JOn84rI9MoWJHozuc/Uu11yUC4lz3eyL7LUNIQ8ygDgQf+4LCbqm0Pfmdn jr/60yM11boumB6v7axhX0wL+6wLsxYocIECFyhIdfVrcIGCTU6iFCkXRJG6RJtE6hIFLBaLp2F1 iapIuUGTirS3REFBpJxEVaxpGgWTTKRNk2gCkygmnjQdKWmyKpGmtE2VdH0lUt0UnzKVNHGCNHWC SSbPvtOnT6Aqz3kIFLhAgQsUlAQKXKIlgYImidJlaypRFSkX6SJtk6iK1CWqImWh5yHSiSQKgkiT RMksRDqpRJUkACdJpCtJVmtJWmMXUl0cr62SpEmSOEEXeSaBTiNPF6jKc7UEClygwCWq3miTaJNA N2mJJpG6RFWkLGxJpNyYaUQ6sUSBibRJoqS/SMFkEj3jI4/GBneSIBJJNps66ToTqW5OEiZJ0gST ijPJc70LFDQJFLhAgUvUBQrmKVGKdE0kmkTqEk0iZSFLIuVGzEKkU0kUjEj0kVaJkn4inVyi3syp +Z0kkS4kSa01aZ1dSHVxvLZKEiZJ4gRrIc877rij/tlv/BXfJM95CBQ0CRSUBApcoi5QMEuJ0pGd JEqRTitRFWlJoipSFqpNpCz8LEVKibb+iFMTIxJdetSnrvSZSGchUSfJoYkknE2VdH1NpPopSZgk SRMkcYJZybNJoOjdd7zjHUN5brnllqsqUNBFoMAFCkoSVQ9NI1E6cSKJUqRtEm0SqUs0iZSFUZGy gCpSFnoeIlWJkijKNkYkiv9naZboItJJJOrNnJo/kSTShSSrtSKtrwupHgmvrZOkSbqKE8xanoTy BOiPgw46KMpz3gIFLlDgAgUlgQKXqAt0TSTqIsX/MfqrSF/+8pfXr7v44oujRFWkLlEVKQumImVh 5ynSJNFJRQqJbrgMjy86+P8EIgVjIhWZ9pXo6R9+JDa3kuTQRJLOpkq6viZS/ZQkS5KkSZI4QRd5 JoH2kSfQyXMtBQpcoMAFClyi6puSRPsIdG4SBSrRrbbaarjA66+/vijSdKGTwNuZBBbdJY7fWIJE +QP1XeHPeiq7nP9ItTfedvng/0Oe6I0LveaKJ3r/nOiJ19w/EuLVQBtorUnrW01UGtOgwmlCZdQV SouU5LnWAlWJai+zv+kIF+gmJdHzzz8/PiyeCzCJTAvF4unGaqF1A7gpullAN1I3WDeeYdjpzDvi JKqkqTMBiW64VCdRkqfOJg4wMJFOMommqUhJE1UTaULbVEnX10Sqn5MmTZKmTZAmTtBl6kyT5zyn T6B9pP2lfec92VWgoEmgoCRQ4BKln9aVRLkAihRwkVw4L0RFygtuEykL2EWk3JhpRNpFoiBJ0xlK FP+fg0gh0e3+8pwozAQkqk2cmj6RBNKHJKzVJq2rD6kuCa2vk4SpQJRXfOT+6ve2OyfyX8Arz6le sEZs+YaLa17z5qurnQYcePJHak664Jbqog/eU3PDrQ9W9z/8+eozD32uVaCgq0BBF4ECFyhwibpA wapLNInUJZpEygtUkbIQKlIWrCRSLTo3YhYi7SpR4uJURiQKxkQKsjBLJIkqSZ7EJZpIYmgiCWdT JV1fE6l+TpIl8UkTnH7JndUfb7VnZyDXvc7+nPHkCmc9Wb0p8sQSZy7xxgFvOOPxEfY87dHqVcd8 tnrD6Y9Vr488usTg/cDrIo/U7HTsA9X/ft1FI/2pfav93CRQ4AIFLlBQEihwibpAQW+J8lGc+oi0 JFEVqUtURcoLV5GyQGsl0r4SJSpPMiZRMEORJokqLtHTrn94pIlT0yeSQPqQhLXapHX1IdUlofVN JHESfHp+2sV3RFmWWJLoqDS7iBPSJCvifGyFgST3OPXR6pVHf7YoziZp1pz6SLXnMjuaRLVftY+7 ChS4QIELFLhE1VMliZYE6hKND4U3iUSTSLngJFJe6KQiZaG7ihR0ESmYVKJgRJYDokTBjETaJlHH JZpIYmgiCWdTJV1fE6l+TpKl4l/jnESiWZhgWZpBnCsCXZHmqCwp0fuXpNlFnANZqjjJHqc8PJDo Z4cS1T7V/tW+7ipQlah6pSRQUBIoaJOoCnQmElWRukRVpC7Rkki1MFowl+isRaoynUaihLIsShTM QKSTSFQbODV9iSSRriRhrTZpXV1J9Sih9U24NBV8U2gSiSY5lnm8piTOJZakuccpj1SvPOp+E+a4 OF2aSzxcs8fJD9Xs8PYliWp/at9qP2ufTyNQ4BJVP7lE1Wtzk2gSqUtURcqFt4mUhSiJlIWcRKSg j0hnIVHSKFEyhUinlWgiiaGJJJ1NlXR9TaT6OUmWin9nfTKJLomxFXzKHqUJxqfN3QcS3W4o0WVp dhDnnoPJE9Pn7gN5Epeo9qv2sfa39n2TQEEXgQIXKHCJukDBxBJNInWJJpFyoSpSXpCKlBdeEikL N4lIQReRukxXXaJgQpH2leip1z000sCp6RNJIH1J0lot0nr6kuqS0Poqp556an1IH3zwwWPiVE69 6PYoyxKQqH4zqERRmiZOZfeBCLc76jPFT9OH0hRxkhWBPlizwzH3DyWqPar9q32t/a4eaBIocIEC FygoCRS4RF2goCjRLtMo70BF6hJVkfICVKS80JJIWai1EGlXifIH6v2H7fV9KFH+PwqUTCDSaSWa SGJoIglnUyVdXxOpfg7E+IpXvKJ+jp/HdIn6z3NOJNGBFEtAkCXGxTk6bb725IerVxz5GZGmiHMg ShfnikCXxLn7SQ9Wr13m1csS1d7UvtV+1j7X/lcvNAkUuECBCxS4RNVvJYmqQHtJNImUd5xEygWr SHlh60WkLlP8/9Wn31r/jSWVo4qxDy5RZRYinUSi2sCp6RNJIH1J0lot0nr6kuqS0Po6lKiLU5lE oiNT5TIjQnRBJgaC9GkTEt32iE+PiDNJc49THqpxcSqvPuYzIxLVftU+1v7Wvlcf0BEqUfWJesYF CkoCBSWBgoklqiJ1iapIuaAkUl5ISaRJokALpwXVQusG6MYAbhbeT+8D/8fbkkh3POP2mX86n95G phHptBJNJDE0kYSzqZKur4lUv0SSpaK/STSJRDlJqgCnY0mauw3kt+3b7jNhjoqT3zgaF+cDK5z4 QLX90UsS9R7V/tW+1n5XD6gftKebBApcoEmi6jWXqPqwVaJJpC5RFSkXoCLVhc5LpPi/fwxe75vE kw/oRFqaSldbomQSkfaV6CnXPjhs3NTsJZJAJiGJa96kdTifeOfzqg+8/Reqey98/ppz0zueW33g +H9d8/FT/+/qQyf8q2qHHf8sChRAovzUepZAlLue+GC1zYhEV8TJr3lGcQ6kCXYTkkRnLVCVqPqm i0CBCxS4RF2gYCjRT33qU0WJJpHyDlWkH/rQh+oHHlGR8gJKItUCaGFIk0i18LohQDdLReoydZGu lUSVriKdRqKJJNAuJDFtSkCib979+dXRb/yN6vaz/0WU22qhEnWuPfEXq1vO+L9qsW718u2rP3rx HrVEVyQ3W3YdyG+bt31q8PKoOEcFuiJOleYKn63Z/uhPDyXqvap9rP2tfT+tQIELVCWqPnOBNkkU 3myUqIrUJaoi5UIAF4eHxGsSKS+4SaRaOC2oFlo3AOjmdBWpynQ9SHTIFQOhNoh0Eony08Yk0RJJ nJOSJDYpuA48AE56G0j3n6BEya1nbFZ9787nj/DUHb9ZPXXnnLhrha9/4nnV31z7bOGXGoFEXW6z YpcTHqhe/tZP2eu7i3O3E5bYdcCrjlqSqPan9672tfa7ekD9oN5QnySJ0kUqUfWWCxSUBAqKEm2a RnmDKlLeMUX6wQ9+sA41wMfqwl2iQC9cC6KF0gJqYbXgvhm6USrSNpmqRKf5hhKZWqJA/nSyi3Qa iSaSQNtIUlpNkLX0+j4kif70vt+enE+38TtFvn3bb1Zf+vAvj/ORzJJEl78bPmN2Gcjv5W+9d+V1 mDyjNMGKOCFN51VH3TciUe9Z7Wftc+1/9YL6Qj2ifmkSqEpUPeYCBS5RFWgniYIuIuWCgC7UJbre RaoSJVFuHZiJRIGIdIklmfaV6MkfemD40GdJoiWSPCchCWxa2iSa1uHcPPgUelyiv9WRgRQnIcr1 twcS/Y8Daf7SuEQLQKKjX5ecHTsf/9nqZYffW7/cJM2SOHc94f4ljr+/euWRKxL1XtU+1v7Wvlcf qCfUH+oV9U2TQIELVCXqAgWdJaoi5Q2pSPUOm0TKC1gNkQLdHBVpV5kmiZIoOAPvt+GSR6s3XfhQ 9ZpzH6xef8GD1RvfOwMudB6qfv8tH6/+fN/TO3Pgu26sbryxzIc//OHqsMMOG/7/f/2v/zXy9lly +OGHV29729vWBW89/C3V/jv+2hBI9Knbn9eNO7ryG534xs3Prb543bNXuL6JpU/ndzj63rmw/ZH3 Vi99893Vjsd8qtr5uM+YIBPL0lwW5y4CJar96b2rfa39rh5QP6g31CfqGfXPpAIFLlAwJtF77713 TKT8QBUp70BFyoWslUiBboZuFOgj0iaJEhXm3hc/kqU3YKYSBSbSWUv0yiuvrE477bTh/zHl6dtn xRFHHFG99a1vrY499tj1wREbqsMP+8vJJNqXKNgVxiTawpJE75kL2x95z0CiG+PbwE5v/9SINF2c K3xmINFPVS/a88JhT2q/ei9rn2v/qxfUF+oR9Yt6hy5Siaq3XKDABQpcoPBmo0RVpLxBFSnvWEWa JAr0gvRCtQBaGC2YFlIL7MXXjVGJAhVpk0xLEsUP3jcJU4E4t39nftvUTCDRnfY+orpzp+dUH9nr T1p5925/Wsvzf/3P/xHfPi1HHPbm6ti3HFgdddRRWWhrwTGHVYcduk91+FsOrg7Y5beXJfrcHgwE OEP+7oZfGwjyWQ2MSvTVR90zN151xD3V/z7wzmqbw++Ob3cwwb7m2PtqcdYMJlhMsdsdsSJR7VPv Ye1v7Xv1gXpC/aFeUd+oh9RPLlDgAgUuUNAqURUpb0BFyjtaDyIFugm6QaCvSPEbSzud80D96XiU mAFhbveOB6vXnpffPhc6SBTi3LjDs6LI1oIPbNi8OuqwQ2uBYhKNMltDjjvqoFqkhw3WV0v0toEc 24hC7UOWqPLF6/9d9cVrB+JMDIRaS/TIgeBWkW0O21i9+KA7q1e8dWN8O9je2GbwvpCo9qb2rfe0 9rt6QP2g3lCfqGfUP+qlJoECFyhwgYIxibaJlDdcEikXthoiBVp03RDdKKAiVZnife+5556RTzVf dtwN1Q7vvD/LawAmzF0Gk2p626pSkOh6EqeCr4G+74J31X+88Kqrrpo7V199dW/ef8W7qosuOLu7 RKchSrXMd24dCPXD40KFRLc/cuOa89I331ltedAd8W3bH7Gxevlb7qpeuNv5I7121113ralAQZNA gQtUJUpnjklURaof2CRSLmQ9iRSoSPG+LsyEShSynNun5TOAEoU4P/b6F0R5rRcg0QsvvLB63/ve F6W3ViSRLkn01zsykNxqUgv1uQOh/tuBRP9NLdFXDSS13thuMHm++OA7qq0PubP+/8uCRBM333xz 7Q70q/a9+kA9of5Qr6hv1EPqJ/VWk0BVoi5QMJQoBOMSVZHqDbpE15NIAW4Hm5E2acGCBZsed999 99wFCroIFNCV8GaUqIqUN6Ai5R2tpUgp0y7T5YIFC55+3H777XMRKHCBAhcoGJOoipQfMAuR6sUA vVAtQEmkC2EuWLCgCzfddFPtp5JE1U/qLfUZHQdcoEAF2ijRkkj1DvSOsRBcwHHHHVcvED8mw4X3 ESkmTkh08en4ggULZsWdd945ItFpBQrGJIqvOTSJlDdYEikWA3HiORb5gQ98oLrgggsaRYr3X7Bg wYK1BMNfSaCgSaBFiQKXaBeRvulNb6o/FiLFy/h4CLVJpKWJtPSpPdCvk/rXSvUbTsC/6dT0HXxS +pEoxX/GlD9nmtDfzVf4yFGOPki0o38PKsG/WtoG/85+V7785S/Pla985SsTk25vlqR6NJHqnUj7 p6T9Jyk3IOUMpFyClOOUd++J1DfeW9573pvat97T3vPqA/WE+sPdot7hBNplClXPqf+SQOHNEYm2 TaNA78AlCnSBunC9IL9YLYQWSAsHtKhedN0Q4BvmG+obnkLhwQEerhRCkAILUsBBagiQGkhJzeek Bk4kIXQlyWdTIV1PV1IdE2lfnLS/SsoHSHkCKX8g5RV4tlP+U594L3mveS96r3ova5+7A9QP6g13 ivpGPaR+Um91FShQgUaJ9hEp73ieIgVaRC0w8A3QzfHNA77BHoAUkhQmDxxIwUwhBin0JDUKSc2l pOZMpEZvIglkliS5dSXd3ixJ9Wgi1TuR9k9J+09SbkjKG0j5TDlOeU994b3jvZX6T/sTaO96b2vf uxPUF+4S9Yz6R72kvlKPdRVoZ4kCvQGX6LQiBXrxWhgvmhbUi60bAXyjfCN9s4EHIoUmhSuFMIUV pGCD1AgkNZCSms9JDZxIQuhDEtB6J11HH1IdE2lfnLS/SsoHSbkCKYcg5TblO/WB90rqJ+8570nv We9p7Xd3gXpC/eFuUe+oj9RT6i/1WleBgqFEN27cOPIG/QCX6LQiBXqxWggtENDiaWGBF943xjfO NzZtvgckhSiFLYUSpACDFHiQGkRJzaWk5kykRm8iCWQeJNElkKEzzzyz/sZAup1ZkurRRKp3Iu2f kvZfSfkBKW8g5ROkPKfce28A7x/vMe9B71HvYe9x7X93g3pDfQLUNeoh9ZN6S32mnmsTKLw5ItGS SHlDqyVSoMXSQgItsm+Cb5Jvom8y8CCksKRQpfCBFFSQgg1SI5DUPCQ1npOat4kkha4kAc2baSWa rqMPqYYl0v44aZ9JygdJuQIphyDlFqScp37wnkl95b3nvem9q33tPa8+AOoK9Yg7Rv2jXlJfqcfU b+q9kkCjROctUqAXqQXQwgAtmhdVCw58Q3zDfEPTpnswgIcnhQykQKbwghR2khqEpMZyUmM6qcG7 kCSy1kCi6fWzItWhC6nuTto/J+WApPyQlDuQcpryDDz7qT9SH3mveS96r3ove6+rB9wR6g/1ijtH faSeUn+p19R3dKBKVH05lCgeUaVJokBvWO9QF6IL1IX7RekFayG8SFpA4AXW4vvmAN9A3+AUghQW DxRIwUshBSnQIDUASY2jpKZzUvOWSDLoSxLReiWtvy+pjiXS/jhpn5WUE5LyBVIeQcpvynnqh9Q3 3lvee6k/tX+B9rb3vrtBvaE+cdeoh9RP6i31mXpO/adepCvhzRGJrheRAi+YFlMLDXwjfKN8M4Fv eApFCk8KWQojSMEFKegkNQdJTeWkxnRSg7eRBPJMIdWjjVR3J+2fk3JAUn5Iyh1IOQUp1yn/qU+8 l1K/eU96z3pPa7+7C9wV6hF3jPpHvaS+Uo+p39R76kM6slWiQD9Qb1DvSBegC9MF64UAvUgtANDi ePG0sMAL7xvjG5c21wOQQpLClEIHUkBBCjRIDUBS4yip6ZzUvCWSDPqSJLReSevvS6pjibQ/Ttpn JeWEpHyBlEeQ8gtS3lNfeO+k/vIe9B71HvYedweoH9wd6hV3jvpIPaX+Uq+p79SD6kc6c0yi8xIp 0IvSC/ZiaKGAFtGL7Jvgm+SbCNJmeyBSaFK4QApiCi1IISepMZTUVEpqykRq8C4kiTzdSXXoQqp7 Iu2jknKgpByRlD+Q8ppyDVIfeK8A76fUd96b3rve29r37gR3hvpEPeMOUj+pt9Rn6jn1n3pRfTmU KH5BX9+gH6A3pHegd6wL0oX6RegF6oUDLYoXTQsKvOC+Ib5haVN944GHI4UIpMClcIIUZJLCT1LT KKnpnNS4TSQh9CGJaL2S1t+HVL8m0v44aZ+VlBOS8kVSLkHKcco78N5I/ZP6zHvRe9V72XvdXaCe cIeoX9w96iX1lXpM/abeUx+qJ+HNEYnOS6RAL0Yv1IugBQJeQC+wb4BvkG9g2uQUBg8MSMFKIQQp sCAFnKTGUFJTKakpE6nBu5BE8nQn1aELqe6JtI9KyoGSckRS/kDKK0j5Tn2Q+iX1lfee96b3rvc2 0N53N7g71CvqG3eRekr9pV5T36kH1Y905phEpxEpNsI3LG0uSIFQNEgpfEoKsePNkSaTRPpaWvpO bxPp5xPbSD9g7qRfgZyG9OAeC5pJdZyGtM9OyksbKZdNpNyn/kh4r6V+dFJfK+qD5Asl+Qa4m+Cr aQUKhhK94447Rt6gH6A3pHegd0yJ9hEpSEUgWjiQiqukzXF8g1MIEilUIAWwiRTwLqRmclJTzpIk kac7qQ6zJO2jk/LQhZS/JlK+QeqHhPdW6j8n9bHiDkieIMkvxJ1EV00rUHhzRKLTipQLSyL93YNv GGPf8++qLxAFwPvsvPPO9ct8nD+Ax/rDHzjj/zfffPO6uPo+eABnFh3/5wbhL0t+4hOfGNk0su++ +9br5IanUJRIQUuhJPhDcgkNPK8FQdHXA9znrrvuOvK61GyJ1LjKLbfcMrzvLbfcsn4d1oz78/ft SpKR8sEPfrD+w3XO5ZdfPnyfK664ol4T1qEfOyvSuks89PG96z9e5/j7sY6l2qX9Sey///5VykEX mLlLL720/pSa/08g97vsskvMs2e+CdzO0e/6eP1H85z9T7x+2HPoR9QH98l+bWKfffapv1QwL4EC 9Zd6TX2nHlQ/0pljEp1GpLo4woVDmhsue2wEvE4vlBKFKLVAkChkymICyjSxzTbbVK973evqr+lw 8/D+eBmbSIni7bjd008/vQ4C3oZQXHLJJfX7MyR8/Ute8pKRt6fwAQ8rhPnNU/5sBLyObz/hhBOq Aw44YKQZcJ94jrfhPilRvh5rwfPLLruslh+aD2/D809+8pPV+9///vplPOf/8XWks846a6SxIdFr rrlm+P8TTzyxbj6KALeJTOj74utTvB28nR+H56gLnjcBYUKkDl7P9+HtEl0nnuP/vgauVd/GgwE1 xOtQ7wMPPLB+HZ+3AWH+ZONvjqAS3XbbbUfeH3AfcJ++N/467DFkgb287bbbRiSK99H9JngfPMft 4ZowLOCvleJlPIdEce34P25Dn+N98ZdO0QeUKNaA5+gHvI25Ry3xcoIDCIAwdzz63jHwetwPe0/7 9KKLLhr2Md+G5+x1ShT9v8UWW9QuwNvx/Nhjj63zjLd9/OMfrx2Ct+E5aoXn733ve+vbT/Ik0woU DCWKP/rEV+o7A70hvQO945JEQReJ4v3aJIqXVaJ4rptCEB6M6aeddlq9eZAovnCtL1OiKDhejyDg bQglnyMo+MI0Q0UgUQ+XSlRBaNskqiAI+CI5HlyDDYPbh9QQGsiQrwdoPAQNL7Ox2HBoUID/82UH 10nhAtwG1kGJqhRxO3wZqEyJvn+JLhIllKfft/4fEyxyS2ECvuwS5duxdn3/JkoSZc1wgOAbLvw/ pIrnWnfsE3oMr9O9ozSx76gd9xHZTvsNNC+4PRx6eK6v10l0v/32qzN1xhlnDHOJ+0LuIVHUBu+D PkX/4P7xOrwPnisqToLb6SJR9ufHPvax6sorr6wlim8e4XV4GXuC+2SPQ6K4BvQ/aoH+x+v4nDWD P+Ag5IA+AZAo7qskUDCJQAFdiT0dkaiKFOgH6Q3qHekC0iIJTwOiF+tQniVYZMLNKYENokTbSCHx ILWhElU05H3xRpoGNvYkJMmsF7pKsSvp+ruS6l4C6+bLKlmS8tCVlEOQcttE6ovUP4nUk0Al6j2d +l7BZEpfoGbqD3dN8hFRf6nX1HfqQaCObJUo0A/WG9Y75CL4YxFpscAvTi88kYqneOF9kxJpkxMp NCAFrIkUYJAC3wdvtFmQZDANSUxrTVrnNKQ6Tkva7z6kvIGUzyZS/kHql0TqP8d7OPW5kjyhuGOS hwBd1Ueg7kY6c0yiRN9Zb0jvQO9YJdokUuAXmopBUiEd34i0WYm08YkUpBS6NlKwSWqGPqRmnDVJ Ik93Uh1mTdrPPqQ8kZTDNlLeU1+USL3meM+mvnaSH4g7JXmHqKemFSgYShRfm9E3AP0gvUG9I10A oNkBv2hL+DNZQH/gFfgPxOoPywL9QVqgP2RL8HUTBV9jcfQHeQl/2FfxHwwG/sPDBF+3SeBrlSX8 B5gV3eQSKRyOB6sLKaCTkJpgvZDWOwmpfm2kfXLSfjspNyTljaScgpRrkPog9Uvqq9R/3qOpj73X 3QXuCneJesYdpH5yd6nX1HfqQXckvDkiUaLvpDegN6x36IvRhfpF6AUCL4AXyAvoBfYN8E0CaTPT pqdwpBCBFDiQAgpSoElqBCU1kZOasURq7q4kmTxdSdfflVT3Emk/nZQLJeWKpDyClF+Q8g5Sf6Q+ Sv2W+tJ713vbe9/d4O5wt7h71EvuLPWZek79p14E9GWUKNB31hvSO9A7BrooXTDwC9KL9WJ4sbyY XmzgG5I2LW1uCkEKC0jBSiEkKbgkhZ2kJlFSkyVSw7aRhDApSUxrTVrnpKT6tZH2KZH2XUm5ISlv JOWUpHynPgCpb1J/pT70Xk397D3vTnBnqE+AusZdpJ5yh6nf1HvqQ3dlLdFbbrnlHrywYMGCBQv6 MfDnF+pJdMGCBQsW9Gf4nXl+qs5Py/kpuH66zU+tMW7zU2aM7BznMebjUwB8asBPH/DpBT794Kcp +JQGnwrx0yt8oZ/focN37fgdPnxHkN8txHcZ+Z1IfkcT3znlj63wV/m++tWvVl/72tdqvv71r9d8 4xvfqPmHf/iHmm9+85s13/rWt2q+/e1v1/zjP/5jzT/90z8N+ed//uea73znOzXf/e53hzz11FM1 3/ve94Z8//vfH/KDH/yg5oc//OGQH/3oRyP8+Mc/HvKTn/xkyE9/+tMRfvazn43w85//fITF06b5 5Pvo++w50IxodjxXmjnmULOpmWWONdvMO/OvPcE+Yd+wj9hX7DP2HfuQfYke9V+91Z+C0J840J8W 0O/863f09cs0+uUSfslDv4zBL0/olx/45QV+CUG/VMAvC/BLAPx0n5/e9xKoyjMJlF8nUYHy6zMU KL8mRIHyO6WUJwXKH6koCZQ/ejIPgapEXaAqUQZPJaohZXCbJKpNoM0BtHG8sbzxwOJp03pKe+j7 rBnwfGh2NFOaNc2gZtPlCVyewAWqPTJrgVKiJYFSovQEBUqJ6tenVaCUqH69lxJVgSaJdhZoSZ4l gVKeLlDKUwWKC1GB4kL7CBSF7CNQSrSvQFWikwpUJarh1VBr2IE2gjaINg/w5koNuHjaNJ7S3vn+ +v5rNjQznifNmmbQ5Qk0w30Eqj3TR6Dsz64CpUS7CpQSpUApUQqUEnWBUqIlgZYk2ipQl6cLlPJ0 gWLBKlBc0HoVqEq0JFCVKIOmEtVQMqhdJarNALRRvIm8yVIjLp7W91PaM99X33fNhOdFs6QZ0+xp JjWrLk/g8gQlgWoPrTeBUqIUKCWqAlWJqkCTRBsFqvJsEijl6QLFgiYVKAoxD4FSoiWBqkRLAlWJ MlgqUQZQJaph1RBruDX0QBtCmwV4M3mzpYZcPK3Pp7RXvp++354HzYrnSDOm2dNMujxBk0C1F0oC 1Z5KAmU/zkKglCi9QYFSol0FSomqQFWiJYGqRKNAXZ5JoLhDFygWpgLFwlWguDAKlBfsAmWBZinQ JomWBKoS7SvQSSSqTQG8abypvOlSYy6e1tdT2iPfR99nz4HnRDOk2dLMaRY1o5pdlyeYRKBJnmsh UEqUAqVEKVBKVAVKibpAk0R7CZTydIHijl2gWKAKFBfwdBGoSpSBU4lqODW0GmYNOdAG8ObQxvHG 8sYDqUEXT+vjKe1N2kPfZ82A50Oz47nSzGkWNaMuT+DyBC5PsCkJlBKlQClRFSglqgJVibYKVOVZ EijlqQLFAiYVKC68SaAo3GoLVCXaJFCVKIM4iUS1CYA2iDYP8OZKDZgadfG0tk9pT9Le+f76/ms2 PDeaKc2aZlCzqZntK1DtldUSKCVaEigl2iZQnUIpUEqUAlWJukBdolGgKs8kUNyRChQLUYFyoRQo LoQCxQUmgaIg61WgKtEkUDCpQIE2gjYJ8CbyJkuNmBp28bQ2T2kv0p75vvq+ey40M54nzZpmULPZ JE/g8gTrTaCUqAuUEqV3mgRKiVKglKgLVCXaS6CUpwsUd6gCxYJUoFjwpiRQlSiDohLtKtBJJKrN ALxZvJm82VJDpsZdPK3uU9qDtFe+n77fngfPi2ZJM6bZ00xqVjXDmm0XqPaEyxNsCgKlRClQSpQC pURVoCpRFygYClTlmQSKG3SB4o5VoFjYpiZQlWgXgZYkqqHUsGqINdxAg+9N4U3jTeVNlxozNTBY PM33KdUcpD3yffR99hx4TjRDni/NnmZSs9okT9BFoNpLm4pAKVEKlBJVgVKiLlCVaBQo5ekCxQ1T oHvvvXd9p/i7JRToVlttVS/s/PPPr//ukAoUF0SB4kLXWqAqUReoSpQBUolq2BjASSSq4QfeHN48 3lzefKlBUyODxdN8nlKtQdob3z/fX6D77/nw/Gi2NHOaRc2oZlcz7fIELk/gAtXeWiuBUqL0DQVK iXYVKCWqAlWJdhIoPtAFijvQCfTd7353/bF4G//qI8Afg+LCk0DxHK9fbYGqRCcVqEpUQ6jh1NBq mIEGXRvAG0SbB6QG8yZMjQpSU4PF02yeUm1B2gvg+5b21vff86HZ0Ux53jSLmlHNrssTaPb7CFR7 bdYCpUSnESglSoFSohQoJaoCpUSLAqU8XaC4ARco7ogCxdSJhVx77bX1H5DiAjGZNgkU4KLxNoD/ U6As1CwFqhItCVQlysCoRDVcDNwkEtWwA20EbxJvotRo3oypYUFqcLB4mu4p1RSkPQC+X2lPfd89 F5oZz5NmTTOo2dTMapY14y5P4PIEJYFq781ToJToJALVKZReU4H6FEqBUqJjAqU8VaCUpwoUd3jk kUdW119/fb0I3EYSKAVZEigLgP/z/VCYWQlUJVoSqEq0SaAqUQ2dhlFDquHVUAMNvDYD8GbxZkoN 500JUvOmRieLp35PqYYk1T7tUdpL32/Pg+dFs+Q50wxqNjWzmmWXJ9BecIFqD5UEqr24FgKlRNsE qlMofecCVYk2ChQf0CTQc889t/6D/bhzLmKnnXYaLu41r3nNmEBxYSWBsiCAMsX7lgRKiXIDmiQ6 iUBVohomBmxaiWrogTeFN403VWq81KCpkUFqerB46vaUagdSrUHam7SHvs+eA8+J50gzptnTTGpW NcOabc28yxNMIlCXpwuUfT0LgVKiLtBpvg5KiUaB4hUuUHygChQ3zBvHhEk2bNhQLwafxuP/+Pon FjqJQPVTeMAi4H2SQFWifQWqEmUgVKIMjkpUQ6bh01BqWDXEGm7g4dfG8MYB3lypAVOjpoYGSQBk 8ZSfUq1IqjFIe5L2zvc3ZUAz4vnxfGn2NJOaVc2wZtvlCVyewOUJugpU5bnWAqVEKVB6jgKlRFWg YESgeIMLFDegAsUdANwZ7xiL4IKwOC60SaC44DaBsnAoIt7G28HrphGoSrSvQOcpUW0OkBrImyw1 YmrY1NgkyYAsnpaeUm1IqilJe5H2zPc17b3nQ7PjudLMaRY1o5pdzbRmXXugi0C1x1ZboJRoF4FS okmgOoXSfy5QSnRMoHgHFyhuqCRQLIAC5cIoz1kKFLCw+DjcJj6uj0BVoi5QlSiDohLVUGnYNIQa TtQP0/gNN9wwDDL+j+eoK37UywUKvElSI3mzpYZMjQtSk4MkBuWZ+pRqoaRaglR7kPbK9zPtuefC c1OSJ5iFQLUnXJ5gUxAoJeoCpUSTQClRFSglWhQo3rFJoLijPgLFhcxSoFpo3BbuAx83T4GWJKoh BBpQ1BACRXAR5Be/+MX1c3z8oYceOgy8N4M3izeTNxxIjZkaGKSGJ0kSztP9KV2zk2pHUs1B2qO0 l77fngfPi8oT9JUnaJIn0J7oIlDtubUUKCXaVaCUaEmglOiYQPEKFSg+QAWKG1xvAmXhsQl4P9wX bh9vU4GqRF2gKlEGQyWqIdJwMXAuUQ2pChTg+jCFqjyJN4U3jTdVarzUoCA1M0jNT5I0nKfbU7pG J9WKpBqDtCcg7aHvs+fAc+I5KskTaDY1s5plzbhm3+UJXJ7ABao9OEuBUqLzFCglSoFSohQoGBEo 3qACxQd2ESgWstYCBdwYfCzuF7dXEqhKlEFQiTIwXSSqYQQMKWqpAn3Ri15UBxv13X333cfC783h zePNBbwBU6OC1NggiUBJEklsqk/pWhKpNkqqLUh7AXzf0t76/ns+PD8qTxdoSZ4gCVQzr73g8gQu T+ACpTxnJVD6YlqBUqJwGSWaBEqJUqCUaC+B4oYpUN6hCxQLXGuBAmwUXof7wBrwcfMSKNBAJoHi Gs8777xhuCFTbwBvEG8gkBrNmxGkpk0NTpIUlCSVEuv9Ka25RKqFkmpJ0h6kvUp7mvbe8+H5Kcmz SaCaYc22Zl57YVqBao/OS6CUaEmglGiTQCnR3gLFO6hAcQOTChQLd4HyAuchUKACBdxAvA1rwRrw fxWoSpQB6SJRDZ+GEmy99db1p+sA0yZCfMYZZwxfx6B7E3iTpEZKDZcaMzUwSM1OkiScJJom1vop ramJdM1Oqh1JNQdpj9Jepj33XHhuVJ6gizyBZrirPIHLE7g8mwSqPbsaAqVEJxEoJUqBUqJFgeId SwLFHcxboJToLAUKuKm4LawL9+MCVYlqeDRUDFqTRDW0QAPtYfdm8GZJDZUaLzVoamSQGl9J0nCS fPow66d0H31I1+ikWimp1iDtTdrDtNeeB8+L50mz5jnUjGp2NdOade0BlydoEqj23qYkUEo0CZQS HRMoXlESKG4oCRR3TIFiQasl0CaJdhEoNxqvw31jXbgNF6hKVEOlYdMQAg2oBldDDTz03hTeNKmx UgOmRgWpqUGSgJIkkkhC2hRI15JItVFSbUHaC5D2Lu2x58Bz4jnynGkGNZueW820Zt3lCZJA2VN9 BerybBMo/TALgVKi9FgSKCWaBAqKAsUHrLVAKVEWUiXaVaAqUW6sSpQBwOuwVqxNw8IAdZWohhRo gD3cGnxvDODNkxosNWJqWJAanCQpKEkqTSRZrQfSWptItVBSLUnaA5D2LO2t73/KiGbI86XZ81xq ZjXLmnHNvvaEy1MFqj3m8gRtAnV5AspzrQVKiRYFijesR4GqRLsKVCXaRaCAwcDtYd24Hw2RhktD p2EEGlQNMdCAa/hBahBvotRoqSFBal6Qmh0kQThJMl1IMlsN0lq6kK7dSTUEqeYk7VPaU9/3lA3P j2bLc6eZ9LxqljXjmn2X5yQC1d7sKlD2/3oTKCXaKFB8IAWKG+wqUCx0rQSqEnWBqkS54SpRDQfC grdhDVgvPrarRDWsQIOsIQfeBKlRvJlSw6XGBKmJQWp8kmSRSOLpS5LeJKTb7ku6xkSqGUm1Bmlv QNpL3++UCc+N50oz53nUrGqGNdtJniWBai+5PIELVHt1tQVKiZYESonSdxQoJdoqULxDm0B5R5Tn 00WgSaIAIcLbuPYkUKDB1MBqmIGH3ZshNYw3VWq81KAgNTRJElCSQBJJSJsC6VpKpPqQVFuS9gSk PfR9TlnwvHiePG+aRc2o57ePQLVntJc2RYFSol0FSok+rQSqEnWBqkS5wSpRDcPvHnzDJsOWx94S mzA1K0jNDZIQnCSUEklU64m05hKpFk6qKUh7ANKeAZdnEug08mwSaB95lgSqveXyBC5Q7d2nlUDx jhQobmA9C1Ql6gJViXJDVaLceJUoxLTP5U9UO777oWq7dz5Y7XHhY9X+V35uhAPe9/kh+13xZLXv 4P3xXF9/YOIq569GOOjqv27lYAFr/aP9LosiTY0LUqOTJAcnSaYLSWSrQVpLF9K1O6mGJNUe+D6R NnHOU57TCFR7yOUJXJ7ABaq9vB4FSonSi1GgeEWbQHHD60WgKtFZC3T/gQz3v3KJFZk+NJDp41Gi AK/b57LHa5nydash0Fe9+d3VtoecU/3egddVZ9/4xEhTpgYmqelJkkUiiacvSXqTkG67L+kaE6lm JNWa6N4QF2dXebYJtEmeLtBJ5TlrgWpvr7VAKdEmgYJNTqAq0ZJAVaLcQJUoN1olWhKoss/lTw5k +vBQpipQBdMoZIrbOQCyVd7n5NtogkLGWrf7y3OGvOyQ8+rXXXPPF0YC34Q2iaPNtGBUKE6qbRsq IqJCakIznFCJAe0DRcUGtIdAur603nTf6X70tksC1V5/2goUd7ipChRwszWUCMRQoFGiK5/GU6av PveR6vUXlWU6MoGClim0yyTqE6izxf7njn1anyYikiYpJ01iTaQJbz2Q1tpEqoWTakp0D5R5TZ5t 06dOnqs1fYJNQaCUaEmglCgcSYmOCJRvoDznIVBKtKtAk0RLAlWJcsNUorq53HCVaLtAwfjXQlWm b7h45VP4KFAwI4mWBEr+x8FXrLlISZLZapDW0oV07U6qIdGaO2slTxeoynMagWovaY+5PIHLE5QE 6vIEqy1QSnQqgfKG2gSKhfUVKCXqAlWJtglUJcoNUolyI1WiuukMAhgRaMsUqhIlKtM3XfJEzV7L 7H3pk0tclvhcLzYMwFr/4sB3tfKC/a8Z+fpoanglySKRxDMJSXx9SLc5CekaE6lmispSSeIEayFP F+ik8gTaSy5P4PIELk/QJlB1Q5NA6ZkmgVKiayrQvfbaq/5TxhQoH2kI4DtUTQJVibIILtE2gapE +wpUJaphaBcoaJYowddKIdR9E4PbHuVzNftd+fnOYK34BlIX/p8Nl441dGp+JcmjRBLSpkC6lhKp RorXV0niBLOSZ5tAu8pzGoFqb2nPdRGo9nSbQJvkueYCxTt0EehWW21V/xVOFaj+NU4wL4GqRF2g KlFunEpUN5kbrxIdEyiYQqB8uf3TeDD+qTxIn8IDrDV96p5IAiVJBk4SShNJVuuBtNYmUi2cVFOS pAmSOME85OkCVXm6QCeVJ9DecnkClydwgWqPr1eBUqJTCRR3No1A8Zxvo0RXQ6AqUd38fgIF7RJt FCjoKFAwT4GSJAcnSaYrSWjzJK2hK+nanVRDJYkTJHGC1ZCnC1TlOSuBaq9pD24qAqVEpxYoPtAF yjtIAuXCjjnmmOqSSy5pFCjgRetF4mW8DoVxgapEXaAqUW6USlQ3lRudJBoFGiXaT6CgXaAgCxRM K1A2cGp2JckikcQzDUmCTaTbmIZ0jYlUM0Vl6SRxgi7yTAKdRp4u0FnIE2ivuTyByxO4QLXn14NA KdFVEShefs1rXjMiRZAEClgIFobF4McDfBze5gJViTYJVCWqm60haBQo6CnRVoGCHgIFsxAoSc2v JHk0kaS0nknX0ESqkeL1VZI0QRInaBPnPOU5K4Fq72lPukC1l12glOe6FyheMY1A8f+LL764XtiG DRtm8k0koAXE+2hB8DLexwWqEtVN5MY2SXQagbpEXaCgXaAgy1OZhUBJkoGSZNKFJK21JK2xC6km SqqpksQJuoizqzzbBNokTxfoLOQJtPdcnqCPQNUJ60WgYCqBAi4Ai+EUyoWq6MA0AmVBWWCC98Ft 8b5w+7gtbIZLVDdXN13D0ChQ0CJRlWUngYIJBApmJVCS5OAkwfQhiW0epPvuQ7p2J9VQSdIkqynP NoGW5DkrgbIPVaCUpwpU+3oh0AkEClyiLlCVKAuvm4HNwetwW7x/3CduE6/XDdaNn5VAVaJJoGBW Eu0rUDZvanYlySKRxDMrkhRBet9Zka4xkWqmqCidJE6wHuTpAi3JUwWqPaS9RXlOIlDtdRco/QDo jEkESl/1FSgl2ihQvuNqCVQlyuL0EShQgRJuGjYR/8fH4r64LryMj+0lUNBRoiWBglkJ9JWHnhuF 6ahASWp+JcmjRBLSpkC6lhKpRorX10niBGslTxeoyrNJoOyVvgLV3nR5gj4CdXmCZ5xAVaJtAlWJ stAqUW6ISpQbR4kSbjI2He+H++NaIaX9Ln8ii5N0ECjoJVDQU6IUKEniJEmgIInASTJpI8lqPZDW 2kaqiZNqS5I0QRInWAt5ukC7yLMkUO017UH2JXCBak+7PMFaCJQSnYlAeYNdBEqJcuGgJNE2gapE Zy1QSpQgEBQo2OfSx2r2xcPUDRgRaweJNgkUzFqgTRItCZQkKSSSYLqShDZP0hq6kq49kWqpJHGC JE4wK3m2CbRJnl0Fqr2jPaW9pj3o8gRdBKouKAm0JE8XKP20SQhUJTpLgapEuQEqUW5USaK62RoC CnRk2hQgUIi0lurleOzPgVSvGEh1VgIFPSSaBFqSKASKxk1N7iRRJJJ4piWJMJE+dlrSNSZSzRwX ptJVnGAe8nSBTiLPLgLV3tOedHkClyeYhUBVns8ogapE+wpUJaqbyI1tkmiTQMdYnj4h0X0uG0yr yw+ojMcDpUDxPMmTzEOgJAmUpKZ3kjxKJCFtCqRrKZFq5GiNnSROkMQJVkOeLlCVZ5NAtWe0l7TH tPdcnkB7t4tA1Q1rLVBKdESgfMNaClQl6gJVibLgKlHdHG6YSlQ3VzddwzCJQFdYmT4hUQgUUm2C Xx7glwhqBkIeBZIeB2vd9uB3dgICZT0Vre2CyUm1nTUqkEnRPmsDvdUmT6C9pD3m8gTaoy5P4PLU 2qZrWAh0uQAqURZKw8NiNglUJaqbxo3sItFeAgUNEuUEStIECiadQtsmUMUnUCdNU4k0mfUhTYHz IN13H9K1J1ItlTRxgjRxgjR1gnlPnj596uTZJFDtIe0t7TntRZcn0F52gaoDXKDqjoVAB/QRqEpU N4MbpBLVzdRN1s1fVwIFHSTaV6Bo3NTkSpJEiSSeTZl0jSVS7RQXppLECbqIs6s82wTaJE8XaEme QHtIe0t7zuUJtGddnmAh0BaBJom6QFWiLKhKlIVXieomceP6SLS3QEFBoi5QkAQKVkugJDW9kqTR RpLSeiZdQxupVorW2EnSBEmcYF7ybBOoyrNJoNo72lPaa9qD2psuT+DyBC5P4AKlR9a1QCnRaQWq Ei0JVCXaV6AqUd083VTdbA3B7AQKskBBJ4GCFolOI1CSJOAkkXQhSWstSWvsQqqJk2qrJHGCJE6w VvJ0gZbkOY1AtVe1h7sIVB3hAqVXnpYCVYlOIlCVKAutEtVN4UZNItGJBAp6CBR0kugqCJQkKSSS YPqS5DZL0n32JV17ItVSSdIkSZxgPcrTBao9o72kPaa9pz2pveryBC5P0EegLk8wiUDpvZkKlBKd h0BVon0FWpKobqJurm66hmF2Al36LnySJ2kVKGiQaF+BomlTkytJEiWSeDZl0jWWSLVTXJZKkiZZ L/J0gao8pxGo9qj2rvZ0F4GqMzZJgVKiLtAmiZYEqhJ1gapEWViVqG6Cbg43rK9EJxYo6ClQ0CrR GQuUpKZXkjSaSELaFEjX0kSqlaI1TiRpgiROMC95ukBXQ55Ae1R71+UJXJ5gEoG6PNsESs+tikCT RGchUJUoC6kSZcFLEtVN083UTdbNV4GO/MpmH8YE+mAtyTYaBQoKEp1GoCRJwEki6UIS1lqS1tiF VBMn1VZJ0iRdxQkmkWcSqMpTBco/Crlx48YoUJUn0B7S3tKe015skidweQKXJ3B5gq4CpadcoPTa JiNQleisBTqpRKcSKJhAoKBRomMCBbMRKElSSCTB9CXJbZak++xLuvZEqqWShEmSOEESJ5i3PF/x ilcMp89tt9121adPMKlA1SldBary3KQEqhJ1gapEWTiVKAtckqhukm6ebqputoYAUKCzkOiSQPFy lqbTdwrtK1A0bWpyJUmiRBLPpky6xhKpdorL0kniBF3FCWYpT7D11lsPp86TTz657sUu8gTaU9pr 2oPam03yBC5P4PIELlB1zNNOoCrRSQWqEtXic0OmlagKdGKJTihQ0GcKnUSgJDW9kqTRRpLSeiZd QxupVorWOJGkCZI4QRInmLU8AfLPT+Hf/va3132Z5OkC1V7SHtPe057UXtUednkCdUAfgapznhEC BS5QlagWlYVWieqm6GbpJurm6qZrGGYiUDAiUJCFWWJMoEGi0wiUJAk4SSRdSNJaS9Iau5Bq4qTa KkmaJIkTdBHnpPJ0gXLyJPgUft7TJ3B5Au11lydweYKnpUCTRF2gKlEWRiXKAqpEtdjcgFlJ1AU6 sUSnFChok+gsBEqSFBJJMJOQBDcL0n1NQrr2RKqlk6RJkjjBLOWZBKrydIFeeeWV1Tve8Y41mT6B yxO4PIHLE7hA6Z91KdC99tpr+Fc5Ad6HnwK0CVQl2legKlHdBN0c3TTdTN1k3XwwU4EOGBUoyKJs YrUESpIkSiTxbMqkayyRauckYZIkTZDECVZLnkAnTxdoSZ5Ae0t7TntRe1R71+UJtPe7CFTd4gKl j9aNQLfaaquRP2sM8LfgsTAsBi/3FahKlAVTiWpxWfBZSrQk0EklOguBHjCgJNG+AmXzpmZPJHE0 kaS0nknX0ESqUUJF6SRpkiROsB7l6QLVntJe0x7U3tSe1V7WHnd5Apcn6CNQynPNBQpUoLfddlv9 MhfHKdQFqhLV102CFqwPLLjLG0BK/FMeXdHH9FS2e8eDw0euX+GJ3owJfflxQrHW9NifCQhUA7xa aAOtJWltq41KYxpUOE2ojLpAYRHcRkmgKs95CFTX0Veg6oiSQCnPNREoJfqhD32olibunDItCVQl 2iQyFgiwaFpM3XAtPDdDNwnoBurG6oZrEEoTKEmTZgkIdHQCBXnSbAJTKNEpdNIJ1ElTVIk0mU1K mgqnId3HpKRrL5FqqqRpk6SJE6SpE6zF5OnydIFqL2mPae95XzbJE2jPuzyByxO4QNU9JYG6PKcS KCXKd6REuwgUE+iJJ544XODmm2/eKlCVaJNAVaJaZC0+N8Qlqpuom6ubDuYmULw8D4nOUKBKEkQT ST6bIunamki1c5IwSZImSeIEs5JnX4F2lSfQHtPe057UXtUe1t52eQJ1gwtUnTKNQNVxTQKlL6NA VaL8YJeoCxSLwdSJxZ1//vnVRz/60eGi+whUJarFY0G7SFQ3C+hG6gbrxncVKHBRlpiXQElfgbJ5 U7M7SRpdSHJaj6S1dyHVylFRJpI0QZImSOIEqyFPF6jKE2gPaW9pz3k/JoFqT2uvqwNcnqCLQOmh PgJtkufMBAq4AC6ICwQlgapEWQCVKAulEtWiarGTQIFumG6mbrJuPugqUOCyTAwFCuYg0UkFSlLz J5JI+pAEtpqkNfUh1STh9XWSNAll+XvbnRP5L+CV51QvWEO2fMPFNTu9+erqwJM/UnPSBbdUF33w npobbn2w5v6HPz/Sc9qL2qPau9rT2usuT+DyBC5P4AJVNz3jBNpForo5umlAN7Qk0T4CBSrLxGoI dLu/PKcmSVNJAiVJBiWSYKYhCW8S0m1PQ7r2EqmmShIm0UkT/M6Lj6z+eKs9I3+09d7VH/zZ/tXv v/TQ6r++7O21WP/7HlfW/LeJuGKF3cf5w10ui69v4k8LYK0lgWova49r76sTnpYCTRJ1gapEecEq URamJFEtrhadG9Ek0ZJAXaJzEyiYsURVoG0SbRKokgRRIolnUyZdY4lUOycJU3F5tgnUecErzqz2 OvtzgSeXOGuJN43xxApnPlG9cZk3nPG48Fj154fdV73h9MdqXh95dInTHq1eF3lkCASqvak9q72s PZ4Eqo5weQKXJ3CB0lPrQqAq0ZJAVaK8QJUoC6ESTQIFkwq0SaKTChSMCNJoFyjIoizRJNAmkUKg bNzU7E6SRhtJSuuZdA1tpFo5KslEEieZTqDL4lyW57g4wbg4R+U5EOYyf/6W+0yY4+LM8lwR5+tO faTac0BfgWrPqwtcnsDlCVyewAVKb62JQFWiJYGqRGct0EkkqgItSbSvQMGIJIUxgYIpBQraBEpK AiWp+RNJJF1J4loL0tq6kmqS8Po6SZiE3xjqL1CRZkdxtspzWZR/NibQZXF2mTqXxUlUoNqr2sPa 29rz6oJJBapOcoG6PMG6FahKlBeuEmWBShLVImvxdVNKAnWJqkAp0UkECsZEOaCbQEEWZYmuAgVN AiVJBiWSYKYhyW4S0m1PQ7r2EqmmTpIm0e+s9xVolqWyLM4wda7Ic0Wc+un6qEC7i9PlOY1A1QHq BpcncHmCdSdQlWhJoCrRvgJViWrxWNBpJaoCdYlOI1DgsowCBVMKFHQVKGkSqJIE0USSz6ZIurYm Uu0SSZhExTkfgZbFuSTPZXHK1KksCXRFnF0/XXf2OOWhoUC1R7V3tae119UBLk+gDukiUHVUSaDq uqkFmiRaEqhK1AWqEuWFqkS1KCyUSlSLqsXWTdDNUYE2SVQFCqYRKFBRdhcoyKIsMYlA0bSpyRNJ Gl1IclqPpLV3IdUq4bJUkjhJf4HKhOkMJNkqzyDOJR4dCPRT9fO+n66v8HAtz1kIVJ2grnB5Apcn cIGqs0oCdXmCzgJViU4jUJVok0BVolosFnBaiapAmyQ6rUABRVkUKJhSoGASgZLU9CWSSPqQBLaa pDX1IdWkhNY4kaRJ8IPwfQWa5NjM8qfsA0k2ybMW6Js/ZcIcF2eTPGuBnvxQtfsACFR7U3tWe1l7 XHtfneDyBOoUF6i6aG4Cve+++8Yk2lWgKtEuAlWJahFYGJWoFlGLq0XXzdBNAiWJqkBVorMQKIAk GwUKppToNAJVkghKJMFMS5JeH9JtTku69hKppk4SJtHfJJqfQB+vaZs6OXGCrccEuizOlqmz5pQV ec5SoOoIdYfLE3QRqDqsTaAuTzhzKoGqRF2gKlFeiEqUF6wS1eKwYNNKtCRQl+isBQo2FYGSJIc2 knw2RdK1tZFq6CRhEhXn5AJdEmMXuoqTwhwVaEdxUp4DKE8XqPaq9rD2tva8ukAd4fIELk/g8gQu UHXa3AWqEp2lQFWiWjQtphZZi6+bogIFfSS6qgIFU0i0r0DRtKnJE0kYXUhyWo+ktXch1Srhsrz6 6qur1772tcP/J3mC3gI9YyDHDmR5LotzWZ4rslxiSaAr4uw0dQZ57n7ygzMXqDpDXbKuBaoSLQlU JcqFq0R5gSpRLQYLNEuJqkBdoipQMGuB4nkUJ1llgZLU9CWSSPqSJLYapLX0JdWkhNZY2W233aqD DjooSpPgwT/6CnTlZzjLjItT5BnEucQjA4HeWz/vIs4szweHUKDao9q72tPa6+oAdYM6w+UJXJ7A 5QlcoPTbTAWqEi0JVCXaJFCVKC+8JFEtnhZVi62boJsDShJVgbpEpxEoH0iZD7IMgfJ1jXR40OX9 BrJ1sNZXHPKuTkCgep0Kv3yx1vCXGbqSbmMtSDVV9ttvv5HnCWYRAv2jF+8x5A+33L3If9n2jCXB TcJAgG1i3PrQe+31o2+nPCnOUYEuy/OkB6vXDoBAvT+1d7WntdfVAU3yBC5PoA5ygaq7XKD03dwF qhJ1gapE9aK6CnRaiZYE2iTRrgKF+PxR6f19OIGSOIGCCafQaSbQRJqomkjT2qZMusYmUg0dPBzc u971rnrCPPDAA+PUqfSeQAfTZAl+TTNRmjpVri+JAi2Lc0meK+KkPJNAtWe1l7XHtffVCeoKdUiT QNVJLlB1mQtUHdhboCrRPgJVifICVKK80JJEtVhaRC2uFl03QzcJdJVoSaCcEttkmXCBgihQMIFE +woUDZuaPJGE0YUkpvVIWnsXUq0SLkqgAnVxkr4CzZ+eP2ZibGNZnMvypCxHBboizizPpZ/31KlT mYdA1R3qFJcncHmCPgJVJ7YKVCVaEqhKtK9AVaJaBBZmlhJVgbpEVaAAHwspqSi7yjKRBArWUqAk NX2JJJI+JIGtJmlNfUg1KaE1diDQJE2CBzvuL9DBRGmMCLEReV8RJ1kS6LI4G6bOoTyDOJd4YESg 2qvaw9rboEmeQN3h8gTqni4CVbeVBKqOHBNomkJdoCpRF6hKlAtWierF8YJVolocLdo0AgUuUDzH x+j94v+QqE+g01ASKJiFRKcRqJJEUCIJZlYk+TWRbmNWpGsvkWrqJGEqfLT43gIdSHDkU/OB+CbB 5bkk0HsGz9vFWf+8ZxQneKCmr0C159UF6gj2r7pEHePyBC5P4AJV15UESl/ORKAq0SaBqkT1olkI yoxo4ZJAgW6Abgw3C++Dj9fbx/uWJtHVEihYLwIlSQ5tJPlsiqRrayPVMJGESSjOSQWqn4onCU7G 0sT5kr8cCLRJnMvybBLna09cggLVHtXe9b7uKk+gLnF5AnWRC1QdNleBqkS7CFQlqhfDC1SJajG0 SFo8FtQlqhuAt+lt4ePwNmycTqGcRNdaoGRSifYVKBo2NXgiCaMLSU7rEV3zrWdsVt193nPWBTec 8i/r9ey1x/+I0lQo0CzBSVj5VB1sNRBoUZ7DH1VygS6Lc1meuy0Dgao8mwSqva4OUDdon7s8gTrH 5Qm6CFTdN7FAVaIuUJUoF6QS5cJVonqRvPAuEvWiehHxehRfN4hTKCkJVCW6FgIFqyVQkqRZQmUz KUliq0Fai3PkHs+ubj/7X1T3Xvj8Nef9x/9S9YHj/3V17Ym/WN125mbVqQf/VpQngEApu4jIsA+U 5ahAV8TZKk8RZ0mgJXmWBKpO0L5Xh6hbXJ7A5QlcnsAFqi7sLFCVaFeB4k8ZtwlUJaoXr0XRYnnB AAqqBdfNALpRJYGWJLpWAgV9JTqNQCcRKUgCmheTyHAS/nLn51RnH/Sc6q5znx2ltppQoAQivfm0 /0/1oRP+VfXqHbYeE+iK4GbPkkCXxWlT56g8V8SZ5LnbiZ8dEaj3q/Zykmdfgapr1EGrIlCVaEmg KlEuALhAVaJ6UbzQJokSFIxF1OICLbxuiAoU9JHoWgoUZIGC+QhUScJsIwlpUwMCffPuz68+8PZf qO4+/99Hsa0WLlDlxlN+obpt8On94Xv//+ofsp+/QO8ePB8X54o8l8VZmDopzyaBag97fyeBqhvU HeoUdY3LE7g8gcsTuEDpxSjQT33qU60CVYkmgeLvwgOI1AWqEqU4tRgOC6YCBVpgLb5uCigJtE2i ay1QMg+B4psUSZyJJMuuJEmtJ3y9FCjA1x8xiU7Lnec8ayI+esq/rEXZxMdP/b/rdf7lgX+2JLg5 sdUhA4EGeS4JtJs4dzthCQrU+1R7WHtbe15doI5oE6i6p69A1XkuUHoSzpxaoCpRLgwfs2HDhqJA KVHCImhxtGhaTKCF1g3QjVGBtkl0PQp0vyvaJTqJQEmSZgkXzqQkmU0Dfrf8uuuui28DaQ0JFSg+ lf/Wzc+tvnfn84c8dcdvLnHnHLhrlL+69jnV31z7bOGXiuy04dAot1nx4oFAx1+/PHkOJFn6dF3l uesySaDau9rTQPtdXaCOaJInUPe4PFWg6rK5CBS4QFWiXAglivenQFWienF60SxEV4lqoXUTgG5Q V4GqRCGlaX54XplKoGAg0VGRzk6gk4gUJAGtBVtvvXV155131gJNb++DCxTS/Ol9v92NTzfxO735 wof/bfWlj/xyC79Ss7oCXfoVza5TJ8WpAtXe9L7VntZeVweoG9QZ6hJ1jMtTBarOcnkClyfoLVCV aBeB8lP4nXbaqV6kC7QkUS2GFkmLp0UFWnDdCN0k0FeiFCiIUuvBrARakugsBKokYbaRhLRazEug mDajLLsQRapkcZJaoB8eSNIJIl0S6PLvns+BFx+yceT/XT9dV3GSJoFqL3ufqwPUDeqMJnmCWQhU ndgqUJWoC1QlyjtWiXKBfQQ6iUS16LoZQDdKBdpFoipQEMXWkakFCkSiSyKdXKBf//rXozgTSZZd SZKaB5MK1Nc7LtD/OJDhbwkD8U1DFKnSQaDOskBXvhM+e7Y8eOPw5SxOUJ46l7i/RgXq/aq9rD2u va9OUFeoQ9Qt6hyXJ3B5ApcncIGqI8cEmqbQvgJViXLhJYnqxWtRtFhaRKAF1sL7pkwqURcoiGLr wEwECgoSnUSgJEmzhAtnUpLMpqFNoGkNiXaBNjEQ4CREkf72QKC/moUZWC2BTiPOmuPLAtUe1t4G 2vfqBHWFOqRJnsDlCdRhcxWoSpR3pBLVRXGhKlG9KF7oJBLVAmvxgW6MChSstkDxcRDohkse7YQ+ 2tMYlzmP12Ct2xz0jk5AoFrrxO23316ddNJJ9cv4Uoy/fb1x/fXXVxdffHF8Wx8O3umXq0N2/Q81 Zx7wy9V3bvuN6kd3P3+JeybhP03Gvf9pWaC/FBgX6I4b/rLa5fjPzI0tD75rIFCRpTKQZKs8B+Lc ZRkKVHvU+1d7W3teXaCO0D1Up6hrXJ5AXeXyBC5P4AKlL1sFqhLlDatEuQCVqC6WF6AS1YvVImhx tGhaTKCF1g3QzQElgTZJNAkUJEkm8L57X/xI9cb3PlgLFM9nwoXOQ/Va/3zf0zsBgd54442NvPSl Lx2+fOKJJ1YXXHDByNtnxcknn1y97W1vWze8+aA9qv13/LWa0/Z9VvWtm/999dTtz2vnjj78Rie+ cP2vVl+87tlLXN8MBLrD0ffOjS0Ouqt+vuMxnzJBllgRp8qTAvX+1N7VnvZ+VxeoI9Qd6hSXJ1An uTyByxO4PMGqCFQlqhfBC5tWolps3QSgG6QC7SrRkkBBEibA2zBFuvQ2NYFi6uTL559/fnXaaaeN vH1WHH744dWxxx67bjj8LYdMJtAmokSVDgJNrIFAlZ2P+4xJU8RpU2eTQL1vtae119UB6gZ1hrpE HaPucXkCddfMBaoS5Q2pRHmHKlFdHBesEtWL04vWYmiRtHhAC6sF143QTQJ9JdokUODSfNNAZFF4 A2YqUGASnbVAt9xyy+HL8xIops+jjz46imytOOzQDQP2m61AE1GkSgeBCjvuDYHeMze2OOjO+Hqw 4zGQ6adbxckvBzQJVHtZe9z7X92gzlCXqGNcnkAd5fIELk/g8gRFgapE+wpUJaqL5oVMK1EtrhYd 6IboRoEmifYVKL4myU/R24BA93jPDLlgFKz1xRtO7wQEevNFpzWyx06vqm54z0ljL8+SI992eHX0 kUdUxxxzzLrhsEP3XppCd/jl6rR9frH69sd/qXrqtucIvzo/bh/lC9c/p/rCdc8Snl0EAn3F2+6e G//7wDurVx91Tys7DibTkjhrBlOrClR71ftYe1x7X52grlCHqFvUOeoilydQl3URqLqyk0BVorwD laguhgssSVQvUi9ei6LF0iICLbAWXjcFqEBBSaAu0ZJA06foJV5z7oPVLu/Ob5uaCSbQK3d5QfWx 17+g+shef9IKf5b3/N3+NL59Go55y0HVsW85sHrr4YfFSXCtOPrwvQYS3aeeQpcm0H83kNlzOzKY HGfId2593kCivzKYMJ9VYHQCTUKbJX/xlo3Viw++K74tsdPb7xsRJz7lBxSo96n2sPa29706QV2h DlG3JIGqm9RZLk/g8gSNAr333nvHBKoSbRKoSlQXmQQK9EK1AFoYLZgWUosMdAN0Y5oE2iRRFWjb p+jK6wcTISZOPE9vnxk9BLrT3kdUd+70nCizteCIw95cC/SII46IIlszjjlsSaCDtZ35l//f6ls3 DQR620COIEqzK1mSXfjbj/y76ovXDoRJgkyXBHr3qvCqI+4eiPTOwWS6Mb59hCPvrnZYlmmTQLV3 va+159UF6gh1hzpFXaMOUje5PIG6zQWqTqQn4czeAlWJ6p1zQSWJ6kXpxWoRtDhaNC0m0ELrJgDd oL4SBZBS10/RASbN7d+Z3zY3Ogj03Ne+sPrk7r8VRbYW1N84WofTJ+EU+s63v3RUoE1EaXYli1P5 xk2/PhDlYBpVkYpQa4EOZLWavGrwqf1LDrmz+os3D6bS8HawvYHJFALV3vS+1Z72flcXqCPUHeoU dU2TPIE6zOUJJhKoSpQ3oBLlHalEdVG6WF7ALCWqxQa6EbpJoItE8X5YB77JASlFaQmYMiHNuX2a 3kaLQDfu8KwosbUEAt0UePsRG7oLtIkoza6sSBSf0n/xeptGl4FAXVaryUsHEt3yoDvj21bYWAOB or/gFvSb9qz3s/a6OkDdoM5Ql6hj1D3qJHWVyxO4PIHLE8xUoCWJ6kXoxelFazG0SFo8oIXVgutm ABUoSBLFc9w3rl2/S9wkUE6bc/80vQtBoCfu+bLq9p1/PQpsLfnAhs2rd515anXxhRdUV1111dy5 +uqrJ+KyC8+orjl3p9kItIkozWYwjX7h2l8KAl0S1FryysGn9S864PaBUCHT8D5HrAiU3HzzzbUT XKDa497/6gZ1hrpEHaPuSQJVd6nTJhaoSpQfoBLlDatEdRFJoEAvRC9QL1wLooXSAmpxgRa+SaIq T3zcPffcM7KZShIovim0wzmjr1tzTKCYOm944x9Ega01FOhFF10UhbcaJGE677/iXSLQXxcGElst gjzJd259bvXFD//bgTz/TU0t0IGc1hN/Nvj0HujrXjXABapApi5PoL2vTlBXqEPULeocdZE6St3l 8gQuT6DybBSoSpQ3pBLlHZYkqovWi9GL1IvXomixgBZSC6wCdYmqQPF/3EfaPIcC5TeF1uzT9A5g rXu9ab919Y2iBAR61llnVe973/ui3NaKJNEPnvfqINAmBnJbLZZF+ncf/feDaRQT6CG1nNYjL3vL XdUWB95RbXP4XfX/mwSqYLhxeQL1gbpCHaJuUeeoi5rkCVyewOUJ5i7QWUpUC6kCdYmqQPF/3Cau LW1UCUhp61Puq7Y/e/3zPw+4uLp11/9Y3bTnf17XfPj1/7X+ofz3vOc99a+Hrmcufecbqy9+4Ber r3742euavx0I9FVvOKja+sCPrWtevP/Hqv/+phs6C5RgKoV75iFPoM5Sl00tUJUoPxC4QEsS1UXq 4vWi9GK1CFocLRroKlH8v+lT9AULFmxaQKb0gDpC3aFOUdeog9RNTfIELk/g8gS9BaoS1TvnguYl URVokig+NhV/wYIFTx/uuOOORnmCrvIE6jCXJ1AHNgoUU5sLVCWqN8o7UonqonSxehF9BdokUUoT a0+FXrBgwdOXm266qfaTC1Qdo+5RJ6mrXJ5AXefyBPQknNlZoCpRvTMuoCRRvQigF6gXXpKoCxTi XHyKvmDBAgKZwjXqFqDeaZInUKe5PIE6sVWgKlG9Ed6wSlQXoYvjgoFeiF5gF4ECiBOvT8VbsGDB AoIHBS/JE6ij1F0uT6Duc3mCMYGqRPkBKlG9cd5hF4nqxYAuEqU0sbZUqAULFiwogakUPisJVJ2l LlPHuTyByrO3QFWieqdcyFZbbVUv7pxzzql/JEQX3kWgmDYXn6IvWLBglkCm8BTl2UWg6jx1YWeB qkT1xngHLlG833HHHVcvCAvcfPPNiwJViUKci0/RFyxYsBrcdtttrfIE6jyXJygKVCXKDwR6g0mg 11xzTf2D0hQoHlMSz0sS3WOPPYaPPblgwYIFa8E222zTKFB1oMsTTCVQwDvHmNxHoOedd151wgkn DMEfMUvgr0SWwJ+HaOKUU05p5NRTT20Fv0HThdNPP70zZ5xxRm/OPPPMqcGvU642Z5999rogrW01 SPvQh5SFNlLmSqQsJ1JvOKnHlNSjSupxktwA1CHO8ccfH8FnygRfbizJE6gDGwV69913jwm0JFG9 MwoUr99xxx1rgeL1eBkCbZJo6WuhQL+h5N+V9x9tUviD9UR/Swnor3sC/Z15oA88Qvwh8IA/jijQ R7Yn/Gufzhe/+MXIl770pUb+9m//tpG/+7u/a+Xv//7ve/HlL3957nzlK1+ZiHRbsybVpIlUcyft nZL2XknZASlrIGUzZThlPfWE9433lfed96X3rfY00H5XF7gn1CHqFnUOPQT4qTugu0oCVfepE+lJ ODMKVCWqN8IbBrwzXQQ+jcfkia9/6qL1YvQigRZAC6NFA1pQL7Zvhm+Wb6ZvtochBSYFKwUwBRWk UIPUBCA1jZKaTklNm0gCaCNJ5ulEuuY2Um0Taa+UtNdKygpI2QIpiyBlN2U89YL3i/eT95v3o/er 97P2untAHaHucK+oc9RFbQJVx6n7XJ5gJgJ1ieoCdeF6QXqhWgQtDtDCaVGBF103xDfMN9Q3HHgo UnBSwFIQU2BBCjhIDUFSEympCZXUxCWSGLqSRLQpkK6lK6mGJdLeKGlvlZQNkjIFUgZBymzKduoB 75PUS95v3o/aq97H3ufqAPeDukOdoq5RB6mb1FnqMnWcuq+TQFWi/ICSRPVOdTG6SF28XpReLNBC aIG0eMCLq4XXTQG+ab6paeM9HClAKWgpkCm4IAWdpOYAqaGc1JROauwSSRh9ScJaS9Ia+5JqVSLt gZP20kmZAClDJGUPpKymTKfse3+kHvI+8z70PtUe9v72/lc3qDPcJ+oadZC6SZ2lLmuSJ1B5NgpU Jao3xjuYpUS1GEALpQX0AmvxgW+Ob55vbgqAhyQFKQUuBROkEIMUepAahaTmclKTOqnZm0gimSVJ dn1ItzlLUk2aSDV30t45KQMkZQekrIGUTZCynDLvfZF6x/vL+8/70/vX+1t7X53gvlCXqGPUPeok dZU6TN2mznN5gl4CLUlU71wXpYvVi9CLA3rhWhAtFtBCepF9E3yTfBN9k1MQPCwpUCl4KaAgBRqk BiCpaUhqNic1bSIJoI0kmacT6ZrbSLVNpL1y0p6TlBWSMgZSJkHKcMq690PqGe8r7zvvS+9b72vt efeBukId4n5R96iT1FXqsCZ5AnVjUaAqUf1gvVHe0bQS1YsHWhgtmBYTeLF9M3SjfCOBb3YKhIcm BSsFEKSwpmCT1AwkNRFJzeekJi6RxNCVJKJNgXQtXUk1LJH2xkl7TFI2SMoUSVlMmQUp494HqVe8 n1LPaU96v3o/e7+rC9QRQP2hblHnqIvUUeoudZq6Th3o8gSNAlWJ6o3qnekidHG6aL0YvUigBfDi aOG8qFpw3xDdLJA21Dc9BcPDkwIGUhhTcEEKOUiNQVJDKakZE6mxSyRhTEKS1qzYf//9q/e///3x bU5a2ySkWpVIe5BIe6qkTJCUJZCyB1JWU6aB5z/1iPdR6jXvR+9X7WXvc3WA+0Hd4V5R56iL1FHq LnWaus7lCdSVQ4Fu3LixUaDzkqgWAWiBtHhAC6tFB74pvmlpY33zU0A8RCloIAUzBRikwJPUJCQ1 l5KaM5GavY0kk3mQ5Jd4yUteUn3yk5+sBZpuZ1akWrSRap5Ie6ikDJCUHZIyB1JGU5aB5z71hvdP 6jHvQ+9T72Ptce9/dYN7Q52irlEHqZvUWeoydZy6T51IT8KZUaAlieqN653qYnSRuni9KKAXrIXQ IgEtoBYXePF9c3zz0gZ7CFJQPEwghS4FFKQwgxR+kpqGpGZTUrOWSALoQpLNajMPgaZr7UKqbYm0 Z0rac5KyQlLGQMokSBlOWU894X2Tesv7z/vT+9f7W3vfvaDOUJe4Z9RB6iZ1lrpMHdckT9BboLOU qF60FgNoobSIwIvsm+Cb5Jvom+xBACkwKVgpgCmoIAUbpEYgqYGU1HxOauASSQx9SEKaJ9MKNF1D H1INS6S9cdIeKykjJGULpCyClN2U8dQLqWe8r7zvvC+9b72vve/VCe4LdYk6Rt2jTlJXqcPUbeo8 daE6ckygJYnqjemd6J3ronSxehFAL1Av3IuiBfNierF9M3yzfDN9s1MgUnBSwFIQQQptCjhJTUFS MympGZ3U1E0kYUxDEti0dBFoWss0pFo1kfbCSXuqpEyQlCWSMpiyClK2Uw+kXvF+8n7zfvR+9X72 flcXuCfUIeoWoN5RJ6mr1GHqNnVeSZ6dBTpLieoF6sUDLYwWDXhRteC+Ib5hwDfVNz0FIwUoBS0F EqQAgxR2kBpESc2lpOZMpEZvI8lkrfnEJz5R/y339LZZkWrRRqp5Iu2hkjKgpAyBlDmQMgpSplP2 U494H3mfpV70ftVeBtrn7gF1hPtD3aLOURepo9Rd6jR1nTpQ3VgUqEpUP1hvVO9MF6GL00XrxQC9 UC2AFgd48bSwXnTfFN8031jgm58CkoKUApeCCVKQQQo+Sc2ipGZTUrOWSALoQpLN04F0rV1ItS2R 9kxJe66kzJCUNZCyCVKWU+ZTb3j/pB7zPvQ+9T7WHvf+dz+oO9Qp7ht1kTpK3aVOU9epA12eoFGg 85KoXizQQniRtIBaXODF983xzUsb7CFIQUmBSsEDKaQghRqkJiCpeZTUfE5q4BJJDH1JUlqPpLX3 JdWwRNobJ+2xkjJCUrZAyiJI2QUp66knvG9Sb3n/eX96/3p/a++7F9QZ7hN1jTpI3aTOUpep49R9 6kR15VCgd91116oJFOgFazGAFkqLCLzIvgm+Sb6JaaM9DCkwKVgpgCAFFqSAg9QQJDWSk5rRSU3d RBLGtCSRzZO0hmlJtWoi7YWT9tRJ2SApUyBlEKTMgpTx1AveL6mnvO+8L71vva+979UJ7gt1iXtG HaRuUmepy9Rx6j51Ij0JZ0aBdpGo3inQBelC9QL0wvSigRZEiwW8mF5s3QjfKOCbmTbcQwE8OClg IIUxBZeksIPUHCQ1lZOaM5EavY0kk2cCqRZtpJon0h46KQskZYik3IGU1ZRp4PlPPZJ6yfst9aT2 rPez97v7QF3hHlHHqHvUSeoq91hXeYKpBOoS1UXpYvUigF6gXrgWBXjRtKBecN0MkDbMNzVtfAqI hwiksKVgghRikEJPUrOQ1GROatYSSQBdSLJ5OpCutQuptiXSnjlp70nKDElZAymbIGU5ZT71Ruoh 77PUi96v3s/a6+4B94Q6RN3i3lEnqavUYeo2dZ66UB05JtAuEtU70TsHujBdsF6IXiTQAnhxtHBa VOBF901JG+ebmwKQgpIClYKXAgpSoElqApKah6SmS6QGLpHE0IckpPVMuoY+pBqWSHuTSHtNUkZI yhZJmQQpwynrqSdS73h/pR70PvU+9j5XB7gf1B3uFXWOukgd5f5St3WR50QCbZKoLk4XrRcD9EK1 CEALpMUDXlwvvm9O2kDf5BSEFJgUrBRAkMKagk1SQ5DUSEpqwkRq6iaSMKYhCWw1SGuZhlSrJtJe JNLeKikbJGWKpCyClNuU8dQLqWe8r1LveX96/3p/e/+rG9wb6hT3jbpIHaXuUqep69SB6saiQFWi +sF6o3pnugigC9SF6wXpxQIthBYJeBG9yL4JvklpI32zUyBScFLAUhBBCi1IISepOUhqKic1ZiI1 ehtJJs8EUi3aSDVPpD10UhZIyhBJ2QMpqyBlO/VA6hXvp9Rz3pfet97X3vfuBXWG+0Rdow5SN7m3 1GnqOnWgyxM0CnQSieoidfFAL8wvWgvixfJierF9M3yzfDN9w0EKRgpQChpIoUwBBinwSmoWkprM Sc1aIgmgC0k2TwfStXYh1bZE2jMn7T1JmVFS5kDKaMoySNlPPZJ6yfvN+9H71fvZ+919oK5wj6hj 3D/qJnWWukwdp+5TJ6orhwK98847ZyJQoAvVC9CLA3rhWhSgBfOCAi24bwjwTfNNTRufApKClAIH UkBBCjNI4SepcZTUdE5q3iaSGPqSpLQeSWvvS6phE2mPnLTXSsoKSRkDKZMgZRikzKfeSD3kfeZ9 mHpVezn1urrAPaEOcb+oe9RJ7it1mTpO3adOpCfhzCjQaSWqiwV6IXqBevHAi6OF86Jq0YFvim8c 8M1NAUhBSYECKXwpqCAFm6RmIKmJlNSEidTQbSRpTEMS2TxJa5iGVKM20l4k0t4qKRskZYqkLIKU 3ZRxkHoi9Y73V+pB71PvY+9zdYD7wf2hblHnuI/UVeowdZs6T12ojpypQIEuTBesF6MXCbwIWiAt HvDievF9c9IG+ianIKTApGCBFESQQgtSyEFqDCU1lZKaskRq9C4kqTydSTXoSqp7Iu2lkrKgpCyB lD2S8pqyDVIvpJ7xvkq95/3p/ev97f2vbnBvuFfUOeoidRRQf6nb1HnqQnXkmECnkSg2QTcpbSpJ QSAeoBQ6JYVXSY2RphUnfUc3/bZLE+nRgdpIDx6spD+qNilf+cpXFsyQVONJSXuvpOy0kTLaROqB 1CtO6rnUm0rqbcW9kNxBknOIOgrOmkaeMxfoM0GiIIWtRApyF1LTKKnppiVJYUGZVMNpSXutpKx0 IWWzRMo8SD3ipF5LPamknlbcB8kZJLmGqJvoq5kLdFKJJoGCdCEgXbyiBUtFddLGKGljUwASKUwp eE2kUHchNZGSmnAWJGEsmI80QdpbJWWjCymLTaSsp55IpB5LvaikXnbUBckVSnINcC+pQNVl6jh1 nzpRXTkTgQIuyCWaLoakAhAtGkiFVdLmOGmDUxASKVgpgE2kgHclNZWSmnKWJJk8E0i1mCVpL5WU ha6kDDaRMp56IZF6K/Wgk3pZcQ8kV5DkGKJOUle5x9Rx6j51orpyKNA77rhj5A36AXpDegd6x7oo XSxIF0RSIYgXLxVYSRvkpI1OgUikgKUgtpHC3oXUYInUqPMgCWdTJl3jPEh7lkgZ6ELKXBsp26kH EqmnUu85qYcV7//kCJLcQtxH6ip1mLpNnacuVEfCmXMRKNAFH3H5vdXvHnzDGLg4FmCfffapv3t3 4YUXVi984QtrNt9887pw/D+4+eabq4suumjkfVjwj33sY9Xpp58+3CC8TTeM4H132WWXkQ1PwUik oIEUSvDIeQdWG3d41hgPnrrrMPCXXXZZfS277rryOgV/vhd10NelhnNS8zqsI8B3XfE63B/q5O/b hSQm5/DDD4/o+3BN2Bt9/axIay9x6xmbjXH/ta8ceZ8TTzxxuOZS7dIeOchYKQddYO623HLLkRwm 9ttvv7oHU5499yXYP7+33TkR7TvWBzljz5bAunbeeeeqizwBZZlQF7mn1GHqNnWeulAdOSbQaSTq CwNcNGS54bLHRqBAAQqgAr3ppptGikOREggUIk2Fx5+7xWYdd9xx9Y9G6AYS3IYLFKSAJFLgQAop ZPnNU/5sDLweb8d6DjjggNgMXUhNmEgNDRBovnz55ZdX11xzzcjb+3DLLbfUGUpvI5AXZPnBD35w BBXotttuO3x5UtJ9TwqE+ZONvzkCXse3I3P6/kraiwT3E/maRKCeu2kE6nkvob0DWe549L0jqEC3 2Wab4cupbxXtdaAuSNAjCZUncEdNI8+ZCBRMK1AwK4HifnfcccdakNwwSAJ/P+fjH/94PaHiNihQ vA3PcZ/ve9/76mDgdZABXsbrr7rqqvrnyc4444yRt3vwiIa0TaAAt6fNoH8sDc85gfL1+Dm4M888 s347PhY/h4cpFm9DM+J1eI6pSP+PRsdzbXC8Tf+PxuMECqGi9v6+FAZqQOHieReBgpJA+Xas+8AD Dxz5GN433qb/5xp0rfq+nKohZTzHtfHj8LwLTQJFHnytqLHWnfuWXoc9RM3xHOvH7VGgab8B3oeH Lp4zQ3h+wgknDP+Pfrr00kvrvxuF/OM2+DbkVAWq2cbzSy65ZLiehMoTtAkUAw1qr72K+0If4zPH 0047re5r9jrWhQkU/Y/3Qw3gBuwzXrfFFlsM3YD3veGGG+q3wUennnpq/Tp8HG67JE/g8gTqOnWg urEoUKDvqDegN6x3WBIomIdA8T4lgQIU7sorrxxuHgLKl3lbECh+kBZCZQjwNj5nUCALvszX69tV nAqCCroIFCDMWDeaAvfJZgEUqL4ea8BzNh/WgmZC0M4666xhE+P/bF405O233z58G8B9avPjdlWg yANejx9kpiwpSoqUzEqgADXB2nAtuG8859v8/1gz1kpZct0lgerHdqFJoFwL64n8QKi+D1ijvo57 iDpTjlgj9pECTfsN8D6oDbODHySnHAknUKwHucBt4f/IJqSKvVKBMs94HZ5DoHgfvl5hvyhtAgXo ZawbskSfYo3sWVwfBIreR9axLgqUsoRLsD78MD8lickWz3F9eA5wW3zeJE8wzfQJZiJQkBYHZiVQ PFeB4n1YfAUnHX6LAQXF/7FxKlC8PKlAib4dqDgVBLarQAH/yqQ2DkgCJUmgbEg0qgo0gUDzZawB zd8mUIL16P9nKVCC9U0iULycBEqwdr6tjZJAWTfsAV9GfpoEqpMkc4RrBLfddlv9/yRQhXmBOHHf XQXKXLpA0SfoB9x3m0DZKwqy0iZQ7VFcK55jjXwdXmZftwkUz1kzfFaJ98X10SUA74P64jlIbgLu MXWcuk+dqK4cChSTib5BP0BvSO9A7zgtjkCWCb1gCBS/7tUkUKACxcvcAIC3o+h4GT/fhWLjZRSa n8JjMqVAsbF4G55ffPHF9afwCATuD88ZJHwKj5cZMgbfUXkSiLIEAo514eDAywgBnvPTLjQLGoMC 5afpeD2bDMHDc9w/GgUv45rwHJ/O8f9oYkygqAebGvBt+jLuD++nAgV4O56jsVAzvJ1ShSxcbCUg ywTfjmvCc9wePz3mffun8FwDnmNf9G1cD57zdagbnvOQwMttQJYJ1g37gnXiZUiSL+M++XbuG16H 5/46gn3k3vp+IxvMDLKOjCKTeB0+Fs/5KbwLFJlCjpFJvC+eU0a4LdQD9801JIHithzUEECWCbwN WaIsvS/5KfwVV1wx0tdYV0mgeBkfS+CP9773vXUG8DI+Du9LgSYnEXWYuk2dpy4EdCScOZVAAe8c p3laIMGFEBVnAgVqAgVWsBlNYPO40U2kgAANURsqTwVhnhQ00Kxg009Ckst6Ac3TdaLsSqpBV1Lt E5AkvoaNl/nZgr9PykRXUhZBym6J1BMg9ZCT+pFQqt7PqecVyBJTN1wB91CcRF2TXESQF/oLqNfU eepCdWSjQIF+oN6g3hHvvI9AgV5wIhVO8aL75ijcqLTBiRSWFKwmUmhBCnlXvLGmJTV+X5J41oJp BZqurS+pxl3gJMXJk6QMdCVlD6SsNpF6IfVMwvvQQV96H6ded+AH1gzTpnrDPZNcRFSg6jR1nTrQ /Tgm0GmmUCxmlhJNhVO88CBtkpM2OpGCkwLWRAowSaHvijbZLElSmJQkqfVAWuukpBrOgrTnXUlZ IymjTaQeSL2SSL3npB5Ova4kVxD3S3IQoa9cnkBdpw5UN9KXYwKdRKIq0IVEx0lhBqkB+pIacBYk YcyDJLlJSLc9D1KtZkHa276kjIGUyTZS9lOPJFLPOal3U48ryRGKeiW5h6irppk+pxIo0DvWRaVF E71IkAqhpEIqaSPShjlp4xMpSCCFrokUbJKaoS+pKWdNEsrTmVSDWZP2si8pUyRlsYmUdZB6I5F6 zUk9m3pbSW5Q3CvJPURdpQ5zv6n71InqyihQoB+gN6R3oHeuiwJp4cQvNhVESQVV0oakjXNSABIp UCAFsI0UcpKaoy+pSedJEs+mSLq2eZL2ri8pQyRlr42UcZB6IpF6zEm9mnpaSU5Q3CfJOcQ9pQ5T t6nz1IVAPTkUKH4GTd+gH6A3BvSOdAEYhxX8kCrBjy8o+qjQQB81GugjSvujTQN8F07BdzAd/PiK 4o94DfQRsYk/cjbxR9gG+BGkEvqI3Yo/wrfjm+ykYCQ8WG2kcE5KaoT1QFrrpKQaNpH2KJH2XEmZ UVLmQMooSdlOPQBSz6Te8v4D3qPex6nX1QXuCfeIe0Yd5H5Sd6nTgPpOXaiOhDNHBNpVonpHugig C9TFA784vXAvjBYNeFG98MA3J21g2ugUiBQckIIGUihBCjJJ4VdS8zipAROpodtI0pglSXDTkO5j lqQatZH2IpH21kkZUVLGSMomSFkGKfsg9UrqqdR73p+ph73P3QPuCXUIUL+4f9RN7i11mrpOHahu BBMLFOgd6kJ0kcAvQi/QL96L48Xz4qYN8E1KG5k2PAUDpBClwIEUUJJCTVIzKKmZnNSUJVKjdyFJ 5elMqkEXUs1LpL10UiaUlCmSskhShkHKfOoNkHop9Zz3Zepd72/vf/eD+0Pd4t5xL6mz1GXuOXWg upG+HBNoV4nqnQJdkC9WL0QvEngRvEheRC9y2gjfLOAbmjYepJCkQIEUPpDCClLAldQcSmouJzVp E0kAfUji2RRJ19aHVNsm0t45KQNKypCSMghSZkHKOEg9kXoHeJ+lXkw9633tfe9ecG+4V9Q57iN1 lXtMHafuUyeCqQUK9I51UUAXrBcD/GK9GF4sL6YXO21I2jjf3BQAkAKTggVSEEEKLklhV1KzKKnZ Eqlxm0himIYkqrUkrXEaUg2bSHuUSHuupMwoKXMkZRWkbIPUC6lngPdX6sHUq97P3u/uA/eF+8R9 oy5yT6nD3G/qPnWiunIo0NWcQoFftBfFi+ZF9aKnjUkb6JsMUhhScEAKWQokSSEmKfxKah4lNV+J 1NBtJGnMgyS7PqTbnAepRm2kvSiR9lhJGVFSxkjKJkmZBin/qVdST6XeSz3qfex97h5wTwD1iHvG PaSOcn+p29R56kJ1JBgR6IIFCxYs6MdCoAsWLFiwYMGCBQtWnZEvg/qXPv1Lnv5lTn65wb+cyS9b 6Jc0+KUOfglEv0TCL5/wSyv6pRd+WUa/dMMv7+iXgfRLRvzSkn5JSr+kpV9G0x8n5C9I6C9Q+C9d 6C9q6C9z6C+D6C+N6C+h+C/B6K90+5/2+epXvzrka1/72ghf//rXR/jGN74xwj/8wz+M8M1vfnOE b33rWyN8+9vfHuEf//Efx/inf/qnEf75n/95jO985ztjfPe73x3hqaeeGuN73/te5Pvf//4YP/jB DyI//OEPIz/60Y8iP/7xj4v85Cc/ifz0pz9t5Gc/+1kjP//5zxtZPC2eFk+r85T6T0n9q6T+V5I/ QPINSZ4CyWsgeRAkbya/guRjd3byevK/nxHpHPGzxs8iP6v8LPOzzs9CPyv1HPUzVs9fP5v13Nbz XM95Pf91LvCZQeeJ9EuYOo/onKLzS/p2mc4/6Vte6Vta/u0rncP821M6v/m3ovxbT/6tpqZvL/Fb SmND6KwHUB1CfQDVIdQHUB1CWUQdQlns0hDKzSoNobrhGgSGo2kI1aBpADWYQEOrYfagaxN4g2jz AG0sbzxvTG9cb2xvfBdDkocLJkkoycqFBpL4kiCTTEESL0iiBknsIB0EJB0gJB06JB1YSjrwnMXT 4mnxNJ+n1G9O6lsl9T1JviDJMyT5CSSfgeQ/kHwJkl+Th5Ovk9eT//2MSOeInzV+FvlZ5WeZn3V+ Fuo5CfQM9TNWz18/m/Xc1vPcz3qdA3Q+0LlB5wmdM3T+0LmkaQgFaRDVuciHUOBDKPBBVOczH0R1 rpt0ENUhFMQhdNoBVIfQPgOoDqEslg6hLKoOoWkABbpZPoAuhtAlvPFdDMDl4YIBSURJWElsSYBJ lEmoIAkYJGGDJHiQDgSSDhKSDiAlHV5KOvycxdPiafE0m6fUX07qUyX1uZI8QZJfSPISSB4DyXsg eRIkryb/Jk8nnyfvp/PBz5B0zvhZ5GeVn2V+1vlZqOekn6F+xur562ezntt6nvtZr3OAzgc6N+g8 oXOGzh86l+i8kgZRnXd0DvIhFPgQCnwIBX0GUZ33phlEx4bQSQdQHUJLA6gOobxYHUJZFB1CWTwd Qlnk0hCaBlCgm6qbrSHQcGhoNEwaMg2fB1NDq2H2oGsTeIN4A2lzAW08b0xvXG9s4M3vcnCBAJdM klGSVpJbkmCSJUhiBUnEIIkbJNGTdDiAdKAo6TAi6SBz0mHoLJ4WT4unyZ5SPzmpL53U3yR5QUle AclDJPkLJN+B5EeQfAqSf5Onk8+T9/1sSOeHnzF+BqVzys8yP+v0HAR6RvoZ6mesnr9+Nuu5ree5 n/U6B+h8oHODzhM6Z+j8oXOJzis6x+h80zSEAh9CgQ+hwIdQ4EMoKA2iOgf2HUTjENo2gKYhtDSA 6hDKi9IhtGkA1SGUxdQhVAvPzegyhOpGawA0GBoYDRLQkGn4NJQaWKBh9qBrE3iDeANpcwFvPm1M b1zgze0CcEEAl4iLBiQhJXElwSURJmGCJFiQhAySwEESPkkHBUmHC0kHk5IONScdjs7iafG0eOr2 lPrHSX3opH5Wkg9I8ghJ/iHJWyB5DiQvguRRkLyb/Jw8nnyfzgU/O4CfL34G+RmVzjE95/wM9DPS z1A/Y/X89bNZz20/0/W81zlA5wOfHXSu0HlD5xCdT9IgqvONzj06D/kQCnwIBTp3+SCq85oPoaA0 iHI27DqIjg2hsxhAdQjtMoCWhlAWTYdQFrc0hOoGpQEU6Cbr5msoNCwaIg0Y0PBpKD2wGmYPujaB N4g3kDeYN6A2J/Dm9QZ3AQCXRBKJyyZJKckLJNElISZxgiRakMQMkshBEj9JBwZJB42SDiklHXJO OiydxdPiafGUn1K/OKnvnNS/Sup/JfmDJO+Q5CuQ/AaSD0HyJ0i+TV4GyeHJ934mpHPDzxbg54+f UX6G+RnnZ6CfkX6G+hmr56+fzXpu+5mu573OAT4j6Pygc4XOGzqH6Hyic4vOMzrnNA2hoOsgqvNY l0FU573SIKpzY2kQjUMo3ykNoaUBVIdQH0B1COXF6RDadQAFWlwfQBdD6Np9Sx4kMSWBJdElKYIk UJCEC5KgQRI6SAcASQeHkg4dkg4sJR14iXR4OounxdPiaekp9YeT+iyR+lZJfa8kZ5DkG5I8BZLX QPIgSe5MngXJy8nfyfPpPEjnhp8tfvak88nPMD/j/Az0M9LPUD9j9fz1s1nPbT/T9bzXOQDojKDz g84VOm/oHKLzic4tOs/onKPzTxpEdX7SucqHUOBDKPAhFPggqnNgaRDlLOmDaOMQ2jaA6hDqA6gO obwIHUJ5sTqEsiilITQNoEA3QTenzwAKNBQaFg2RhsuDp6H0wGqYPejaBEAbxBvIG8wb0BvUGzg1 uYvARQGSUJJ4XE5JYiAJL4kRJJEm4ZIkapDEDtJBoKRDhKTDR0mHl5IOv0Q6TBOLp8XTM+0p9UEi 9VUi9amS+lxJniDJL0ryE0g+A8l/JHkz+RUkHydvA3d8OgfSeZHOFT970vnkZ5ifcX4G+hnpZ6ie r372+tms57af6Xre+yygc4LODzpX6Lzhs4jOKTq/TDKEgqYhFPgQCnwIBT6EAh9EdT4sDaKNQ2jb AKpDqA+gOoRysTqE8qJ0COXF6xCqhWLxSkOoboBuDDer6xCqgdCgAA2RhsuDp6H0wGqYPejeCNok 3kDeYN6A3qDewMCb3EUAXBZJKkk+LiiQRAaS+JIgQRJqEi9JwgZJ8CQdCiQdKEo6jEg6yJx0GCbS 4ZpYPC2enu5PKfeJ1EeJ1JdO6m8luYEkr5DkI5I8BpL3SPJl8ipIHk6+Bsnv6RxI54WfKenc8bMp nV9+xvkZ6Gekn6F6vvrZ62ezntt+put577OAzgk6P/hsoXOHziM6p+j8onONzjs6BzUNoUDnKx9C gQ+hwIdQ4EMo8EFU58bSIBqHUB9AdQj1AVSHUC5Kh1AuXodQXqQOoSxGaQjVgrLIqzGEaoCAhsuD p6H0wGqYPejeCNokQBvIGwx4E3qTehN7owOXgQsDJLEkASVRJaEl+YEkyiRVkARMkrhBEj1JBwRJ B4uSDiUlHWpOOhwT6bAtsXhaPD1dnlK+S6S+SaQ+dFI/K8kHSvIJSR4iyV8g+Y4kT4Lk1eRfkHyd vJ78n86JdJ74mZPOJT+7/Gzzsy+dj3p+Aj1b/ez1s1nPbaBnup73QGcBnRN8htD5QucOnUd0TtH5 RecanXd0DtL5SOempiEU+BAKfAgFTYOozoU+iOo8qYPo2BDKN+oQ6gOoDqF9B1C8fq+99qpe+MIX Dtl7771HisEC4f1f/vKXj7zvxRdfPFJkLb5uim6WbqJurm66hkFD4gHScGnoPJAaVqBB9qB7I2iT AG8ibzJvRG9Ub+TU7C4E4NJIckkSSrJKUgNJgCAJM4kVJBGTJHCQhE/SQaGkQ0ZJh5SSDjknHZaJ dPiWWDwtnjbVp5TnEqlPEqnvnNS/Sup/JflDSf4hyVsgeY4kP4Lk0+RdkDwNkteT/9M54WdJOm/S ueRnl59tfvb52Qj07PSz1c9eP5v13PYz3c98nQd0TvAZQucLnTt0HtE5RecXoLONzjxdh9DSIMoh VAdRzm1A5zkfQoEPojov+iCqc2ZxCPUBVIdQH0B1COXigC6aF6JTNi/4yCOPrLbYYov6flmYo446 qtppp53qj2UR8XoMrK95zWvqj5/VAAo0DBoSD5CGS0PngfTAapg96N4I3ijaRMCbzBvRG9UbGaSG dym4OEASTBJRElYSG0giBEmcSbAgCZkkkZMkf5IODZIOHCUdWE469Bw/OJtIB3KJxdPiab0/pdyW SP1QIvWZk/rVSX2vJG+Q5BuSPEWS30jyIkgeBcm5yc8g+Tx5P50P6Rzxswb4eZTOLT/b/Ozzs9HP Tj9b/ez1s1nPbT/T/czXeUDnBJ8hdL7QucNnEp1XdI7R+UbnHp2H2gZRzllAvwDoQyhIg6jOeT6E Ah9EdY70QTQOoXwnHUJ9ANUhlIvQIZSLBXoRvDBebBpCsY6tttqquuiii+qCaRGvv/764VdEtei6 GbpJunm6qfr+AG/nMKoh8QBpuDR0HkgPrIbZg+6N4I3ijeSN5o3ojQq8mb3hQRKDyyNJBiQhJXEl wYEkxCROkEQLkphJEjpJBwFJB4iSDh8lHV5OOgSddJiWSId0E4unxdN6eUr5bCLlv0TqKyf1p5P6 XEmeUJJnSPITSV4jyYcg+RMk3yYvg+Tx5Pt0LgA/Q9I5k84jP7PSueZnn5+Nfnb62epnr5/Nem77 me5nvs4DOicAnSF0vtAh1AdRnVd0jtH5RmcYnYfahlAdRNMQCtIgqnOdD6HAh1Dgg6jOl61DqA+g OoTyznQI5aJ0CE0DKMBF4nX41rx/FfTaa6+tB815DqG62dxw31T8H29LAyjQ0HkgPbAaZg+6N4I3 ijeSNxrwZvRm9YYG3vRJDi4QkESTpJTkBZLoQBJjEihIwiVJ0iCJnaQDQUmHiZIOIyUdZk46FBPp gC2RDu4mFk+Lp9V+SjlsIuW8idRDTupHJ/W1krzgJLeQ5CWSfAaS/0jyJkieTT4Gyd8g+T6dC+n8 SOeMn0XpvPIzzc+8dC762elnq5+9fjbrue1nup/5Og/4rLAaQyiYZAgtDaI6r+kc50Mo8CEU+BAK 0iA6NoT6AKpDKG9Uh1DeuQ6hXGRpCMUFnnvuufUweeGFFw4vngXBOvCV0BNPPHGkgCjo+eefX22+ +ebVDTfc0DqAAt083VTdbA2BBwRv99vH6xAmDZ0H0gOrYQYadG8EbxRvJODN5g3pDQu8qb3xQRJE EkkSThJTEhhIwktyBEmkIImXJGGTJHmSDgeSDhUlHUxOOtycdEgm0oHbRDrQ21g8LZ5m/ZRy1kbK cxOpXxKp/5zUx07ygZJ8QpKHSPIXSd4jyZcg+RUkHydvg+T5dB6kcyOdL+kc8rMK+HnmZ56ficDP TT9b/ezVcxnome1nup/5Og90HUI5ZxCdS3Re0TkG6Iyj8wlnoi6DaNsQqoOoznE63/kQCnwIBT6E gs5DKD9Yh1DeiQ6hXIwOobpwXswHPvCBevg84YQT6ov0ARSgQPxq6EknnTQsHgfQj370oyPF1k3Q zdFN0w0FutkaAg+IhodhwvvhNvU+cTt4OwPpgdUwAw+7N4M3izeTN5s3JPCmTY3tzZ8kkWSSpAOS oJLIkvRAEiRIQgVJwCSJmyThk3RQKOmQUdIh5aTDzkmHZiIdwk2kQ74Li6fF06RPKU9dSPltIvVH IvWbk/rWSf2vJH8oyT8keYsk35HkSZC8CpKHQfJ28ns6B0A6N9L54mdQOqf8LEvnnZ+Jfmb6mepn LtAz2c9sP9N1AAXzHEKBzjM65+j8o3NR2xBaGkTTEFoaRHXu8yEUNA2ijUNo0wAKfADVIZSLKw2h eoG86DSEEi2eFlWLrZugm6Ob5huqm60h8IBoeDxYGji8L25L14H/4+NWYwgF3pTeuKm5XQAgiSIJ JYknSQokoSXxgSRKkMRKkoxBEjhJ4ifpwFDSgeOkQ8tJh5+TDtES6WBuIx3+XVg8LZ5KTykvXUj5 bCP1QYnUX07qUyf1u5O8oSTvkOQrkjxHkhtB8ilI/gXJ18nrIJ0D6bxI50o6f9I55WeZn3XpPPQz 089UP3P9TPYze7WHUKAzi84zOufo/KNzkc5LOkfpfKVzl85jOqc1DaHAh1DQNIQCHUTHhlC+UYdQ vaGmAbQ0hPIiugyhWiAtnBZUCw10E3RzdNN0M32jNQQeEA2PB0tD54FkSHEbGhS8jNd54L0hvGG8 oVLTeWN64wJv7iQB4LJIUgFJQElUSWogCRAkYQJKFR97yCGH1F8tx49m4HUuZOQUb1fw1XSXejoE SDo8lHT4OOkQc9JhmEgHa4l0YLeRBoOuLJ6euU8pD11JOexCynwi9VEi9aWT+ttJnlCSZ4i7yXHH EXoxkTwKkneBO5okryf/p3MC+JmSzh3gZ1Q6x/ysS+ehn5l+pvqZ62fypjiEAp2NdG7SeUrnrK5D KEiDqM5/Ohc2DaI6ZxaHUL6zDqG8UaB31jSAgq4D6CRDqG+Abo5umm6mb7SGwAOi4fFgaeiABtID q0HGx2IdXDPWh9vH29gQ3jDeUMCbzhsTePN6g4MkAhcGSGJJEgJJWElsIIkQJHFij7beeuvqvPPO q3OoQyiglM8888xq9913r9fN1+HjMbgeeuihY3JPB4KSDhMlHUZOOtScdDgm0mFbIh3gXUgDQx8W T0/fp7TffUh560LKd4nUN4nUh4nU005yA0leUdxJCh2W0IHTcX+S5FuQ/AySz5P3QTon/CwB6dxJ 55OfYemc87MwnZd+puoACjbVIRToDKTzkc5NOk/pnKXzl85lOq81DaGgaQgFPoSCzkMoP1iHUL0j 3nlpCOXiV2MI9Y3RTdPN9I3WEHhANDweLA0d8FBqYD3QKfC4D14L1oz7x8eyabypvPGAN6c3MEiN noSQxJEEk0QEkriS4EASIkgCJciiD6EAYkbtMKy++MUvrmuH28IAiv+jdkn06WBQ0sGipEPJSYdb Ih2WiXT4NpEO9q6kYaIvi6dN7yntY19SnrqSctxE6pNE6rtE6mMn+UBJPlGSj4gPnYp6z0nOBO5Y krwMkseT70E6H9I5ks6bdC6l88vPuHQO+lnJM5T4ANp3CPWz3mcBnxV0jgA6Y+j84bOJzi06z/is o3OQzkc6N+k8pXOWzl86l+m8pnNc0xAKdD70IRR0GkL5TjqE8saA3knTANp3CNXCAC2aFlOLrMXX TdENA7qZvtEaAg0H0OB4sDx4HkwNLdBAe+BBagrcD9bIa8S14LbRWKn5vEGBN3Fq9iSFJI8kGZCE lOQFkuhAEiNIIgXIZRpCAQT9oQ99qH77jjvuWA+keBlfHcV6k+xJOiSUdMgo6ZBy0mGXSIdniXQg N5EO/D6kYWNSFk9r/5T2ZVJSXvqQ8tpE6ocSqc8SqW+d1P9K8oeS/KP40Km480hyJUl+BcnHIPkb JN/7mUDSOZLOm3Qu+dmVzrd0DvYdQv0sBnpe+1nuZ73PAj4r6BwBdMbQ+cNnE51bfKbReUfnIJ2P dG7SeQrorDXJEAp07msaQoEPoaB1COUHAb0xH0C7DKF6QXqhvHgfQrVYWkgtMNDi66b4hulm+kZr CDQcQIPjwfLgeTA9uBpq4KH3xvDGQTPh9bhtrI3XjevD/eN90IDepN7IIDV8EkMSSBJNkhJIAgNJ eCAJEiShIpdpCMU+8lv2Lm4Mpi960YvqbCbpk3RgKOnAcdKhlUgHYCIdqCXSQd1GGgb6kIaRaVk8 zf4p1XlaUh76kPLYRsp9idRPidSfidTvTvKGkrxD3FuKus5JniTJqyB5GCRvg+R5kM6FdH6kcyad R+nc8rPNh0/gAyjws9TPWj+L/az2s9zPep8FfFbQOcJnDJ0/fDbRucVnGp13dA7yGUnnJ52rdN7S OUznM53b0iCqc5/Og2kQ1XmycQjlG3UITQMo6DqAAr0YvUi9eC2KFkuL6AXW4uum+IbpZvpGawg8 IBoeD5YHz4PpwfVge/C9MbxxgDcXGw9vwxpwragFnmPNuJ00iKamT3IASSRJOElMIIkMJPGBJErg UkU2MYTiIbtUxLgNfOsdwyYySXljPzGc4mdC+bp0ACjp8FDS4eOkQyyRDsVEOmSbSAd4G2lQ6Esa VmbJ4qn8lOo1S9J+9yXlro2U7yZS/yRSPyZSfzvJE0ryjEI3JdRzjvtRST4F7l6SfA2S30E6D9K5 kc4XkM4jP7N8AAU6fBI/I/0MBX7W+lnsZ7Wf5X7W+yzgs4LOET5j6PwBdDbRuQXoTKPzjs5BQGck nZ90rtJ5S+cwnc90btN5Tuc8nf+ahlDgQygoDqF8Z6A34gPoWg6hXnjdFN0s30jdZA+AB0TDAzRY HjwPpgfXg+3B98YA3jzeYMCbkA2Kt+F+cZ2sEa4R991nEE0yAUk8SVAgCQ0kAYIkTJIkC5KYSRI6 SQeBkw4TJR1GTjrUEumQLJEO3ibSwd6FNERMQhpo5s3T6Sld37xJ+zgJKVddSDluIvVJidR/idTP TvKCkrziJD+R5DWSfAiSP0nyLkieBsnrIJ0D6bwA6XxJ55APoECHT+Jnn5+NwM/QdM76WexntZ/l ftb7LKBzAtAZwmcMn0F0PvHZRecanXd0DgI6J+n8pHOVzls6h+l8pnObznM65+n8p3Nh0xAKOg+h egO80S5DqC5YL0QvUC9cCwK0WFpELa4XXjdFN8s3UjfZA+AB0fAADZYHz4PpwfVge/CBN4c3EPAm 80YEqWHZzHg7roV1Q42wXrwPBJBEkYSS5AOSqEASG0giBEmcJAmXJEmTJHeSDgUlHSxOOpycdMgl 0qFZIh3GbaQDvytpyJiGNPysJ2bxlG53PZH2ZRpSbrqS8tpG6osSqd8SqX+d5AEn+URJPiLJYyT5 jyRvkuRbkPwMks9B8j9I50U6V3z4BDp4Ej/LgJ95wM9G4Oenn7HpHPaz2s9yP+t9FtA5wWcInzF8 BtH5xGcXnWt03tE5COicpPOTzlVAZy6dx3RO0/lN57quQyjQObLTEMp3Kg2heke6AC5q2iHUC6VF 1OJq0XVDgG6Wb6RuMtAAeEA8QBouoMHzYAIPr4fbw+8NAryJUqN5M6amTc3NxsfbsV7UAPVEnXB9 uG0KI4klCQgkYYEkOJCECJJASRIvScImSfRKOiSUdMg46bBy0qFXIh2kJdIB3UYaBPqQhpBZkIal BdOR6jwLUi76kHLZRsp/idRXJVK/OqnvneQPJflHSf4iyXsk+ZIkz4LkZZA8DpL3QTondPBUdPgk 6Zzyswz4mednIvCzM52vfgb7Ge1nuJ/xQOcAnxF8hvAZQ+cPoLOJzy461/jMo/OQzkk6P/lspXOX zmM6p+n8pnOdzns6B+p82DSEgl5DKG9stYdQLSDQ4mrRfUN0s3wjdZOBBsAD4gHygGn4gIfTA+wB 9wZITeKNlJrNGxKkxk0NnkQAQeD9sSZcJ2qM2uFlrEkFk0QEkrhAEh1IYgRJpCQJmCRxkyR8JR0Y Tjp0nHR4OekQLJEO1ybSwd2FNCT0IQ0p8yANWc90Up3mQdr3PqTcdSHlvInURyVSfzqpz53kCyd5 R0neIsl3JHmSJL+C5GOQ/A2S74GeC4oPnyCdO+l88jMMpPMunYt+dvrZCvwM9jPaz3A/430G0PkA +AzhM4bOHz6b+Oyic43PPDoP6ZzkM5TOVzp36Tymc5rObzrX6bync6DOhzo3pkE0DqFpAAV6Y3on eudtAyjQi9OL1mJokbyAWlwtum+IbpZvpG+0hsAD4gHygHkAPaAeYA+4NwDwJvFGAt5sqSmBN29q cpCEkMQBoeD9cS2oJWqP57iWJKUkMJCEB5IgQRKqkmRMksRJkr+SDg8nHUJOOswS6WAskQ7cJtKB 3oU0QExCGmRWizSsbWqk61ot0n5OQspXF1Kem0j90kTqRSf1tZP84CTPKMlTJPlNSW4kyasgeRgk b4PkeeCDJ0nnSDpvgJ9LwM+wdM4BPxPTuelnazp//Yz2M9zPeJ8BfEbwGcJnDJ0/fDbRuQXoXOMz j85DOif5DKXzlc5dOo/pnOYznM53aRDV+VDnRp0ndc7sPYTqHaQBFOgidfF6YXrBQIuhRdLiaWGB Ft03RDfLN9I3WkPgAfEAecA8gB5QD7AHHHgTeKMAbyZvOJAa0xsYpEZPQkjyAEk0uA2sEzXDfqDO uDbcXxIZSOIDSZQkyZUkKZMkdCUdBko6TJx0KDnpcEukg7KJdBA3kQ76rqThYhrS0LNgbUj7Mw0p P11JuW0i9UUTqe8SqY+d5AMneUVJXlKS10jyIUkeJcm/IPmaTDuAgnTe+JkE/OwC6ZxL56GfmX6m Aj97/WwGfob7Ge8zgM8IPkP4jKHzh88mPrvoXOMzj85DPivpHKXzlc5dQGcyndd0jtP5Tuc+nQd1 TkyDqM6ZxSE0DaBAb1zvVBeji9TF60XpxXohtEhaPC+sFt03RDfLN9I3WkPgAfEAecA8gB5Q4CH2 kHsjpGbxhgKp8VKDpkZODZ/E8OjffLn65Ge/MMYtD3yxEzd95q+ra+94uPrArQ/Uz2+498nq1ge/ NOS2h/42cvvDfzcRdzzy90XufPTLjdz12FdmwsbHv9rK3U98rfrC1/4pHnpKOjybSIdzF9IQ0Ic0 gExLGpIWzIZU72lJuehDymUXUh80kfoskYbNRBo4nTR0KmnoVNLgSdLgSdLgSdLwCdLgSTbVARSk c9XPXj+b/exO57vPAD4j+AzhM4bOHz6b+Oyic43PPDoP+aykc5TOVz576Vym85rOcTrf6dyn86DO iTo/6lw59RCqdwh0MbpIXbxelF6sFkELBLR4Xlgtum+IbpZvpG+0hgBoQDxAHjAPIPCQepA96N4I IDWMN1VqvtSkqZlT0wOXw85n31X97sE3VFufcm+19an3jfDKd3ymes25D0zMju+6f4Sd3/1gK7t0 4bwuPLSm/OHhN9d1BVsee0t19o1PxINQSQdqE+nA7kIaEPqShpRZk4arBUukes2atO99SfnrQsp7 E6mfSqRBM5GGTScNnEoaOJU0dJI0dCpp8CRp+ARp8CTzGkBBOovSuZXOt3QO+lmZztN07vrZ7Ge3 n+3Az3+fEXyG0PkC6Ozhs4nPLjrX+Myj85DPSjpH+Yyl85fOZTqv6Ryn853OfT4TzmwI1RvgjfoQ qgvRBerCgV6UXqwWwQukxfPCatF9Q3SzfCN9ozUEwEPiIfKQeQg9pB5kDzrwZkhN440FUgOmRk0N nRrf5cAhFIPT/lc+OWSfy5+o9rjwsWrHdz9UbffOB2tefe7Dg9c9Xr3pkicG7/O5yAHv+3yEb993 cLv7XPZ4/Xy/K3Bf4x9zYBeu6sJfFTno6r+eCQcX4BD6qje/u9r2kHOqLfY/t3rB/tfUr9vtXfc0 fpU0HbJdSId5F9LwMAlpkFkN0pC2qZKubzVI+zkJKV9dSHnuQuqfRBoyE2nQTKSB00lDp5IGT5KG TiUNniANniQNniQNoGBTGEBBOk/9zE3nsp/dfrb72e+zgc8OPlv47OGzic8uOtf4zKPzkM9KOkf5 jKXzl85lOq/5LKdzns5/OhfqvKhzZKchlO80yyFULwjoxWoRvEBaPC+sFt03RDfLN9I32oPgQfEg edA8iB5U4GH2sHtDgNQ43lypCVOzgtTYSQAqiJEhFENhPRiWWRpOHx8Mpw8PBlMMqA8NhtNH6tft cznepzyIJvD+GEYxlBL8Pw6eThw8nTyEkjRY9uX/396dBltWn/e9d+Xe5PomlXtjK7aTa0u+tqsc 182t2I5jKqlUxditgNBAQCBA0ExCsoKYh2YWDQgQNDMSQ4zEIEZJSAwSYBqBGJpRsoUkkJwq25It ofKQ+IXLeZVbte7+7cNz+jm/813z2sPpXi8+ZXPO7n32Xuv//z9f7aabugh17z3rU8Vvbbln+v26 T0lp8DZBg74pios+KHo2imUKxSHQ/emD1k9TtG6boH1ShkKTUGgSik1HwZlRdGYUnYHCM1B4BgpP ofAMiw5QofnnM5LmKM1bn8k+s8Xnus9+bwNvB28Lbw9vE2+X3DXePLmHJLdS7ihvrNxfucu82XLP 5c7L/Ze7MPdi7sjclxs6Qv2C+w3JN8tvpN9oXwi+UHwh+ULzhegLVXwx+4IX3xS0eXyDCW1E2rC0 uekQkDgkMEJrQnTF2k9AFaA5ThWm+v8/fPt3MD6rxHOerCBt4p46fzRza67dxB7nbp9e1wO23FDr HafcXPzmKfdNH3/I1U8VL3zju+vW8K7K9+aoP7rOo8XzObUR9IlQmjtCc4rmGc09mo80R33W0jz2 mU1z3We/t4G3g7dF3d706527xpvHmyj3Uu4ob6zcX7nLvNlyz+XOy/2XuzD3Yu7I3Je1EZp/YX7C /IMkv4j84vKLzm8mv1HJF8EvUL54+aL6Bfcbkm+W5BvpN9oXgi8UX0i+0Hwhii9WX9Dii943htAG oo1GG5I2Lm1wOghEB0VphArGZ7Y2RJ2CkuL0yE+9VvznO767Lj7L4KegDj8FzfiTUEefdDbV9JPQ Kvqt+01bPlP86mkPVX5KSp8QNUWfSrVFn4rNAn2at7uj6zQLdN/bovXXFK37KvQJZxn6lJPQJ52O Pu109IlnRp96BvrUM6NPPoU++Qz0yWfw8AwUn+LxKTRvhOYTzTGadzQXaX7SnPVZTPPaZzrNfW8D bwdvC28Pb5PcLZKbxpvHmyj3Uu4ob6zcX95mudtyz+XOy/3nbZi7MfdkDtF1EZq/mX9RfrL8Q/IL yC9M8ovObya/yXwBxC9Qvnj5ovoF9xuSb5bkG+k32heCLxRfSOKLzRejL1jxRe0LX3xz0CaizUab kjav0EanA0GHRWWEDhSipCxO9e+b0uMxPB3GZ8bhSSgym+gboU6/df/vT717+lxl/y4pDfA2KB66 opiZFwq2jYLez7zQfeyK1lcbvrbrUGCWocgsQ7HpKDYdBWdG0ZlRdAYKz0DhGSg8A8WnUHyKx2eg eUNzieaX0LyjuUjz02cszWGf1TTPfeZ7E1A3eFt4e3ib5G7xpvHm8SbKvZQ7SnJjeYPlPsvdlnvO Wy93YO7D3I25J3NnzixC8wuW/Gbym/QLkC+OX7h8Uf2C+w3xG5ZvpvjNzgvBF4r4YvIF5wuSFq0v bFr8vkGENhJtONqYtIFpswsdDLURKhifGQdooKgsE3GqKI1/5zQc1MSNdb41cwdP/MbZK78d/+8+ dM2g9jj2v0w/JZ3Fv0caKC76ovgZzRfdl75o/bRB67cOBWYViswyFJuOYtNRcGYUnI7CM1B4BgrP QOEpFJ6B4lMoPoXmDM0joflFc47mIc1Nmq80h31W0zz3me9N4M1AXZG7w5tEcrN403jzeBPlXvKW yp3lDZb7LHebN13uvdyBuQ9zN+aezJ25kAh98MEHiz333HPV7bffvnoB4sI89NBDxaZNm4pHHnlk 9cLliyr5gvsN8RuWb6b4zc6LQXyx+ILyBecLUnzR+sIW2gC+SWgz0aajzSm0kWnDix8OjSJUMD4z DtBAwVlFn4oqPBWl+ev4CajDT0Ez/vSzCn3qWWWoT0LJvznhzkZ/5ZPQ4G+L4mNIFEyjbuj6DonW R1u0TpugwCxDgVmFYtNRbDoKTkfBmVF0ZhSegcIzUHwKhWeg+BSKT/H5IjSHhOYWzTeheUhz02cr zV+a0z7Lad57E3gzeFN4c3iTeLN403jz5B6S3Eo5QGVDRGj+BfmJ8g+Q/MPzi/IXnN9MvMGI0V0h QsUXpS9c8cVNm8A3itCGoo1HG5Q2s9DG9wOicYQKxmfGARpyTNYpi1DB8HQYnxnHZh0KTrIsEeoo CrqiSJkFiq3dFV2fWaD73RWtwyYoLutQYJah0CQUm45i01FwZhScGUVnoOjMKD6FwjNQfArFp/hs CTSHaF4JzTeagzQvaa7S/PUZTXPcZz31gDeDN4U3hzeJN4s3jTdP7iFvpRygMq8IldyPuSvnGqH5 jUjTCM2floqi9NFHH129sPmi+w3xG+Y3M//aLP/6iFOKUPFF5wuTFq8vcKGN4JuFNpXQBqSNShta 6ADIB0REqP6ieAxPh/GZcYBmHpWkKkIFw9NhfGYcmk1QeGazjtDrH/3O6uClAd4URUMfFDTzRvG2 rOj1zxvdxz5onTWVg7IpCswqFJqEYtNRbDoKTkfRmVF4BorOQOEZKDyFwjNQfEqeKRnNH5pTQnON 5h/NSfGZSnOX5jPNcZ/13gLUCxs9QiV3Xe693IHeiLkfc1cOEqH5B0t+UfnF+htpEqHiF06/dv/9 9y9OPPHEdREq+Yb4DfMb6jecFkLcaP85Qd/Tc+nXaVH5whRawL7IaTP4hhHaWLQJabMKbWyhgyAO idYRKhifGcdnRmGZ1UWoYHg6jM+MI7MpClCZZ4RmNNjboKgYAsXPaL7ovgyB1lEbtI7rUFxWocgs Q7HpKDYdxaaj4MwoOjMKz0DhGSg+hcIzUHxKjs6M5o7QjKJ5JjT/aE7SPKW567OZ5jfN+boI9QCV aA5qD/Fm8abJveNtssgIldyJuR9zV+7yESr5hvkN9Rsuvih80ZQtLD02Fom/pnhd+p5+hh6vReqL nTYEbRzaYLQRacMKbXA6CEQHRacIFYzPjOMzo7AMTSJUMDwdxmfGgdnGskSoo6HfFoXHkCiYRt3Q 9R0SrY+2aJ02QXFZhyKzDMWmo9gkFJwZBWdGwZlRdGYUnoHiUyg8A8WneHgGmjdC84nmmNDco/lI c5Tmrc9kaRKhHqBS1gq5GTJvEfFmyT3jrePNMe8IldyCuRNzP+aurIzQ/MD8BJKfPP9Qf0H5xeY3 8dRTTxX77LPPmt9mD5s3b54+ly4M/Xb84YcfPn2+uLB+4f3G5JsmflP9pvvC8IXjC0t88fkClVi4 +r6eJxaYv/54D/q+Hqtf55uHNpnQhqSNS5tc6ECQzhEqGJ+OAzSjuGwaoYLh6TA+M47LLpYpQh1F QRcUKLNEwbW7oesyS3Tfu6B12BSFZR0KzDIUmoRCk1BwOorOjKIzo+gMFJ2BwjNQeAaKT6H4FJoz QnNJaI7RvKO5KD5DpUmE5vAMPttjrmfUCd4S3hq5Q6IPMm8Zbx3viBygsiwRKrkvFxKhkt+kX4B8 cSRfOL+wfuH9xviN8xvrN94Xhi8c8cXlC1B8kdJi9gUveTPE4tbr0Gv19xrvR9/XY/VraGPSBqaN LnQwHH79c90jVDA8Hcdn5mHZJkIFw9NhfGYclV3MI0I1cGlwt0HR0BWFzCJRyC0Ler2LRPezK1pn bXhUNkGBWYVCk1BoEopNR8GZUXBmFJ0ZhWeg8AwUnoHiUyg+hWaM0DwSml8052TIABWa23mux4x2 3gjUEbkzxFskd4p4y3jreB94K+WO8sbyBst95u2Wu86bL/dg7kRvyNyXrSM0P7HkH+ovKL9YfyP5 TfoF8AuUL55fWL/wfmP8xvmN9RvvC0N88fgCE1+EvlCFFjQtfNogtJFik+n7+nX6GXp9eh9+XfTe 9T39TD1eG5k2vPjh0DtCBcPTcXy6iMq2ESoYng7jM+OobCsi9KCzbp6imOwqR6ijod4GRUVfFD2j xaD70xetozZoHTdBcVmFIrMMhSah2HQUnI6iM6PozCg8A4VnoPAMFJ9C8Sk+WwLNIfH4DH0CVPJs jfnpfFaLz3Tx2U99kPtBqDO8RbxVvGW8dXzmeyvljvLG8gbLfebtlrvOmy/3oLdi7sjcl2OE2o0X Xxy+gGiR+UIUX6y0qGnx+wYR2ki06YQ2aGxefT9+tt6L3m++frpG+prek16LHj9IhAqGp+PwdArK LhEqGJ4O4zPjsGzDI3TIGK2K0IwGfhcUHkOhUBr1Q9d5KLQ+uqD12gTFZR2KzDIUmo5Ck1BsOgrO jIIzo+gMFJ2BojNQeAaKT6H4FIpPydGZ0XzL8y+juUnz1Wew5DkdfKbT3Pc2EG8Ib4zcH8FbxVvG WyfPcfFWyh3ljeUNlvvM2y13neTmyz3orZg7MvflzCLUX6i/kfwm/QL4BcoXT/KF9QvvN8ZvnPjN 9ZvvC8QXkPgio8XoC1ZoYdMGoI1CG4o2ntBGpQ0tdACIvqfXkiP0xDtfX3XSXd+ZOvnu705heDoM T8fh6bpGqGB4OoxPx4HZRFmEZhSYTTSNUEcx0BUFyqxQaO2u6PrMCt33rmg9NkVhWYcCswyFJqHQ JBSbjoIzo+B0FJ6BwjNQeAYKz0DxKRSfQnNHfEYFmms0/4TmJc1Vn71Cc5rmOc19bwPqB28MbxBv FPGO8dbxFsqd5A3ljeUNlvvM283bLndf7kFvxdyRuS83fISKX3y/OX7z/Ob6AvAFIr6IfKEJLUhf tLS4aRPQZhHaWLQBabMKbWyhg0B0UNR9EhoRKorSHKoRq/F/p4+7ZxKsGJ8Zh2fWJ0IFw9NheDqO zDpNIjSj2CyjCL3ukddxYLdBsdAHhcyiUMAtG3rdi0L3sw9ab21QWNahwKxCoUkoNAnFpqPgdBSc GUVnRuEZKDwDhWeg+BQPz0DzRmg+Cc0zoflHc1JoptL8pTnts5zmPXWBtwP1hTeIN4o3jDeON5A3 kjeUN5Y3WO4zbzdvu9x9uQe9FXNH5r6UdRHqD8i/2J84/9D8YvyF+hvJb9IvgF8gv4B+gf0G+A3y G+g32BeA+CLxhSS+2GhR+sIVWuC0EWjD0MYS2oi0YYU2uNCBIIP9dnyiED3p7kmc3jUJ1URfE33/ ZD0W4jPkCNU/U2jWwfB0GJ6OQ7NK2wjNKDyziFAfwjTM26KgGAKFz2i+6L4MgdZRW76Wm6K4rEKR WYZCk1BsOopNR8GZUXBmFJ2BojOj8BQKz0DxKTRnhOaS0BwTmntCM5LmKc1dms80x2neexNQN3hb UH94o3jDeON4A3kjeUN5Y3mD5T7zdvO2y92Xe1ByK+aO9MasjND8CyU/qf/A/GL8hfobyW/SL4Bf IL+AfoH9BvgN8hvoN1h8EfhCocXkC05oYfripUUutCFo49AGo40otHGFNrrQwTCLCJ3CT0Ddf53G 6El3f3cSqYrWFfrniNDj71S0Kmy7wdfm8LU5juUyEaEHnnHj4BSh277wh3jvA93/ZUXrctQNXd9l Ret2FujsHAKd1V3QHGiL5ksTNKuCnpfiUyg+hdak0P0Xul9C11uaXr8279VnOM156gHqBm8Lbw/q E28YbxxvIG8kbyhvLG+w3Gfebt52ufu8CXMvekvmztztIlT8JvtC8IUitKB80dHi9AUstNBpU9Dm EdpotCGFNrDQhhc/HGYWoQGDLuOI809CM/rUswp+AurwE1DHn3qSPp+Elqn7JLQKffrUB30iNmv0 6d7ugq7HrNF974PWZVP0qWYd+nSzDH3CWYY+6XT0SaejTzsdfeKZ0aeeGX3qGeiTz0DhGSg+xWdL oDkkNLeE5pzQXKT5KTRvaS7T/KY57y1AvUBd4e3hbUL94o3jDeSN5A3ljeUNlvvM283bLnefN2Hu RW/J3JkLj1DJF8AvkF9Av8B+A8Rvkt9Ev9G+EMQXCy0qX3hCC5QWMi142hi0gWizCW1MoY0stPEl HxAzj1DB+MzWRqZURWig4CyD4ekwPB1Hp5tFhIYuEUooFPqimFkkCrpFo9e5SHQfh0BrrimKyiYo MMtQYFah2HQUm45i01FwZhScGUVnRuEZKDyFwjPkmZLR/BGaV0LzTWgeCs1PmrM0j2lu03ynDqBe 8Kag7vA28XbxtqH+8UbyhvLGyv0luc283bztcvd5E+Ze9JbMnbl0ESp+kfwi+kX2m+A3ym+k32jx xeALRnxR0eKjRUqLmRa90AahjUQbTmiDCm1ooQNA4pCYS4QKxme2NjCbRKhQcJbB8HQYno7DM5tH hObhS4O8LQqJoVD8jOaL7stQaD21lddzGxSYVSgwy1BoEopNQsHpKDozis6MojNQdAYKz0DhGXJ0 ZjR3hOaU0FwTmoNCc5PmK81hoblN8506wFuBesKbg7rE28XbxtvH20hyO3lbeXt5m3m7edvl7vMm zL3oLZk7cyYRKvmF+hvxN+oXwi9UvojiF9lvhN8ov5HiN9sXhPii8YUltABpodKCpoVPm0RoQ9HG E9qoQhtb6CAQHRRzi1DB+Mx2xmXTCA0UnWUwPh3GZ8bxGeYdoY6GfBcUHLNA0TRqh67rLNA66YLW bRMUlnUoMKtQaBIKTUKx6Sg4MwrOjKIzo/AMFJ6BwjN4eAaaN0LzSWieCc0/oXlJc1VoDtO8prlO 8586wVuCesObhLrF28bbx9vI28nbytvL28zbLXed5ObzJsy96C2ZO3O3iFDxm+k3nBaFLxzxxUWL UHyx0qIW2gC0UWhTCW1AoQ0rtMGFDgSZa4QKxme2EpVtIzRQdBIMT4fxmXGAyqIj1FEEdEVhMi8U X7s6ug7zQve/K1qXTVFY1qG4rEKRWYZCk1BsOgpOR9GZUXRmFJ6BwjNQeAqFZ6A5IzSXhOZYoNlH c1JortL8pTktPtNp7os3AnUE9YY3iTcLdY23j7eRt5O3lbeXt5m3W+46bz5vwtyL3pK5M3fJCBW/ WX5D/YYLLQxfPL7AhBaiL1ihhU2bQGjD0MYS2oi0YQNtdKGDYe4RKhifWfcIDRSeDsPTYXxmGyNC HUVCXxQxy4Yib9bodSwbup990bprg8KyDsVlHYrMMhSajkKTUGw6Cs6MgjOj6AwUnYHCM1B4Bpox QvNIaH4Fmns0H4XmKc1doTlN85zmPvWBNwR1BvWIN4s3DXWPt5G3k7eVt5e3mbdb7jpvPm/C3Ive krkz5xKhkt+Iv1G/EH6h/EKKX2y/GX7D/IaK33RaHL6AhBYaLUhauLTAaSMIbRzaYEIbkjZuoA0v fjgsJEIF43OnvhEaKD4zDE+H8ZnNP0Kv/fJra4YvDfG2KCSGQuEzmi+6L0Oh9dRWXs9tUFjWocAs Q6FJKDQJxaaj4MwoOB2FZ6DwDBSegcIz+GwJNIeE5lageUdzUWiOCs1cms80x2neUxdQP1BneItQ r3jTePN4E4l3k7eVt5e3We42bzpvPm/C3IvekrkzFxKhkt+oXwi/UOIX0y+23xC/YeI31W+80ALx RUSLjRYlLV5a5EIbgjaO0EajTSm0gQNtfMkHxMIiVCA+w5Gf+vYgERooQAOGp8P4zBYboY6GfBcU HEOjYBp1Q9d3aLROuqB12xSFZR0KzCoUmoRCk1BsOgpOR8GZUXRmFJ6BwjNQeIY8UzKaP0LzKtCc E5qLND+F5i3NZaE5TvOeusDbgfqCOsRbhXrGm8ebyJuJusrbK3eZN5s3nTefN2HuRW/J3JlLEaHi F8Mvll9Qv+B+Q8Rvmt9Y8ZtPi8QXktCCo4VJC5gWOm0KoQ0ktOFoYwpt5EAHgMQhkSO08X8jfkgQ oLISoa8OFqGBIlQwPB3GZ7Y8EeooArqiMJkHiq7dBV2PeaD73xWtyzYoLJugwCxDkVmGQpNQbDqK TUfBmVFwZh6c9913X7HnnnsWDzzwwGpoXnHFFcWmTZuK559/vlF8So7OjOaO0JwKNN+E5iHNTaE5 KzSXaX7TnKceoG6gvvAGoU7xlqHe8SbyZvKm8ubyJvNm86bz5vMmzL3oLZk7s3OESv6B/oL8Bfsb 8jfsF8QvmF9Qv+DiN8VvnPjN9QUgtFB8MdGio8UptJBpwdPGENpIQhuPNqjQhg50EIgOCo/QgME4 K5URqv8WPQdlH7MO0WWLUEeR0BdFzLKgsJs3el3Lgu5nX7Tu2qCgbILisg5FZhkKTUKx6Sg2HQWn o+jMPEA1c9/1rncVN9xww2psiubCqaeeWhx99NHTGUTRGTw6M581geZToLkmNAfF56XQfBWaxzS3 ab4L9YA3A3UF9Yc3injHeOtQD3kzeVN5c3mTebN503nz5R6U3IrekrkzN2yEil90vzHiN49usC8C Wiy+oIQWHi1QWsy06IU2iNCGoo0ntFGFNnagA0HKInTRIbo2QvU1jsm+ZhWi84jQPHhpiLdFITEU Cp/RfNF9GQqtp7byem6LwrIOBWYZiswyFJuOYtNRbDoKzszjMygUTzvttHWfemo2K0733nvv6ayk +BSPzozmjNBcCjTPhOaf0LykuSo0h4XmNs136gDqBeoKbw/qE28Y8c7xFqJe8qby5vIm82bzpvPm yz3oregtmTtzw0So+EX1C+83Rvzm0U32hSC0YGhh0QKkhUoLmha+0EYR2li0AYU2rNAGD3QwVEXo IkN0fYQKh+QQhg7ReUeooyHfBQXHLFA0jdqh6zoLtE66oHXbBoVlHQrMKhSZZSg2HcWmo9h0FJwZ hWeWP/10+i35o446ajqTxgBdP/+pE6gnqDuoT7xhqHO8hbyVqKe8ubzJvNm86bz5cg96K3pL5s4c LEIlvyB/wf6G/A2LXxS/aH5h/cKL3xy/geI3mRYDLRpaXLQIabEKLWzaAEIbhjaX0EYU2rhCGz34 4VAXoYLBOCuVERo4JIcyRIguOkIdRUAfFCfzQgG2q6L3Py903/ugddkWhWUdissqFJhlKDQJxaaj 2CQUnRlFZ0bhGe69997pp6M7duxoFaA+VzKaQ4Hml9C8E5qPQvNUaPbSnKZ5LjT/qROoJ6g7vE2o X7xxqIO8lbylvLWox7zZvOly73kLeit6S+bOnFmEir9of1P+pv3C+IXzCyt+8f0Gid9Ev9FCC4IW Di0wWoi0YGlxC20E2jBCG0xoQwptYKENH/IB0SRCA0bjLKQIPeGu70z/eT0OyCFheDoIUFm2CHUU CUOgmFlGFHxDo5+7jOg+DoHWXVsUlU1QXFahwKxCoUkoNgnFpqPgzCg4Mw9OfeKpP5gUusSn5Hni aP4EmltCc05oLgrNUaG5S/NZaJ7T3Kc+oI6g3qAu8XahvvEGok7ylvLW8hbzVvOW89bzFvRW9JbM nbmQCNWftsuL+/bbb18XoU8//XSxzz77FNu2bVu9cLfccsv08XfcccfqxfUbQDfJb6T4zaZFQYuH FpnQgqSFSwtcaEPQxhHaaEIbU2gjB9r8EodEmwgVjMYZqI9Q4Xgc0qlvwgANC4jQa7707dWBS8O7 CwqJIVEAjeaD7seQaD11kUOyLYrLOhSYVSg0CYUmodh0FJwZBafzAM0oOjMKz5CD09HcEZpTgeab 0DwUmp9C85bmstAcp3lPXSDUEdQb3iTULdQ33kA5PiXHZ8itJbtdhIYHH3wQI1TPtf/++xeXX375 uounENX/InvkkUcwQoVulN9Mv+FCC4MWEC00WpS0eIUWOm0KoQ0ktOGENqjQhg50EIS2ERooHId0 5C1NIlQ4HocUIVoZowuMUEfDvSsKjlmheBo1Q9dzVmiddEXrtw0KyzoUl1UoMstQaDoKTULB6Sg4 M4rOjKIzUHRmFJ5CcybQfAo014TmoNDcFJqzQnOZ5rfQvKcuoH6gzqAe8WahrqH+GSM08Rfub8wj VHRB8tf94j388MODfBpKj2nDn2/etEhpMQ/t0GufXo3QE+98vdJJkyCcl2mEfvLV4nj93LsnX6v0 3ZmjEF/nnp32OHf79LoesOWGwSlCL/3sK3gA7y5oKO1q6H3v7iguFo3ipg+KoqFRZDm9ljbxKRSe gcIzUHwK7QuhtSF0f8SvsdB1EboWTQNUfMZ6fArNfOoQb58cn8Ebqi5AxVvNW85bz1vQW9FbMndm ZYRK/oX+xP6D/YX5C5f8xuK35T1C47fiKUIfeuih2ggVumF+U+nm+wIRWki06IQWKC1koYVPG0Ro QwltQKENG2iTCx0Mm697ttMnoYE+xRxCROgJd9Z9Ehr4U8wh5U9EM/pEdJGfhNahT6SGQp+cbTT0 SWMZ+vUbDd3HodD6a4s+zWyCPtWsQ59ulqFPOQl9yknok05Hn3Y6+sQzo089MwrPQOEZaL4EmkeB ZpjQ3BOak0JzVWgO07wWmu/UAULdQH1BHeKtQj1D3ZPjU7yfpC5Cc6MJdZy3nregt2LuSG/MVhEq /uT+w/3F+YvPb64sQvW9448/vti8efP0Z8TF0/f19cMPP3z63Pli+82gm+Y3VmgB0EKhBUULjxap 0IKmxS+0UYQ2ltBGFNq4gTa7+OHQN0IDhWQfayJUX8PwdByPQ6IIzSJE5xGhGrQ0tLuggBgaBdBo Puh+DI3WVRcek01RVDZBgVmGIrMMhSah2HQUm46CM6PgzCg6MwrP4HMlozkkNLcCzTuh+Sg0T4Xm r9C8prku1AHUC9QV1B/UKdQz3jy5h0KOT/EAlWivkBtNvOG88SQ3oDeiN6Q35twj9Kmnnpp+yqn4 dIpO/Yy4OPHb8kH/LuiXv/zl6cX0i+03ROjG+c2lRUCLhRaV0AKkhUqLWmgDCG0YoQ0mtCGFNnCg jS/5gBgqQsVDso91ERowPjOOxyFRfLp5Raijod4VhcasUUCNqtF1nDVaL13ROm6KorKJHJZPvfhH g3ryhe828pXnv1PriR2v97b9uddqPf7st9Grr/9J8Y3X/niqbXwKzR+heRVozgnNRaE5KjR3hea0 0Fyn+U+dINQV1B/eKNQx1DveRFIXoR6gXSLUG9Ab0RvSG3PuEepvUPwi+IXyCyl0wf2m0M3zGyy0 EGjB0MKiRSi0YGlhC20EoY0jtNGENmagzSx0AAQdEkNGaFgTjR2VRqhgfGYcj0Oi8MwiQt935k1T FJNdVUUoocHfB0XJolCUbXT0PheF7n8ftD7boqhsIodnuOYzzxX/8j2XFf/2XccXe7z7lKnf3Pes FfttLX5jv4unfn3/bSsOvK741ffdVOnfvP+/TO1x6Mal1/9rB900Fe8n/rmRyXUIdI2a+o+/e/sa h5312anLbvnKdCbS/BSat0LzWWie09wX6gTqCeoO6hPqGG8d6iHqJm8rby/qM284bzxvQG9Eb0hv zLlHqPib9AvhF0r8YtJF9xsjdAPpRtOCoIVDC4wWotDCpQUutCGENpB4gAYK0EARKhSgYRYRGtbF YwuVESoYnxnH45AoPoNHaEZh2UbbCHUUB0OgiBltDHQ/h0Drry0KyqYoPDNF6K+844Li3+3zocFF sB7/if9aHNfYH613/YqPNPbd9a5bceyb/vO136n0oatfK95z7ivFwR/7w8k/v77imp0+3Mhr602e N/xuY99etfnSb6zGKc1NoTkrNJeF5jjNe6E+oI6g3qAuoX6hzqEe8mairvL28jajfvPG8wb0RvSG 9MYcPELFX6S/CX+jfiHEL5ZfUKEL7zeHbiLdbFoUtHhokQktSFq8QgtdaM3N7yIAAEixSURBVGMI bSShCBUK0EARKhSgMssIFQzIBmojVDA+M47HIVGASlWEZhSZdRShVz/8remQpaHdBQXE0Ch+RvNB 92NotK668JBsi2KzzDwilGMz4+jsFZ5vRmcOz/oAfTM2J1Yj9KJJhGJglknBaeHJgUl2Rueqq1Zs vqQ6Qmm+Cs1jofktNO+pC4Q6gnqDuoT6xRtHvIOol7ypqLu8zbzdvO3E+88b0RvSG3NdhL7yyitr HuBP4D9A/EX4i/Q34m9U/GL4BRO/qH7hhW4Q3Ui64bQwaAHRQhNamLSAhRa80AYR2lBCERooQoUi NMw7QgNGZIVGESoYnxnH49C6Rqij6HQ5Qh0N9a4oNGaJ4mnUDF3PWaL10hWt4zYoLpvQHx66+o5n 5xChKTDLTEKyXXim4GwQnuXxuTM8pyYhKR+66rXi3ee8Uhw0iVCOzYyjs1d4vhmd8qHksIoIpbkq NIeF5rbQnKceEOoH6gzqEeoW6hvqIG8l6ilvLuoybzdvO28/6kNvyNyX6s3aCBV/Ev8h/kL8hfob EX+zfkHoovmFFb/4dJPoZtJNp8UhtJBowQktUFrIQgtfaKOIb6pAARooQoUCNCwiQgOGJGgcoYLx mXE4Dm2ICM0oQKUqQgkN/j4oShaBYmxXQe93Eej+90HrswuKyib8T7DPJUIn0ViFI5Ok4LTwpOgM ldGZwjN/4vnByghNwdk5PFNw1oRnVhahNE+F5q/QvBaa70ItQN1AfSHUI9Qt1DfeQNRJ1FPeXN5k 1G3edt5+3obejt6Wc4tQ8Tfjb9gviPhFo4vrN0DoRtENpRtPC4QWk9DCowUqtKCFNoDQhpG8sTIK 0EARKhSgYVERKhiSplWECsZnxuE4tCEj1HWNUEdxMBQKmdFyo/s4FFp/XVBQNuHR6eYRoRyUTXF0 1oVnqPq0M0enWx+hKTgtPDkySQpOC08KTvfBK781idA/XBehNEeF5q7QnBaa60IdQL0g1BfUIdQr 1DXUP9RJ3lLUW95k3mziXeft523o7ehtObMIFX+x/mb8DYtfFL9wQheYbgTdMLqxtABoodCCosUn tFCFFjZtgkAbR3J8ZhSggSI0UISGRURowJh8U+sIFYzPjMNxaLOK0NA3QgkFxCxQBI1mi+7DLNC6 6oqCsimKzTLLGaEpOjuE57HXdQvPbCVCX55E6B9M/nltdPYKz0lMtgnPFd+aBOg3pzxCaX4KzdtA c5rmudD8F+oF6grqD+oU8Z6h7qE+oo7y1qIe82bzpqPu8zb0dvS2HCxCxV+Mv2B/Q+Jv2i+M+MWj i0w3w2+Y0I2lRSC0YGhh0QIUWrBCC5w2QqANJB6ggQI0UIAGClBZZIQGCspOESoYnxmH49DmEaE+ fGmY90WxMWsUUiNG12/WaJ305Wu5LQrMOvqL4ucSoZMw7Iojk3xnisKTIpO9GZsTH5zE3zRCL5xE 6CQmm4dnCs7O4fmtNaYBesWKwy7eGaE0N4XmbKD5THNcaO4LdQL1hFB7UKdQz1D3UB95Q1FneYtR r3nTefNRF3o7els2jlDxJ/Mf5i/IX7D4m/I3Ln5x/AIKXWi6IXTj6AbTQqAFQ4tLaCEKLVyhhU4b ItBGEopQoQANFKBhWSM05JjsHKGC8Zmtj8ahLSJCCQ38IVCcLArF2UZF729R6L4PgdZpWxSVTfh/ rWgeEcrROISV8FyNz0lI9gnPVZOY/OCV3y7edfbLxfsmEcqxmaXgtPDkyCRrw3PqykmATsLzmOTQ mgil+RpoLgvNcJr3Qn0g1BPUHdQn1DHUO9RF1E/eWNRh3mrUc9583oTejNSVpRHa5dNQf0HiL9rf mPib9wskfhHpYtNNoZtHN1loQdDCoQUmtCCFFjAtdKGNEWhDCUVooAgNFKFhWSM0KCR7RahgfGYc j0NZlgh1FAVDo6AZLSe6f0OjddgWBWVTHp7ZxorQndG5Gp+TkGwXnhyd/mnnMbURytHZKzwn0Rly eGZVEUpzNdA8FprfNOeFukCoI6g3qEuEOoZ6h7rI24n6yhuMOs1bjnrPm9Cb0ZsyWnOwCBV/Uf7C 6c35BRC/SH4hhS443Ri6gXSjaVEILSBaaEILU2gh04IX2iDBN1WgAA0UoIECNCxzhErvCBWMz4wD cgizjtCrHvomDusuKBxmhUJoNFt0H2aF1lcXFJNB/530008/ffqfet6yZcu671NslplPhK6Px16u XYlPjkySgtPCkwOTIjQFZ+fwTMEJ4ak/eCQUn6EsQmmeBprDQnOb5nugJqB+oM4Q6hLqF+oc6iHq Jm8r6i/qNG85bz3qQW9Gb8qFRKj4m6OL4BdK6ILShacbRDeSbjgtDFpEQguOFqbQYhZa+EIbJeSN lVGABgrQQAEadvkIFYxPxyHZxzwi1IcvDfM+KDLmhWJqtBZdt3mh9dKHr+Uyf/EXf1EceOCBxRe/ +MVpiEaEUmA2cdXtz8w8Qtf+FUn9cGQSjs6q8MxWIvSlSYR+ffLP68OTI5Ok4LTwjOjMKDyPueLV VYde/AfrIpTmaKD5KzSvhea7UA9QNwh1BvUIdQv1DXWQeC9RV1F/eaNRx3nrUQ96M3pTto5Q8Sf1 H+ovTPzF+xsUuhB+sfyCCl14ukl0M+mmCy0QWkhCC48WqNCCFtoAQhsm5Ph0FKFCAZpRhMqyRugR v/etaYQed8drxYl3vt7PXU18Z1B7nLt9el3fe/onB6cIvfSzr+B6y2jdjUbLgNZrnZdeeqnYd999 i+3bt0/P4hNPPLE4+eST8bFNXXLz49MI3WOvDwzu1w64dhpMHGdDs9BLsVcWfGzlT6Efve3VlQi9 YBKhk+fvFZ6T523yOsrCc2ryeuTQj62NUJqfgdad0DoQmuviDSDUC0J9QR0i1C3UN9RB1EveVNRd 1GfecNR53oLeitSTtRFKIepP7D9Y/MX5GxB/k3Qx/IIJXVi6AXSj6IbSjRdaKLSgaPEJLVShhS20 EQJtHvH4zChCAwVoWHSEnqRAs0DU17J4bP4kND+H4CeedfATUMefanaxiE9Cm6BPoYZEn5qNlhvd xyHROmzrueeeK/bee+/p2ahPMP/yL/+yOO2006afhPqnm+Sv//qv0Xw+CX29s3WfaNa5egV9usnS p5zp085jrvhW8a6zXioOnEQoh2aWgrNleApGZwpP+cCb3p8i1GdmRrNWaD4LzXOh+S/UC9QV1B9C vUJdQ/1DnUQ9Rd3lbUb95o1HHeit6C2ZO7NXhIr/cH+B9Cb8jYpfDLpodHHpJtDNErqxtABosQgt LFqAQgtWaIELbYhAm0goQAMFaKAADUNGaISjh2WguGyqKkIDxmYVDE/HUdnWskYooXCYFYqg0WzR fZgVWl9d5IBUgOrf/6zy0EMPrfk1QtHp5hGh/Nvl1TgYh7I+Ov3Tzg9MIvSdlRGagtPCk0KTlX/i GdHp6iKU5muguSw0x4XmvlAnUE8I9Qd1CvWMUP9QJ1FPeXNRl1G/eeN5A4p3ordk7sxWESr+5P7D /QUKvRF/s35BhC4cXWC6EXTD6ObSIhBaMEILjBai0MIVWuhCGyPQhgoUoUIBGihAM4rQHI0UlaFr WLbRJEIDBmcZDE/HYdnGPCLUhy4N8z4oMuaBQmrE6PrNA62XPnwt16FPQiky6yxbhHI09pWCsyI8 s4jQA7Z+LX2do7NteIayTzurVEUozdVA81hofgvNe6E+oI4Q6g6hTqGeoe6hPqKOot7yJhPvNuo7 b0BvROrI3JmVESr+i/0H+AsQf5H+RoTeMF0YuoB+kelmCN04usG0EIQWDi0yoQUptICFFrzQBgm+ qTKK0EARmukx+tl6XXov+RoccvVT01g6/OZvzCUum2oToRmGp8PwdByXTS0iQh0N+yFQlCwDirSN gt7PMqD7PwRar21RVDalP2Ev84lQ+y1zg5E4C5OQLItOd/S2b04i9MVJhL4y+ec+4bkzOlfjcxKT bcLzA9u+ser9H/s6RijN0+AzOPjMDjTnxZsgUEfkGZtRn1DHUO+It5F4P1FnUY9Rt3nbUf95I3pD emP2jlDxF+EvVPzN0Jumi+MXUOhC0w2hmyd0o2lBCC0gWmhCC1NoIQst/ECbRfLGchGd+v/1WP0M /Xy9Nnpf+p5+ln4NfRoqh137zOonoRR1i9I1QgPGZ4bh6Tgwm1iGCCUUBEOikBktN7qPQ6J12AXF ZBsRntk8IpQ/nXxtNfiWy0ps6g8mrUboJCa7ftq56ooVHJlkZ3iuunwSoRetj1CfocFnbuazOuS5 nnkLBG8H8VkcqEuoX4R6h7qI+ok6i3rMm426ztuP+tAb0huzdYSK/xB/IeIv1t+Q0BunC0QXki44 3Ri6gXSzhRaG0EKiBSe0QIUWtNAGCLRh4rn0s+h16uvx3Pp1EaZCn4IGClDZVSM0YIBmGJ8ZR2ad ZY3QMhQPs0IhNJqNuObPf+ptxVev/bHi6dEaX7z8LcXnL/5HxVVbfrk49LB3Y0x2VRahHH+LshKd a0xC8ujLJxF65ovFe89/ZRKRFJqOozP/F484NrP10RmOftMhFqF5hmZ5zrqYn85nesjzP/NmCD63 hXpEqF+oc6iHqJuor6jDqNe86aj7vA2pH70xayNU/En8B9GL8Rcs/qbozdNFootJF51ujtCNpBsu tEBoIQktPKGFKrSwJb6v5yz7+fG82iTaRPG/8srk+HQUoWF3i9AMI1QwPjMOzSqzjtArH3x1zac8 FJZ95XBcBIqq0Qq6XlW+csPbit/b8uPFM5/4+8WLt/588dJtvzSa2P7Jtxaf//hbigcv/z+KR678 h8UTV/+v0zh94LJ/XJx3/L8u9tn/EAzMJnZGaEnsLZNJSOZPO4+aROg+lRGagrMiPKvjMwVnRXhm OUI9PINHZ0bzWWJGO5/9IXdCRvOdOkSoW6hvhHqIuon6ijrMW416jrrP29DbkfpyXYS+/PLL6x7k T+Q/SOgF+Yv2NyZ0AXRhHnjgAfxTjnvttVfxwgsvTC8oXXi6QXQzhW48LRKhBSW0ADM9hp5P8q/X gqZNIbSRAgVooAANFKBhd43QMI8QnXeEOorKIVHoLAuKtmVFr38WFKFnHvHTxUXH/vz0E9FnPvHj GGW7m4jQL3z8/1xHYfrYlT9ePHXt35teswhTCk4SEcoRV6/db4EPiyM0BaeFZ47OrE14UnS6ugil +SoUnsHDM+Q5n+U+yKgBhDqEekWob6iDPD7F41Oov6jTvOWo96gLvR29LdWbnSJU/IfRi/IXLvQG 6UIoQjdt2lQ8/PDDqxeMLizdALpRdEOFFgAtFKlbTCEepwVJi5cWeqANIrShAgVooAANFKDZ7hqh 2axCdNERWoaCcmgUQaPFigg9+5hfmvr0OT85DasdN/8kxtnuoipCicL08av+QfH0dT+2GqbHffC3 1sTnv33HB6f6RugirUToC5MIfXnyz+ujsyo8pTI8JzHZJjxX/OHUIRd9rTRCaa4KzeFA81s8PEPM fkedINQf1ClCXUP9Q50kOT6Fuov6jDqOes+bkLrR27JxhIo/mf9AoRfmL57eJF2MoSNU6MbqptPi KEMLTGhBCi1goQUfaKOIb6qMAjSjCA0UoGF3j9BsyBBd1gglFJKzRJE0mo245h6hok9FH7vi7xe7 82/Rt41QR7+Nr3+/9P2HvitFaIq4DeKoSfitRugkKuuiM1sXnZ3CcyU617hsEqEXcoTSPBWav4Hm ttCcF+oCoY4Qj89AnUI9I9Q/1Ek5PgN1F/WZNxx1HvWgNyN1ZWmELsunoX7RLrjggulvyd9+++1r LjDdCLphohsaNzsWQtmCyAsmo4UmtDCFFrLQwg+0YULeXBnFZ0YBGihAZYxQcM8kSDFAA4dnNo8I zX/Kl+KyrxyOi0Jhtbuj61SHIjTEp6Kj4f325ovXfHq4URx12SRCz3ih2P+jL2Norlf+iSdHJuHw lKPedLBFKM3PQHM30LwWmu9CPSDUD0K9IR6fQh0j1D25i4J3lFBvUZdRv1HneQtSL3pTRmsOGqHi L47eBL1Zuih+4fS44447rti8efP0Z+ULTTeEbpzQjaYFIbSAhBac0AIVWtBCGyDQxgkeoBkFaKAA zaoidFn+jlBZaITKJESrY5TjM8w7QgmF5RAocpYVRdys7dixY82/567/mk/+Pr3OWauK0E+c/tPT YPofz/1S8f+98i+6+1ofvzJfX1/xN8/8YvG9L/+z4s++/E9b+KlGNp9w1jSYONqW25GTCH1HbYS+ OuXR2Ss834zOHJ5ZjlCam4HmbaA5LTTXhTpAqBuEOkOoS6hfhHon91DmHSXUW95kQv3mjecNKNSL 3pStI1Toif2H+wsUeiP0huNi6PuKzVtvvXX1oun7+lr+g0kZ3RShG0g3W2hhCC0koYUntFCFFnag zSC0gQIFaKAAzShAQ1WECkbZnC08QuXNEC0PUg5QWYYIJRSVQ6IA2l3Ff26S/pOS89YkQv/u2V9c H5ZDwwBtw2Kyp795ehKhX5pE6JcmcekwQJvbGaErsbaRHDkJvnec8fwkQl/C74f24ZmCs2F4Zk0i lOZsoNksNM+F5r9QLwj1hVCPCPULdY54E0kOz5DDM3iLiTebUN95A1InUk/WRiiFKD25vwChF0pv yN80XRyhC0kXnG4M3UShGy60QIQWlNACFFqwQgs80KYItJmEAjSjAA0UoFlZhAYMszlZiggVC9Gs KkSXNUIJxeQsUSTtipYhQuOaP/HJtzaI0F/gcFwEDNCmODhJZYQ2BQEqqxG6bRJsG8yRH59E6JZJ hJ43iVD4fq9PO1N4Kiyb+YOpgy98pTRCaa4GmseB5rjQ3BfqBKGuEOoQoW4R6hzqIeom6ivxFhPv Neo66j/qRG/J3JmtIlT8yelF0Iv1NyT0xukC0cUUuvB0g+hGCt14oYUitLCEFqLQwhVa6IE2SPBN lVGABgrQjAI0VEVowDibsaWJUIEAXWt9jM46Qq944BvT/352oLjsK4fjIlBUbSSzjFC6XlWaR+gv dzSJv3nDAG1joAgtERG69k+KbwxHTCJ070mE7jeJ0Px1jkzC0dklPFd9fBKhF3CE0jwNNIcDzW+h eS/UB0I9IdQfQr0i1DfUQULNRH1FHUa9Rl1H/eeNSB2ZO7MyQsV/sf8AoRdCL5jeGF0AulB0QenC C90ouqFCC0BowQgtMKEFKbSAAy16oY0S8sZyFKCB4jOjAJUmESoYZzO0VBEqGJ/ZH61aRIQSCkv3 xhtvFAceeODqv78o+psr6LEZhc6yoXibp6oIpdc7S7OP0DYmAThPGKAr/ubpX5hE6M9MovEtJTgw m9gZod+oocCjry/OEZPg23vLjkmEvrj6tXVhuarke5OQbBeeFp1vhmc4cuIgiFCao4Hmb6CZLTTn hbogUEtQdwh1ilDXUP8I9RJ1FfUXdRr1HHUf9aE3pDdm6wgV/yH0YuhF05uji0AXS+jC0g2gmyV0 Y4UWgtDCEVpkQgtTaCEHWvxCGybk8CQUoYECNOsaoQEDbSB6/hPvfL044TOvTV7PN6cR+uFPv1oc e+uSuK3ON1f95jmPT6/re066ZnCK0NNufKx47LF+tmzZUhx88MHTvyYtvvbII48UxxxzzLqvbwT3 3XdfccUVVyzUhRdeWLz97W9fE/Vh3333LS677DL8dbP2ya3/oTjtiP+7OOWwn13n6pN+Yhqh//2J /6v4u2fe1s6zs/TzM/dXT7y1+N7DP1N8/+Gf7Okt6xx2wpnTYDrsopc2nPdf8FKx9+k7iv90zgvF kZd+fRqBOSrrHNVYCk4LT0Wn8wil+Rlo7grN6UDzXagHAjUE9YZQnwj1jFD/UCdRTwn1F3Ua9Rx1 n7ch9aM3Zm2Eij+J/yChF0QvnN4gXQi6YHRxhW4E3TChGyy0IIQWkNBiE1qgQgs60EYItHmCx2dG ARooPrM+ERooIpuK51BsHn/Ht4uPKNws+A6/+dXli1DB+HTLH6H33ntvsffeexdXX331uu/dcsst 02ii7y0rBeh5551XfPSjHy0uueSSkdt68vT6nH7MbwwboV1hdHbBcdnUaoQ+NAnJJjBAWUTooZOo 22gOmUToXpMI3ffsF9Z977CPvVxsvviV4gjFKYZlHY7OsvDMIkLf/qHbcGYGmrVC8znQXBfqAKFu CNQa1CVCHSPUPdRHQj1F3UV9Rh1HvUdd6O1IfdkpQoV+oL8oevFCb5QuCF04usBCN4RunNCNFloY tIACLTyhhSq0sANtiECbKFCABgrQjAI06xOhgSIzi8dVBSdZ2ggVDM+1lj1Cq0Jzo0VoBOjWrVvH CC2z9YTi3LNOnF6nLR/+rcVHaBsYn20NFKFN7OIRWkZxymGagrNDeK74+tRBF7xcGaE0XwPN5UDz XGj+C/VCoM6gHhHqF6HeoS4S6ijqLeoyoYbz1qMepG6kvlwXoS+99BI+0J+Mfqi/MKE3QG+ULgpd PKELTTdF6AYK3XChBSK0mIQWoNCCDbTIhTZGoA2VUYQGCtBA8Zn1jVAXv52u4MSAa2ipI1QgPLON 8knoueeeu+57l19+efE7v/M7xac//el131s2d9xxxzSsLr744uKiiy4aI7TMNEInzl75RDSH6NJH aBsYoOX+6omfm0ToT0/i8SfWx2RPhx3/ZoRe+OJ6F8HXlsghW18s9jrtuWLfs57H7zel39o/4pKv TQOyXXTKSnhmB20tj1Caq4HmsdD8DjT3hTohUFtQhwRqF+ocoS6ifhLqLeoy6jfqPOpBb0bqSvVm 5wgV+sH0AumN0BumC0MXUOiC040RupF0w4UWSaBFJbQQhRZuoAUvtEGCbypHARooQDMKUOkToW0/ 3WxC0Xnk5LUoQBWiS23yOsv8xtkrEfrbx14zqK1H7Vc8f+gkGo76hd7uOORXpp94bt3v11a/dvUB /2/xO3v+VnHX+//Fmscuo7uPe/s0qC45+5Ti0rNOKi465/TpP59//vkjc9H5pxbnnfWR4twzj5vG qK7TWSfsW5x68P9WXHP8/zKN0L957H8v/seTXfzDjeWpnf72yX9cfP9L/3wSoj9V/OmD/6Shn2gk IvSdZ+7YsN6xZUfxnkmIHnj+C8X7J1E5hPjU9PBpnNaE56U76VPW95VEKM3TQHNYaG4HmvdCfRCo KYQ6RKhbqG+Eeoi6SaizqMeo28T7jjqQepG6sjRCF/VpqNAFogtJF13oBgndULrxQgsl0OISWpBC CzjQwg+0WULeXI4CNKMAzbpEaP50cxbBecgNK/T/0+OWGnwKKkN+Enr5h1bC88ljfrn48nH/fjRx 8+mbVz4BnYTnJeecVlx07hkrQUqfAo6KSy6+qLjk/I8U5519/PS35eMT0bNOPiR9EvrPi7975q1z 9ral8LdffVvxV9t/biVIH3xL8f1JRK58OtrVzk9CKcQ2moO3vli897wXVsP0P53z/PRr9Nh2FLcr 9Onw4Ze8si48M49Qmp+B5m6geR1ozgt1gVBHBOoPoV6hrhHqIKFuor6iDhPqNuo76kBvRerJaM1e ESr0AuiF0huiN04XSeiC0oUXulF0U4UWgNCCCbTQhBZmoMUstAECbZzg8ekoQAPFZ0YRevjN31gX nBhdPWz44Cwzgwg97iMnT8PzmSN+DiNsd3bdGR/EANVvyWOAjVa8GaLT35ZPIfrJrb+9EqHbJxH6 9CQMm8KonBeOySGsDdKfXAnSMhigK3ZG6M7Q2pUcvPWFSYwqSp+b0v9Pj2vkgp0OSRSq+Q9C5Qil uRlo3gaa00JzPVAPCPVDoO4Q6hShrqH+EeolobaiDqNeo66j/qNOpJ6sjdA+IUovlt6U0AWgC0UX VOgGCN0wurFCCyHQ4hFacEILNNDCFtoIgTZQRgEaKEAzClDR9/TcujYHbts+jaVDb/gDDqyO9Cmn fstav62u4Fzaf7dzKANEqMLz0cN/oXhu808Xjx67BwbY7m7bWcdPw+nCc8+a2nru2dN/1h9K0l+P NKpxwUeLCz56WnHeOVtWnHtmcdWFh3eL0K4wKueFw7OMgvSNx362+P7D/6w+SE1EaI6qXd1B579Q 7Hv2juLtpz5b7HPGc8X+5z6Pj+vm+cnz7ViNUHWAz0uhORtoPgvN8+ANEKgbArWGeJsE6hlvnkCd JNRV1F/UaUJd5+0n3ofUkbkzZxKhQi+Y3hhdBKELRhdW6EYI3Ti6wUILItAiElp4Qgs10AIPtCkC baZAAZp5fAZ9T79eP1vX4MUXXyyeeOKJNX+wY79LH+0dofnf49SnnB/4PX7cbqFlhG4+fmtx75G/ Pg3P3//wr2N4jVZ84YRN0+C87qptxadvuLa45YbrixtvvHH6B6huvfXWDee2225bnN/bVtz0ySuL m264qrjt+mPnG6FdYVTO2tog/cEjP1t876GfmgQph2e2O0aoU5QqRBWke5/+XPHuM3cUB3y0TZjq sTvtf85KhO559C1r5photqlDaL76LM5ojgea/0K9EKgxxJskUMcINQ/1kVBPUXcJdZq3nFD3UR9S R+bOrIxQoSegH0QviF44vUG6EHTRhC6w0A2hGyd0o4UWRqDFJLQAhRZsoIUeaIMEj8/Mw5Pocfr5 eq8KTt+kpG2EenDuUr+tPpSaCF0Nz0PfUjz+oX+FwTVaLyL0xuuuKu659eZpTN1zzz3FZz/72V3S 5z73udn57J3F5+68prj909cX99+8eWNEaB8YmN391fY3Px196J9igMrOCF0bUru7g85f+URznzOe nYTps8W+Zz83/Ro9dmrrioMn9quIUKIwVeeoIWge++zOaO4LdUKgthBvkUD9ItQ73kSBOkqou6jP qOOo96gLqR+9MZciQoUuCF04oQstdGPoBgrdcKEFEmhRCS1EoYUbaMEHCtDMAzSL2NTz6P0oNnVf aQM2URWh9AeHdvnfVh+IR2iE5/gHjLqLCP3kdddOA/Tuu++e/h2hFHC7E4zMJt4M0ftvPixF6M91 MAmzXRUEaPa3X/Ug/SerDjv+jGkwKZ5G1d730eeL95z1XLHplGeKvU57dvr/0+PaRihRmOo/qavW oNktNO+F+kCoJ4I3SKBuEeocoSbydgrUW9RlQh1HvUddSP3ojVkboUJPRD+QXhi9AXqjQheGLqDQ BacbI3QjhW680EIJtMCEFmSgRRw8QDMK0BDRqf9fz6PXTb+d3leOUP02umJzt/n3OGcoIjT+ZLv+ SiEKq1FzEaHXX3/9aoCOEdoMRqjcd3vxpU+/v2eEdjUJuV3I3z41CdLHV4L0+w//1BihPSlM33XG zjBVgA4RoWU0WzVjacYLdYFQRwRvj0C9ItQ3Qj0k1E7UWdRjQv1GnUc9SN1IfbkuQnWR/UH0ZEI/ mF4gvRF6w3RxhC4kXXChGyR0Q4UWgNCCCbTQhBZm8PjMKEBDDk/9sx6v19f0t9P7OvrqR6chOhrW MRd9pnjud395NLAbzz22+NjHPjYa0JWXnl584do9iqdu+JnRgO6/+v8p3nvsZdNgGg1r/xNvw3k2 tAhTdQo1AfVD8OYI1ClCXSPUQULd5G0VqMeo26jvhFqQmtHbUteuUYQKPSH9YHqB9GboTQtdIKEL Shde6EYJ3VihhSC0cAItOKEADR6fmcenvqbXEDeJNsBoNBqNRqPloTB99tlnp41E7SDeGoH6RKhn hPpHqJeoq4Q6TKjbqO+oA70VhbqyNEKXMUTpogrdAKEbJnSDhRaE0AIKFKGBIlQ8PoN+lq770L+d PhqNRqPRaLE021944YV1jRGoS4Q6Rqh7hDpJqKuov4R6jbqO+o86kXoyWnMmESr0gumN0QUQumB0 YYVuhNCNE7rRQgtDKEADBWgoC1A9p64xLdTRaDQajUa7vu3btxfPPPPMtI+oSahfhHpHqI+Eeoq6 S6jTvOUCtR91IvVkbYQK/UL6AfRC6AXTmxO6EEIXji6w0A0RuoFCN1w8QDOKUKH4zLGp60oLcDQa jUaj0ShEmKodqF2oc4S6SKijqLeE+kyo56j7qA+pI3NnDhKhQi+IXji9QaELQhdP6EIL3RihGykU oeLxmXmAenCOv50+Go1Go9FoSIrTHTt2TNvIG4d6SKifxFtLqMuEOo56j7pQqCNzZ1ZGqNAT0A+i FyX0BuiN0kXR8+63337FnnvuuUr/9RNdRLrg4jcnUIQKRah4eNInnLRQRqPRaDQajWZNYfr0009P W8lbyMMzUGsJdRn1G3We5B4M1I/emLURKvRE9APphdGbEHrD+YLov/V82GGHTX9+XDw95iMf+cj0 63oNftEDRahQhIrHp4Jz/O300Wg0Go1GG4nC9Mknnyyef/75NfEpubEybzGhbhPqPOpBb0bJXRkG jVChF0hvROiN64LoIu6zzz7Fpz71qdWLFBfxC1/4wiCfiF522WVT27ZtK6688spVF1xwwfQvvB6N RqPRaDTaFeiDvYsvvri49NJLV918883YYdRrQn1HHSjUjdSX6yJUf4UAPZCekH4wvUihN0RvXu6/ //5paOYIjRD1CG0bovHco9FoNBqNRru7m266aU2DUa9R1wl1IPUidaV6s3GECj0xvQB6oUJvLL/x EJ+EqtRzhIou1qZNm4oHHnhgNULbhqjk3453+bfns/h3RIn/gaUs/8l5F399E9G/ElDF/4J7l/9r SyT+059V9N+ir/PHf/zHjfzJn/xJI3/6p3/a2Pe+971Wvv/977fyZ3/2Z538+Z//eS8/+MEPBvHD H/5wZt54442l96Mf/WiXQ+9z2dB6GQqt8y5o37VB+74JOmfq0FlWhs7JMnT+EjrPCc0HR3PG0bzK aN5lNC8zmreB5nSg+R6oCwL1RKAGEeoWoc6R3EOZN1Sg9hLqNOo5of6jTqSelNII7ftpqNALpjcn dCE+//nPTws9h+iNN96IARroxgjdSKEbH2ixCC2wQAsz0IIOtBEy2kQZbcKMNnFGh4Cjw8TRoUTo kCN0aFahA7kMHfR1aKA0RUOsDRqiXdFgHxqFyWjXQvd9aLR+u6J91Qbt66boPKlD51YZOg+r0HlL 6PwmNA8czRVH8ymj+ZbRfMxovmY0nwPN9UA9EKgjhLojUK8I9Y1QD0mOzoyaS6jPhHqOuk+oE6kn ozVLI3QZQlToAgpdcKEbJHRDhRZAoIUjtNACLdCMFnegTRFoQ2W0IR1t6owOBUeHC6GDytGhV4YO 0jJ0SFehAVCHBk0bNOTaoCHbF0XALFHYjJYD3a9ZovXYF+2bNmjftkHnRh06n6rQ+VeGztUydF47 OvcJzRFH8yijeeZoLmY0VwPN40BzPKMOCNQPQr0RqFOEukaog4S6SaizhLpMqOOo94T6kDoyd2br CBX6QfSChN4AvVGhC0MXMdCFF7pRQjc20GIQWkCBFl2gxRpooQfaIBltrow2Z0Yb3NEh4eiwIXR4 EToICR2uVejgrkKDoQkaQm3QEGyLBvEQKBrmiSJp1A1d33mi9TUE2g9t0b5sg86FJugcqkLnXBU6 Rwmdy4TOeUJzw9H8cTTHMpqDGc3RjOZwoPmd0ewX6oVAnRGoTYR6Rqh/hHopUGdRjwn1G3WeUBdS P0ruzMoIFXoC+mFCL4zehNAbFrpAdCED3QChGyZ0gwMtCqGFFGgBBlq0gRZ8Rpsl0EZztFkz2uyO Dg1Hhw+hw4zQ4ViGDtwqdKBXoYHRBA2otmhIdkEDe0gUGsuCImxXQe93WdA6GRKt8y5o37VF+78J Om+q0HlWhc7LMnQOEzrXCc0JR/PG0dzKaO45mp+B5m5GczvQvA/UCYH6QqhHAnWMUPcIdVKgvqIO E+o2oc6jHhTqR2/M2ggVeiL6gfTihN6I0BsXulB0QQPdCKEbJ3SjAy0QoQUVaCEGWsAZLf5AGyej Tedo82a0+R0dIo4OI0KHG6HDsgwdwnXooK9Dw6QJGl5t0RDtigb7LFCgjHYNdL9ngdZvV7Sv2qL9 3RSdKVXo3KpD52MZOncJneOE5oKj+eJoTjmadRnNy4zmbaA5ndGcD9QHgbpCqEMC9YtQ7wj1UaCu Emow6jWhvhPqQepG6stGESr0hPSD6QUKvSGhC0AXSujCBrohQjdQ6IYHWiiBFpfQgsxoMQfaCBlt oow2YUab2NFh4OhQcXQ4ETrsytABWoYO5jo0AOrQkGmKhltbNGT7ogiYNQqc0WLRfZo1Wo990b5p i/ZvU3Ru1KHzqQ6dg2XofC1D5zahOeBonjiaS47mW0bzMaP5mtF8DjTXM+oCoY4I1B+BukWoc4S6 KFBPCfUXdZpQ1wl1IPWiUFuui1D9Lfv0QHpCoRdAL1TojQldCLpgQhc40I0RupFCNz7Qggm00AIt zkALO6NNEWhDZbQhHW1qR4eDo0PG0WFVhg5AQodqFTqw69BgqEMDqA0afl3QIB4CRcMiUDCNmqHr uQi0voZA+6EL2p9t0PlQh86hOnTeVaHzlND5XIbOfUfzw9EccjTPHM3FjOZqoHmc0TwP1AGB+iFQ dwTqFaG+EeqhQB0l1F3UZ0I9J9R/1IlCXanebByhQk9ML0LoBQu9QboYQhdO6EIHukFCN1RoAQRa OIEWXKCFGmiBZ7RBMtpcGW1OR5vc0WHh6NBxdHiVoUOxDB20Veggr0MDowkaTm3QcOyKBvaQKDSW DUXZIuk/qZf/omj9dXT0OELvb9nQOhkSrfOuaP+1Qfu/CTpvmqCzrQydm2XoPC5D57yjeeFo7jia X47mYEZzNKM5nNEcDzT/A3VDoN4I1ClCXSPUQYH6Sai3hPqMOk6o+4Q6kXpSSiN0dwtRocUQaBEJ LbyMFm2gxZ7RZslos2W0WR1tekeHh6NDiNCBRuiQLEOHbxU62JugQdIEDa62aHj2RcN9FihSRisi RhWh9P1lRfd5Fmjd9kX7qy3a503QudIEnWNV6JwsQ+dvGTrTHc0HQrMmo3nlaO5lNDczmrsZze2M Zn6gXhDqi0BdEqhnhPonUDcJdZZQl1G/CfWeUB9SR0q0ZmmEDhGi9OIDvWG6MEIXUujCB7phQjc4 0MIItKACLcJAizfQws9o42S08RxtXkeHQEaHCKFDidABV4YOzjJ0IFehA78JGjBN0VBri4brUCgG Zo1CZ3ewjBFK92ceaC0OgfZPW7SPm6Lzowk6r6rQeViGztkydH4TmgeE5oujGeVo1mU0LzOatxnN 60BzPlAfBOqKQD0SqGOEuidQLwn1lVCPCbWbUO9RFwo1ZO7MyggVegL6QUIvjN6A0BsWukBCF1To BgS6cUI3OtACCbSwAi3IQAs5o02Q0SbKaBNmtIkdHQaEDhZHhxShQ68MHaZV6KCuQoOgKRo+TdHQ 64IG8JAoHBaBwmmjmleE0nVcBFpXQ6J90QXt06bofGiKzqUqdO5VoXO1DJ3XhM5/QrPE0VxyNN8y mo8ZzdeM5nNG8z1QFwTqiUAdEqhfhHonUCcJdZVQhwl1m1DnUQ8K9aM3ZqcIFfqBQi+Q3ojQGxe6 UEIXVuhGBLqBgW660EIJtMAyWpyBFnWgDeFoU2W0KTPa1I4OB0IHjaNDi9AhWIUO2Cp0gNehIdEE DaY2aCh2RYN6Fig4lhmF2iI0iVB6/cuM1scs0HrvivZhG3QONEHnTh0636rQ+VmFzmdC572juUFo DjmaZxnNQ0czNaO5HGieZ9QCgToiUH8I9UqgzgnUR0I9JdRfQr0m1HfUgULdKN6YtREq9ERCP5he pNAbEroAQhdM6AIL3ZBANzLQAgi0aAIttkCLNNACz2hzZLS5Mtqgjja5o8OC0OFD6CAjdDBWoYO3 Ch3sdWiANEVDqy0anH3QUJ8lipXdlc6jd77zndP4dEceeeR0TdOvWxZ0f2eJ1m8ftL/aon3eFJ0v degcq+JnZB06hwmd64TmBKG542h+OZqDGc3RjOZwRnM80PwP1A0ZNYdQpwRvm4y6SKijhLpLqNOE uk6oA6kXhfpyXYTu2LEDH0hPKPQC6IUKvTGhCyF04YQudKCbI3RDAy2EQIsn0MILtGAzWuwZbZaM NltGm9XRpnd0eBA6jAgdbmXowCxDh3EdOvDr0GBpg4ZaWzRch0ARMC8UPKP5ovsyL7Qeh0D7py3a x23QOVKHzqs6dC5WoTOX0DlOaC4QmjOO5pWjuZfR3HQ0ewPN7YzmfqBeCNQZgfokUNcIdVCgfhLq LaE+E+o5of6jThTqSmkcoUJPTC9C6AULvUGhCyJ0AYUueKAbFejmCi2IQAsp0ALMaPEGWvgZbRpH my+jzevoEHB0mBA6nAgddmXoAK1CB3QdGgRN0NBpg4ZeFzSAh0LRsGgUUaO16LotGq2vodC+6IL2 aRt0TjRB51IdOv+q0Plahs5tQnOA0FxxNJ8czbmM5qSjeZvRvA405zPqhEB9EahLhDomUP8E6iah zhLqMqGOE+o+oU6knhT1Jkbo7hqiQotDaEFltBgDLeSMNkFGmyijjehoMzs6FAgdMI4OqzJ0AJah g7UKHdx1aEA0QQOpLRqKXdGgHhqFxkZDAbco9Po2GlonQ6P13hXtw7boPGiCzp86dM5VoXO0DJ3P ZejcJzRDHM0jR3PN0XzMaL5mNJ8zmu+BuiCjrgjUIkL9Eqh7AvWSUF8J9ZhQvwn1nlAfCrVktGZp hJaFKP0AoRck9AaE3rDQBRK6oIFugtCNC3TDAy2SQIsr0MLMaFEH2hAZbShHm9LR5nZ0SBA6cAgd YIQOxTJ02NahA70ODY6maFh1QYOzDxrqs0KRMtrY6D7PCq3fPmh/dUH7vSk6Z+rQeVaHzs0ydB4T Ot8JzQtC88fRHHM0Dx3N1YzmcqB5nlEPBOqIQP0RqFsC9Y5QHwXqKqEOE+o2oc4T6kKhjsydWRmh Qk9AP0johQm9EaE3LnShhC5soBsidAMD3fhACybQQstokQZa4Bltjow2l6NN6mizOzo0CB1ChA61 MnRQlqEDuA4d9E3QUGmKhlkXNFyHQBEwDxQ6o8Wg+zMPtB6HQPunC9rPTdE50gSdW3XofCxD524Z Os8JzQdC88bR3HI0/xzN0YzmcEZzPND8z6gfAnVHoF4J1DlCXRSop4T6S6jXhPpOqAeF+tEbs1OE Cv1AoRco9IaELoDQBRO6wIFujNCNDLQAAi2cjBZdoAWb0WLPaLNktNkcbVpHm9/RIULoUCJ0yJWh w7MKHcx1aAA0QQOnDRp2XdEAHhKFw6JQPI0YXb9FoXU1JNoXXdF+bYPOiybofKpD52AVOmfL0PlN aB4Qmi+O5pSjeedobmY0dzOa2xnN/YyaIVBvBOqUQH0j1EOBOkqou4Q6TajrhDpQqBvFG7M2QoWe SOgHC71QoTcmdCGELlygiy10gwLd1ECLIdAiCrT4Mlq8gRZ+RhvH0eZztIkzOggIHSqEDqkydPCV oQO1Ch3YdWgwNEXDqA0ahn3QoJ4FCo6NgsJt0eh1bhS0PmaB1nsftB/boPOgKTqH6tB5V4XO0zJ0 Tpeh85/QPCE0nzKab47mpKN5m9G8DjTnM+qEQH0RqEsC9UygDhLqpkC9JdRnQj0n1H9CvSjUl+si 9LnnnsMH0hMKvQChFyz0BoUuiNAFDHThhW5UoBscaGEEWlCBFmJGCzmjTZDRJspoIxLa1I4OBkeH TBk6uAgdhlXooK1CB3kTNDSaomHVFg3MvmiozxLFymhjovs7S7R++6J91hbt96bonGmCzrUqdG5W oXOZ0DlfhuaHozlEaKY5mo8ZzdeM5nNG8z2jPgjUFYF6JFDHBOofoV4K1FlCXSbUcULdJ9SJQl2p 3mwcoUJPLPRChF640BsVujBCFzLQDRC6YYFudKAFEmhhZbQoM1rUGW2KjDZVRpvS0eYmdFg4OnTK 0GFWhg7IMnT41qEDvgkaKG3QMGuLhupQKALmiaJnNB90P+aJ1uNQaB+1Rfu5DTpPmqDzqw6dk2Xo /C1D53oZmheO5g6hOeZoHmY0Tx3N5EDzPKMeyKgnAnVIoH4J1D1CnRSor4R6TKjfhHpPqA+FelJK I3QZQ1ToogrdiEA3T+iGZ7RYAi2yQAs0owWe0ebIaIM52qSONjuhw4PQQUTocCtDh2YVOpDr0MHf FA2bNmjYdUGDd2gUDotGMTVaQddr0WhdDY32Rxe0X9ug86IpOqfq0HlYhc7bMnSOl6HZ4GjOEJpb juafozma0RzOaI5n1AGB+iFQd2TULYFaR6iPAjWVUIcJdZtQ5wl1oVBHSrRmaYTuDiEqdPMDLZxA Cy6jxZrRYs9os2S02RxtWkebn9BhQuhgKkMHXhk6SKvQQV2HBkIbNIzaoGHYBw3pWaDg2Kgo6GaN XsdGRetjFmi990H7sQ06D9qg86gOnXtV6FwtQ+d1GZoDhOYKoTnlaN45mpsZzd2M5nZGcz+jbgjU G4E6JVDfBOoioY4K1F9CvSbUd0I9KNSPkjuzMkKFnkDoB9KLC/SGhC6ANgFtokAbsg5t/CbowMno QGuKDte2aBA4Gnxd0R+kIPQXcQ/lBz/4wVz88Ic/7OWNN95YOj/60Y9Gow2F1vGi0X5vg86bWaDz cyh07hOaI13RfHM0J9uied0UdUJGndEEdU0d6qegzqL+ok4T6rpAPUjdKN6YtREq9ERCP5heYKA3 Jn4R4n+N0YULdMHr0I1tihZToIXYBm2CtmgzOtrUXdFhQ+jwGhIdvLNAg6QtGmbLgob/aDRPtC6X Ce3pNuhcmQU6J4dE5zyhudEVzTNHc7Etms9tUB8E6oqmqGfqUDeFaCxvL+ozoZ4L1IHUi0J92ShC hZ5Q6AXQCw30BiVfiLhAswhRoZvcBC2sjBZlG7Qp2qLN6WiT90EHEKEDbUh0IM8KDZm2aNAtIwqG 0agLWl/LiPZrW3RuzAqdh0Oi85zQfOiD5pejOdgWzeM2qAcy6okmqF+aoF4Kua9yd1GXCXVcoP4T akXqSlkXoc8++yw+UOiJ6QUIveBAb1QoQgNdTKEb0ATd8KZokQVaoG3RJmmLNqujTd8HHUpl6KAb Eh3Us0RDqC0ahhsBxcZo90TrYyOg/dgWnQuzROfe0OjsJjQP+qB55WjutUXzty3qgED90BR1SxPU ScG7atEBqt7ECF10iPqFCnRRhW5EE3Tjm6IFl9FibYM2TBe0eR0dAn3QIVWGDr6h0QE+azSkuqCB udFQrIw2Jrq/Gw3tsy5o388anW9Do3O6DJ3/fdB8cjTnuqC52wbN/Yy6oSnqlSaoj4R6ShYZoDJY hAq9oEBvQuiNC12sQBc40E1pghZBU7T4Ai3ctmjzdKHNq+c76aSTiiOPPHJ6LX1z06HQFx1cZehA HBod7EPQez3llFOKo446anrv8/dogPVBg3XWdO3i/Wk90WP6ougZzQfdj10B7Z+2dDaV7e15yOfX nXfeWey9997TPyGev96WzvuTTz55Ogs0x/wsruJn/BB8FpXxudaFz9i2dL1OPPHE4ogjjpj+af48 8yX3QVvUJ01QDwVvqIz6S6jXAjWeUBcKdaREa5ZG6CJDlC5WRhda/tWWR1vJNzEWgZ4nFpg2ur52 2223FZs2bSq2b9+++rhMCy8/xhdlLN7bb799+pgnnnhizaKucumll05/zVe+8pXVTaS/WuGd73zn 9GDMm6uOXktVhAY6JPqiw6wMHZpVnj/0J1rTr8sH/V133TW9zk8//fSar1133XVrHjcUGnZ90ABu 4qmnnir23HPP4v7771/z9csvv3z69euvv37N1+dJr033RGcRfV8oqMh5553Xmj/HPffcs/p68tc+ 8YlPrHncotF1mrWvXvtjrdBzxFqk/6Gj9Xjaaaet+ZqjfdFH7FWdX/OOUD/jwiwiVPOPzmHnZ/oQ fPb86vtuas3n3B133LFuZuprV199Nc7YNvJcJ9QHTeUeacM7KPN2ctRf1GmB2k6oB4X6UXJnVkao 0BMI/UChFxjoTYlfBLpYji54xOUJd71eiSJUtBD0PG0jVKoiNHSJUNGv0+F87733Fo8//vjq/+8b TweK/n6z9773vdPHyDXXXLP6GL0GilD9XWKK2vg1ct999605LD7zmc9MD78nn3xy9bHXXnvt6vf1 vvOv16Hd5NfTYZfRAeoiLP/ble+ulSM06BofcMABjYaMXn9+n6eeeur063qPNKjKHh8Uuvo1+vv2 9BricYo/H4r+XBrKdd+nYZ2VRajo2sR70hqP/19rSd+/++67p/f0mWeeWb2nOVrjuateDz0mfm7+ enzPf31TEZZf/OIXa8Vj49cq7LQWY41oz3j4ZTpH/XXH9/R8+jsEfb/l66/rqp+jPeprIh4jCjNd f62d+JrWoX5NfqxfT/81Q4i4/J/P/2Klsgil91JF611/36Jfx89//vNr9kSbx1122WVrHhMUL7S3 pW5/uzgn4vF6z/o0Td+L80jx5M8Z34sI1XvKa0P/YzkeI/r7Jv09f+5zn5t+T2tZe7gsQv065HNe 6mZBEzF7XITlYRe9VIsiVPNb80/vS2tJX/N5KpqpmvE+L3Oo6jF6n5pt8T71fV0v/yRU81//rL2d n++qq65a1wqXXHLJ6vczPTZa5NFHH13zPc3t+J7ceuutxV577VU89thjxT777DN9zJVXXrmmh3Iv lfH2oj4L1HRCHSjUjeKNWRuhQk8k9IOFXmigNyf5QtDFIvmCS98IFT0vRWheECEvsLLHaNFqkcZC LXtM3iDk93//96ePjYjNG08Uofq+x6k+SY0NqdcQEZr/WYeiHwYf//jHV2NVh4YOHj2/HzZ6bTrM 9Bz563FQ6S8Njn/2X58PvibyIZv1jdCQD18fOHq9eo9lQya+H7+u7PGKzjx46BNY3bcICQ1HvXc9 l2LGB2fV9+Nn6S+Kzl/Pw7wqQkVBpNensyHen15ffE+/1uNI1zJeT/56RKvWXtljMr02/WydQfT9 NvpEaBafEMcaiWshde+p6vt63ni+uK706XT+mU0i1P95VvpEaER5fo3xuuNaS6zvqv0Q10jnUtXj tNf1OO3V2G/5dz3y13xv6/tN93fmP0frIdO5q7M0R6dThMZ+jK/pvcbzlj2HroXec0SnXkvVJ6F6 f6LZpqjSe42vlc2CJvKMIX0jNGjuxbrRLNcZGLNU8gc7+ev6dfH4eEye4aLrlSM05r/uS/6gSs+h axed4P8s+vXxtdwfZdGp/3ER/6zX5uEZopHq5O6iLhPquED9J9SL4m0p0Z6VESr0hEIvINCLFnqj 0jZCQ1z4WUaoLzDnj8mLNuTH5IVfR69JCzUWpw45/Rcb8qZThOrr+l92/nX9TP2va72GHKHx2/ra iH4Y6DXq1+l/7eqf43kUBvlQ0X+pwf8Xd8iP18FFvz74IVgnH7BDRWim666DXa9ZgRifpugTFB8u oveQBxV9+pKvS0QnDa14rhhw+Wf7MJW6n6VPKunXSXySo+fOYRAidLQX4v1pXel7Eag6H/KvoU/6 Qjw+HlMWv7KMEZrpPsUaafKeqr6f32uO9fwYv95NIjTosXEP6Ln76hOh8ZopFkXnT/5+1X7QetY1 0pqv2rPxuNiHCrS8D/P/OPS9re833d9OZ0v+H7uxt/T1+PQyPrEk9Nvxuj4Rnvk5/MzUhxd6bVpr 2sMeoXqfOvf09fx+xCM0nie+ViVmSh29pqEilOanXnP8LmR8yqk5mh+rr8fj8ryOGS66XtQIikSt i2gCNYkep+sZX9OnoPE4PY9iUj9Dv8Opf1YHVa0rPU7PG79OH05F/0g0UVOLDlBZF6HavPRAoScW eiGBXrzQGw50seroBgwdofoULxZYLMZYTK7sMXnx0qLOG4DEJ6D509L490RjQ2nT5djMm7HpJ6Hx +DgQ8ieh+ud4/ojSOGD0HrXB6/5XcZuDyw/POrOIUMmfOug6axD6Jx9BrzsPKl1LPT5/ukKaRGg8 V9nP1v3Q9xUePpTr5Aj17+m1xfd0PeL96fUoHsoiVK8/Xk/+ehaPUVjQ92XZI1TyNah7T3EN6fvx CZ6ubdl1zY/RP1Os0qeKbsjrGtpGqK+1WIe0hmN9R4Rqz8d19MfmTzh9H2X5cQqCfffdtzQc43ni 8fpa0/2dzxOi81r3ws8YeqzURaheV/z/fk6WfRKq2an3GB8o5LNcr0mP0/uPrzU9y/W6mtBrCX0j VK+X5Likfw7xSajO46EjVLGndRbBSfyTURexSRGae6gp6q9A3Rao9YT6UHTWEPVmtOeaCF10iOpQ pQtW58ArnloNzDqbLtyON1nPkyNUX9MC0wFJNAhiEdL3RX94QYu36jH+2wISvx3Q5Hv6Zx1O2lT5 f0np+7FB9RpyhMbX498zDVrcEZvBIzTEgaONmp8jH27S9n89ix+iZb525n9YjcsmXjruX6452MX/ PSzRgPHHaQjkx8SA0+v1QSUxXIN/v0mE5sfm5/Lv08/S2vBBnfmvKfu1us7x/uLr8WmRzgsKE91r f06tt/wY7Z/8GA+0/P2yuGtCf3go4rKJbdu2rXsOfz9CsVf3nvx5dA11tuZfrzWh65r3Mn2Cmn9W xInuU35d/nroPvT14p3/ejUw6+y45a2r68rFOsuvVyhOfe3qOlJI1j1O14KCMta3fj3tbfHn1rmn eeDnRvDzgx5PZ0z+nkeoXr+Hp+ZAfg69D627+L72sEeo+O9sKUj1gYTefzym7izP86GKXrc76LR7 V+Oyif/4u7dPf53eT4gPbjL/V95iXmpu5fcbs1ooQnNcto3Q/NvxuTn801DxfydUP0v/vXs9p3iE egs1oQag/hLqtUCNJ9SF4g0ZojVLI1ToFwr9IKEXFujNCF0AXZyuISpxo0i++W3F4uoqFnKZvEna ik3lv00/BDpACB1IQ4nDs404pOctD6ll44N8niheRutFhOoMpO8vAt3PeaF1PKQIyfzb9jpzFF66 D/l/IDra//NA510dP1OHRPOgDM2YrmgWNpHnpf6Z5nFG87wN9UOEpfZ3NIV6RaGa/31PRx2Tef80 EY1F/UWdJtR1gXpQqB8ld2ZlhAo9gdAPDPQihd6Y+EWICyR0AZugmxXoRjdFC6wtWuSZb5iuaNP2 QQcKoUNqSHTA1qGDfF5oeC0jCoBFoRAaDYuu+6LQelxGtL/nhc61OnR+DonOf0LzpA+ad13Q/M1o frdFHdEU9Uug7mki95W3F/WZUM8FakChbhRvzNoIFXoioR8c6MUKvUHJFyJfJKEL2QTduIxuelO0 2NqgBe9o03RBm7gPOmTK0ME1JDp469ABP2804JYZhcOyouDaVdH7X1a0rpYZ7dt5o/OrDp2TQ6Jz vgzNjz5ovnVB89bR3G6DuqEp6pWMeqcJb6vcXdRlQh0XqP2EelGoLxtFqNATCr2AQC9a6I0GitBA F7UJuomBFkBTtPDaosXvaBN1QZu6Dzp0ytBhNjQ6kJugw3/eaAhuJBQdo90PrY2NgvblvNH51ASd h0Ojc70MzYs+aJ51QfPV0Zxui3qhKeqUjBqnDvWUdA1Q6r1AnSjUlbIuQvUvbNMDhZ5Y6IUEegNC bzjQxQp0gZugm5nRYmiKFmFbtBkcbaquaKP3QQdRGTrghkYHdRM0GBaFBuVGRcEy2ljovm5UtN8W hc6hJujcGxqd32VoLvRBc6srmqeO5nJb1AdNUZdk1DVNUEcF6q9A3SbUeYH6UKgnRb2JEbroEKWL ldGFboJubEYLow1alG3R5nC0ybqizd8XHVBl6OCbBTrEm6ChsUg0UHc1FECj2aDrv6uhfbRIdM40 QefaLNA5XYVmQB80p7qi+eloDrdFPdAG9UhGPdME9VNG/SXUa0J9F6gLhTpSojVLI3ReISp0ESQ+ Kibxl6yWeemll0rpL2mvov+MZRn9FRZVvv71r9fSn4Kro7/qoYr+PsAm9Kf/mtBfct+E/pqIpvRX XLWhv+6iLf3J1bb0V2V0RRu5LTos+qBDa2h0cC4jGhC7OroOy4jW1dBof/RB+7ctOkeaovOrDp2T deg8rkLnfRmaI4TmEqE5R2huZjR3Hc1vRx2QUUcE6o+M+iWj9gnUTYF6K1CjCXVdoB4U6kfJnVkZ oUJPIPQDhV5goDcW6GIEuoiBLn6gmxbohme0YDJabBkt1owWPKHNk9HmI7SZCR0OZejAKUMHWRk6 JJugA7kJOvyboqHTBQ3AvmhIzwpFx2j3QutiVmi990X7sgs6J9qgM6oOnYdN0Plbhs71MjQvytAc IjTXCM1JR7PW0dzOaO5n1A0ZdUdG3RKodwJ1UqC+CtRlgXouUAcKdaN4Y9ZGqNATCf3gQC9W6A0G ujCBLmigGxHoBmZ08zNaPBktvowWb0aL39EmIrQhHW3uMnRgEDqEytDhVoUOzibooG6ChkIbNJS6 okE5BBrq80DhMtoY6H7OA63fIdB+64rOgTboHGqCzr0m6JytQud4GZoPhOZNGZpjhGaio/nqaE5n NOcdtUKgzsioUzLqnEB9FKirAvVYoI4T6r5AvSjUl40iVOgJhV5AoBce6M0KXaBAFzbQDcnoZgZa CBktpIwWoaPFnNFmcLSpCG1QR5u9DB0iZehgKkMHXhU6UJugA7wpGhpt0NDqgwbqkCgEFoFCaDQs uu6LQOtwSLSP+qB93gadM03R+dYEnadV6LwuQ3OgDM2XMjS3HM0/QvPU0Vx2NNsz6oOM+iKjPgnU NRl1UaCeCtRhgdpNqPcCdaJQV8q6CF2GEBW6WEIXOKObE+jGZrQoMlpUGS3KjBa1o83haJMR2rSO Nn8ZOlTK0GFVhQ7CKnTQNkWHe1M0VNqgodYXDd5ZoIBYVhRduxp638uK1tMs0P7oi/ZxG3SONEXn V1N0blahc7kKnftlaJ6UoTnlaN4Rmp+O5rCjeZ5RD2TUExn1SEY9E6iDMuqoQO0l1GuBOi9QHwr1 pOTuXBOho9FoNBqNRqPR7H21+P8BWjktpPgRZOEAAAAASUVORK5CYIJ= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAnkAAAFDCAMAAAEG2dhTAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAHyUExURXyHlvX5/Iu54XWr3L7Dy1+d1UmPz+Ds96vM6Y+Zpn6JmGCe1omszsvf8om1 3WGf2LvQ5Vmc2rfT7JKcqmyl12Oh21aX06StuZW834O04E6U0puyzdnf5sfX56PH6FiZ1GFugXN/ kFma1VCW1o+74vr8/mOf13qu3Vuc1U6S0OXv+ODk64233be9xWWh2FOZ2fn5+tHj84mUo2ej2HCn 2XWl0eDl67zW7pm+4KLC4LrAyGh1h8vZ52l2h/z8/KjK6XOq212c1FSY1l2c2a7J41poe5S+5H6w 3v///9jh6bTR63+x3ury+u/w8ktab2Gg2Wqk2WGg2lic2lic20xbcHSp2UyT0tbm9KHG56HG6NPY 4KbE4Yu44uDl62ig1Nfn9cHZ705dcs/b6Yy54Yy54leZ1aGptMLa72Ge1/T19kuQ0FBfc63N6uDm 7LLL45e/5WJwg9PW22Og19zj65nB5WSh2Pf4+a25yubo64S04L/T5Xir2vD2+2uh01VkeERUatvg 59fa33Co2lqa1dvp9lZleZegrMvR2lub1Vub1lKX1sbc8N3i6NTe6bvCzFyc1Vyc2KqyvkdXbbbN 5IWz3FSZ2Gah2UhYbbLQ632w3Wei12ei2HCm2V6e2+Dl6/L2+Z7E5r/Gz4i24Ym34XuGlnyt2/Qd oxIAAABudFJOU//////////////////////////////////////////////////////////f//// /////////5///////////////////////////////////////////////////8f///////////// //////+HqcyD1AAAAAlwSFlzAAAXEQAAFxEByibzPwAAK9tJREFUeF7tnYt/Hcd13y8LUmyJIq7p UnZdGbYlIKjYAgJdtXTCGGhtg70qSBsyKaFNX2xao7aBpkKNUoCD5Josg4xMWbKdWGSS6pYpzf+z 8zi7OzN75rlvYL4fiXcH557Zs7979jU7OzP679Na+eej6bhWps1UOKELPnwVPnGkCmuk4woJfFpg FR7ePw8lF54V+nMLPi2EVHgAn1ZEhZdEwQ6rb1EsWgjb5PFN+DQTWKEbUeFdUbDh8QNzWIWH9+mu 54mz3oY22ZnYV+HTjahwWRSMvAafFNc2N7TJDq7Bpw+iwtui4MUMfBroZpNDEBXuiIIfdkV5hWtP oISiH2EewydOpU3Gfkt3hXPwiTCCT5mYCB/CJ4qzwgX4lLH9ho4KrUeN//UGLMi4IpyFTwV6gBDH iHX+r4KhQvvx7HX4pBzDZ44jwivwaUbftW0V0s3agkV/eIX79JzyvuAO4dwhUPbhDnwWFdZJcxVO +OUI/XUfiCLfrWjxPvvcP89OtIf0MMLP4Pu77F9aFCjFAW1yXdAK6wU7pFWhgfomNE0g2kpk9dVK E9vrew3yA/i0werj+4wHzutWSsD2rsCnlSD9PAJk2wuLteAdn9fW+tf3iP/rrtRneyf54dMNq89Z 4Ygfqb3w2978h70Hn0ZYfBuw7ME2fBrx0e+mdJ/jwmd7L8OnD376FRzBpwlWn+P4UrqashEan4vg +hzHBFaf7/HPh9a3t/Rr5BuM5m3b8WG5bGt6iYjPmtKO+mx3WtitTZR+ZDzzlC+Ig7YCq6+4OdPv aNDkXXwZFsbj5+yffb4IWOP7bsiRRWCu7+beeB4WbWg3e1Af3JnAXQ3J7lR8+GPltibm97DRTH30 dxVNrOLcSYs3RJH9U9y88J+fFtl9H7uXYb+sdGvD/jqM7a2Pum+Qaqb2G7iagfgm49sBF0UerHlc Fvkg4juc3J8EtTJ6MILWg2oM5PftLXn+iWcFcKddnTffeAOWYmChCJrSj7iuOz1pJr5z7B/nrY8P +e974vUI0Q8hnfNWzwcRHz2++D3i9IKrR6njF67/960n7zJqj0/+VT2bRGzk+VedCb0s05r13Q+n XdSr3yZ8ZrifxruoM77r8ClRORmL31e5ywnn2pW3YUnBo8uFlfr0+59od409+IyltviW4FOn4i+c x1dxD0YfKdZAFt/h2PrQ2oVFpWqR1/P7Wn9En5t8I7XEZ8+x7HQcRRYfvZ+JxrULVNlFatDPvfoK p5Hq8XnkP3Jk9L1bzONzdVUyYTruKcTvw1X18945Q/otSVSJ77z/kww9R3/gu89Ui+8iLLkR7beU OULoNQMhngFq8cH9J/Deh7Ag0IrT6c/h0807d+78ESwWEPicTl/RuvtCNBSrfhN1p9GKdQAq7hhP rtG/73Xy2muO/nd+2G9Sivj0pnuKliS8uEJque+WWZwxZ2MW3xo0OCt8+UfKwyOtWB+LrxdPLDSi f9+WUOLbXWaXqXlDAi8WjYy8WFzGii+LR4sn++OdCWvdF6etvCicefES/bJIoawIVeVWQV4UB3Qp vp3xjTXmBPFlRWj3heLtE6UIJcr90fi8dJHLill8lPujZTmFWFG6IePF4ozMixDGoH7fHkLj6zV1 P+6pmRReFYYRXnEMq4fJ+DA/2lYhD491hnof9pfqTKavwFIMIiYGD28CpxnxLD1HOyaGFCfT+8pl YmxVSu7VF15dxRQeI7Y4jPBEHtcXHvlEbb+PrQrCEw+46zuw/PqN4oYxHBETg4dX/4GFvKq+WhRb VTO5d7WCr1JsJrx746naRhVbVSPh0bvXqdoRL7aqJsJjO22sL0MqZuH9kP1T365Bi7wjYEZsVRDe Bm8Mryc8fsSbqu17kVWJ8OiBpb7wRFhxvgKpWHvuwaNyWsxbHylRVVFqDw9eFqZF+deNqopSd3hZ TLQov9UcUxWj5vDyRkVWlOKLqIpTV3iT6Q49bRdP1JhV+nVDqpKLWXi8ealSeKzVqXjmwazSvhFS lVzk4U0mo6pXLPTeZ1SHXAypWGfuyY/SuLUIN7SqjDrDk59EcmtxXgutKqPG8JS3eAN9FaQiDy/r TVspPPkonFnzq6qwquCTAurt8rbpCuF9fAULL78mDalKLubh8VshUcgIqfObr2Hh5cQW68q9f6tG l1mznTmkKrlYV3hHuDULOqQquVhTeHMGa3asCahKKdYU3pbJCgNfBFSlFCE88SpJdHgXjVb4df2r okhFCG+Xf0aHR4MwWKGxwL8qilSE8MRDrdjwWIaZrOJRq3dVDKlYS+6xX9BkFb+ud1UMqVhLeAxT UYwREltVHeFxgXy/zPEuNq6eOO/GVpWFV+HA4sgu3ufKsyqBVITwxLPqRtTjxBarhyfEs3y5SoNV 9uNyosKDm0fzl22HHYG5WDm87IrT68vAGs/0AvOXK4eXdUizfHmvZP0IPgGzb9Xw8vsfy5fpr6tb 1cEgzL5ZeN9g/0SEl3c2tHz5ll9VOVIRwhvxz/DwilG5bF/e9qmqQCpm6kWGpzaqSChFMv4qLAEe NQuy8DjB4UndXG1fvrfvrkpCKsaHxwSROglbv7yoFv0fCMaHRw8O8oB11i8Tpfjo12/AqQYw+1YK T25VsX75Zl48IvQCcObVf6M8ETT7QniiE11g7ilDYlq/vE7oqe86kZtcZP3Mvpl6vK+g/jz3PfgE tKLUx9fFZ++QP4TFnH/ye7Aw/Zreq4RHxIHwsKfh+1Pl1KgVx1P1xQKzAhTykjpGnrBmAk6mom9k BqIeR/9xi96ZDL3om94MvLgpttBy2IneNciVD2BJYP2ysSiud8xfjg1vhrz2M1gU2L5sKfIHIeYv R4R3kRD2oxC1L7N5FQxLkWal2Qrh7fJ9Qw1vkSiPZHnxafE3/wAotiLhhx0JyQrhiV0HBk0ByJ3v iZFXgDvf+7tgqRl62IElQTm8G8i7V5svKfumVqwR/bAjoeRe/0jhVSEPj/e7p/9Dz3coZn3bMyug FceXDlkzyCT/tihmHVJZMTs4UERRjPFDEUVxTcIWeHEHeusX6u3us4aWtWwfEUXRqJsXxYPLvJh7 70zG5/fHh9kLC6L4hK8IitnBgSKKeRmK2dBoojiCTv55eNlbARCe8pJAXlyGdxUyK5yFJ7Sa+/v5 ewNQpN8qivwtBbmYhQfFTNrMuiqKQ8m9fpLCq0Lfw9OuJRIB9P1loX6T1KtCUq8KknpsBEZ6EZZd MiXcyLnHdOMDUfaVQ3qpSv+BUg/Q1KNX1MtZO5TWoqFh3+Gbsk7G040H4w3jCN4tR2U57vVUPXq/ Zd4/Wo5qYOr1zJrUy4mwJvVyIqySenzMaOmQ0kv11l9Y5sVqPSo596hyo9Ekb5bqoXrPfvHpp5/a WrhbjkpTb/n2+CQbPqqH6l1/9d133+2peho9VG/h+fjH1ocrLUc1KPXYk8bpkW2g4pajGpB6e7yj hPZqqEbLUQ1HPTYGHWU63rZMYNJyVJJ6/Ipl/CQfKatX6m1LfUBnzSOetRyVnHtUvbVLa4V60CWn D1z4CSxwqgwYEQ2ooqCpx/Tjy5T+5N4t6VDHrOvPxHKZNqOiDOG491AeCZtbjSeOFqNi9F+9RVUq bj1nkq+1qAS9V+9Im05ZWDcNd7ttRQX0XT3eFU8GrIbkaymqDEk9dsVyMt7v01lDXCArgHVO7Tae 0UpUBXLu8XNu8dClmyuWyXT6p9Pp5/+GLRPL2MnkLVhoC1BFQVePKyjoJvcm4+mu6J42l7+WL5P7 ovtuU1EZrD077h1OJpNX6DHkAb2jwId3zn2fIdPbNxQVA7X29awhXyArFL7YNxqOSqen6m0Zx9ov fI+RPbvZqEr0Uj3tAllB8p0p79tNRoVQqMe7OZzcL6ba7ka9dULIf4FlDNm3LHJTURmscu5R9eh/ eW/sTq5Y3vnsnTt3fNtQvv0CFtoAVFHQ1NvfKUaL7yT3FsnrL71sfHuDovia7kQM1G7t3XGPBPnq +25TURmsfVOPyhHie6BN49ZQVBTU2jP1+FMzWMbRrFryNRMVA7X2Sz1+HAvyvaXOYNNIVBzUqql3 o9OWefG4J8x3S5m0v4moBKhVU2/5K5O8X2brVywXvgQLQbT1iAhUUVDVW3tSvArXeu5tQXtxoO91 +SXi+qPKQK39Oe4tZT0sQn3lE0ftUeWg1t6ot2AaFkcDsUry1R1VAWrti3o3jcPiaCDWhWI+5Jqj kkCtPVFvXnpyFl5zkXz1RiWDWjX1sjegGS2qd1meeDS85kf5jXGtUSmgVlW91Sfj1aLnLZyqm+fP 34GFWH47HxinOUAVhVLu7RfP1OATJ+KXytGsRepwYmrO9t0ao9JArT047l3UWthjan4K4zrXF5UO au1evWPtRj+uZqjE4WuccZYRsd7O1Ss/w4iqGaqx+/701KlXEi+yZtEZ3Oa7Mf6wafVuFINQtKJe WbzYmmlNa6LzsJGaYi5Q1VvdkYbwaOOKpcYGkp/8ffbvd/hyE4AqCqU9t9XcQzIvvubZW+PlX8Iy Ti0xy3R63EPFi6+ZVmf1rf8NwS7U2/1IPDLGxYuvee+ZzdrEG4Kd5J5Qr/QwFoiv2fA0c3Fvi5Cl /9HAG4LdqaeNbFkQX/M5ZeTfq/OEkOfy2LrMOmt81B6x3pJ6y9kLpnb1Vq0XB3ar2ArjCz8RWyG4 9vGVK2+T7QUq2kE2fruC8F0kM/xTY2OSdUFBQderq3dSjGtrU+/w/FTuZqpht/JIttDN41j0oVis N7/52mva5Esque85dURVxu54mvfgwUDXq6pHLzcnXk+FDnemRYeXEnYriyR7AoQRrd54cYbIU7qV kH2val+l6uUj0WB4qKfQ1HFvke5Z6L4DxNccaH3Ehh0viKi5A/XInTt3vof26BbE1xxuvUaK2Roj am5RvXOsY+PNi+PNL7/0I+MJlxKxFTkR1nukmBTWAmptQb25TbqnKq/DR8SZ04T1KWHdOSJ8VfVW d/IRg+3qke9eufKBsWc2t/7tZzTV5sUL3Rpx2yhoyPq3/hG72oECBuqrqndIz9n2Rh6A0GuDnxkP /XZrL3Fe7aBoe+7+xNqAWDBPtiyHLru1l7iudlAsx72Ek6ReFZJ6VUDVW74NJ192Bjn5YX7vJpCt +6WbG9latDhkKDWPV7Wa74436Fce8FdG7tqshzvjNWkQfEZmLVYhI1mlN1IyFGspas0qbzGm3smD 7ORL/9uQ+uJyFCuFVi2hWEfayjTftbvirxl0i8XLpWzznoz3VX0UK8VgLVYhIVvL6qlW/o+EalV/ 07J6oqWAnXzZ65736R/k72vWff6NHN13V2n10a3qFo7o3+hWTx5Qr8mN8YnayKVZ+TuoBbm1WIWE ZuUVFKhW8ZUCzVd1Tce9SiT1qpDUq0JSrwrT0X+AZ+WJcP7xCBYSEaQdN54kXgWSeBVI4lUgiVeB JF4FkngVSOJVoBBvnzUiTaRXhBIupMxjTYXldtxeMWKNhLuTvvy+mniHSntg39hlIe5CoQdo4slt 4N2Mlmnlo19OP3wPllsGRFFQxWPjjObt2E11m3JYbcb981PlvVedxoLCrYV4pecH/RSPPT1TnlPI NBYUbpUyT6ef4tFjnvmCoLGgcOuwxOuZNYmXEWFN4mVEWJN4GRHWJF5GhDWJlxFhTeJlRFgL8Xir yjK78wb6KN72i2JgKoTGgsKtUuaJVpWCHoo3Tz75TM0vg+ZEWFXx1n4jdRzroXjk008//RY+/Qin saBwqybeJblhANoTegR5g9LJnGke4rHdNt9z+5h5X3z33e9bjnqNBYVbC/F4q8phv1tV/hshRB0G WKWxoHCrlHk6fcy88XQWfT0LaCwo3Doo8Wa3x9N7R1DAaCwo3Dok8Z7R82yaH9dqNRr5UHJUPMNA I4zGgsKtAxKPnKP/TMd7lnftGgsKtw5HPDFPKbVa9tvGgsKtgxHvnrhEodYknhncmA3/SK0HxSAL Oo0FhVsL8Xirynj5G6JE6ZV45Kr4pFbLVGCNBYVbpcxjt2etj+pYBjU+z0b5Zta+ijdqeVBHT76k NAa8+ENYaBMQRUEVb1UZERM+cSJ+qByrFTMW13bMetV4e9tYULhV3217Kd5KMUgLtxr328aCwq2F ePAyag/Fk+dl5lZ1hiCJxoLCrVLm6fRFPGXWeW69ZhrApbGgcOsAxFPGoRJW037bWFC4tf/iLT2D BY6wzrLbXITGgsKtvRfvmjp6nLBelyZ3kWksKNzae/G0PRSshv22saBwa9/F0+dSB2sSD0cxHugP acE6jz9Caywo3Npv8crz0GdWPPUaCwq3FuLxVpVL0ngxPRCv3OSeWXsmHtyeFSMqdSEe/QVZl23o b/Sw3HKXuUqzyUk0ExQDtZbEK16w6aRV5aNfTn/6uen0V2z523/F/4Ty1gVYaAsQRUEXTxqNqpPd dv88HzybHTzQRs/cFd1vGwqKglo18ZalVxy6Ei8biyxrPFbIXWfkcfQzGgqKgloL8VirijKSV1fi rd3gg+QdoXcRuas2FZ2goaAoqFXKPJ0uxKO/4Hv0rPGEjUYOf1IpXK07NUrt1p6JRwEjrp3kuoLs 1Y0FhVv7Kt7KY/5RonB9jPQQbSwo3NpT8fY8mjuR3GwsKNzaT/GUxmMFyRXp8dNYULi1n+KZJzGQ XLOZRyUaCwq39lK8GXO3Y9m1nJ6NBYVbJfHY0BHydEidiTfnOfVIj8TjQ0eI61NBJ+KxWW+MBzyK 7HrAO53JNBQUBbVKmUfFU0Zp7kQ8+7QbqmtNE+cCEVZVvOyenNNJqwqfMci3xaTN11lAFAUt8zof GsQ1KYniKmYLlmgoKApqVcWjaVeM6d6JeEGzLd3SzywNBUVBrZJ4Ot2cbT+wT+iiuuoHvaaCMlj7 Jt7eQojrQ/zBpIHarX0TzzD5ao5q3Zb6TzEaCoqCWnsm3uWlMFdtv20mKAZq7Zl4VIwgV23212aC YqDWfok3txXoek+dfrWRoDiotV/isVamMFd1v20kKA5q7ZV4F9lDnTBXtVGviaAEqFUTbyKNx9m+ ePzqOMx1Hen6aKJ2qyreyf0uO3Qf8xuGQFdlv20gKAC1quId3pVm1WpdvFk+93ega3/EG092i/E4 225V+XlUI8lv/Q4sNAyIoqCKtytP9tZ25sGk84Gu5RcNjNRuVcUbPZB7ScEnTu2RSC+FWihbeyOe QsvizcCE/aGum9JE/7UHlYNa+yNelkGhrvJrfLUHlYNaeyPeUvbgIthV2m/rDqoAtfZGvFyCYFc4 0TDqDqoAtfZFvIX8OXew69wSLNQelARq7Yt4xb4XXnEV34IIa0/Emy9uUcMr5qPVcOoNSga19kS8 Sgf9yzdhoeagZFCrJl5H4+ddlvofR1Qcf7KRiLCq4rGH3jktiiclXkzF/RBvJE/T3Z54l4vzZVTF z9Zhoc6gVFCrKt7Gg/FGMVottCc0T9U+Jz9uodMKiKJQyrwOWlXYY5+CmIqz/bbGoDRQq3bM6+St x+rPIZ7Da3w1BqWBWlXxFNoS7yI2ioAJ3Coa8OsMSge19kA8rVNUVMWw39YXlA5q7V68LGsyoiqe ET1+rL6jiTzyfYmI9XYvnnjsUxBV8SPR48fhW5wMESLW27l4pY7FcRWLWhy+xckQIWK9nYu3pXWx i6xYDNzt8KWXsWYi1tu1eHX1aBcDdzt8i9ckECLW27V4S9LjG0FkxfxHsPmunp+OGs68J8UUra2I V0q82Ir5lXZNQSGgVk28kx+2K95m+X2VyIrZwN0j++y89YQsoYq3donNxQK0IV458aIrZlVNT/JR YRDqCVlCFW+DT2QDtNCq8hdfgIUa4C0rX/t9vtwAIIqCfsxrN/OQxIuumL3G92Hd9xA5qLVT8eax 0T9iK2YXPdar4FpCVtDFk2hePCzx4ism40kdQeGg1i7Fkx/7FERXfPTY7lv/bH1diLcGexeaePEV 31qx+jYwW18H4h3uCPEey499CuIrtr961cBsfZ3stkI8QxrEV/zwkcV6WczWByWEiPV2J5762Kcg vuJrM7h1+zkh5Bmfre//wZ8QItbbnXjImDKcChWTkvV4fZaQI974cJXN1jdr+MUoEevtTLyL+lva GRUqnv05LHDubVK19qSxvJnvU4KNu8eIWK8q3sl4v62LZOO78PEVs2FFxIt8jw7o4gLazLpIDCMY RKy3lHmeL7Fs8BmDTNitLBI+AxxKxEYAfFiRf/10i5Al23Cs6+iQkPJwPAjoenXxpK4+toaBr70y /eorsFzGbuVc+BIs1AgfVoR84Q+gaOQt8kewJPHe9MP3YBEFRFHQxcsHBrFn3u6Yj4tqwG5lP2O5 9T0HDTPHZvUfVuRm6aBxeH5qvTP2EU/2t4k3scpjt7JItkqt7znx4gUMK3IMB8ec/erijSaenRtp blkegtqtdKWWxKsgHr0D8x9WZLPojMs43JnKe10JD/EUbOLt70wtq7Jb6UrLj30KKogXZL1KlPH3 JhGPxCPFq7IV6/QywjCTCiO+4lDrjHKdHlFz++Jd+/jKlbeb2W1DrY+INPh8RM3ti7f0WXpF0Q/x xuOt4j4nouaWxbt6QD74Jr2i6It448ckGwktouYWxbt2RMjD6/QS7/WXXjbfn8dsRE6MdQXemozw bUm8y/Se6QhuyRdn1POcRsRG5ERZoa0gwrd58Y7n6dn1QLmdtPp6V4wQaZ1lvfsifFXx6J2t30Wy /XIjtz5aYK1C/G8y1jgjNiIn1rpO/hMNWbvpUEB9VfE2PAdosF9uCOvjJUKW8BHerdsYKwAj2roY MtBrjioeTbvipvR9M3/MLzeMcOs/+4fw5UHAW2T+JRQwQBQFVbxdWTwLN62XG3ZrP3G1yKCo4o3u q6+fmbBfbrguRvqIq0UGRRVvPJnY7o4L7JcbjouRXuJokUHRxEuEkMSrQBKvAkm8CiTxKpDEq0BZ PN5rgN/k8klbx8vfEH8XaFbtUYVmhclCM/Sa2XIBf0+aTzDKHkLRa/XiLpuiWumHsubcWqxCQrXy CiRUq/hKgW5dlXs9o5l3F25y+d3GjWIUUYFsLT/nka3l7tVKzWxZZvn2qphSgsZ7cttmpXdC2sV8 bs1XISNbeQUKqlWPWrOyhQxMPPHL0e1jmziShmDlKNYJm1lQRrau/WYyUTdR8ZVmzBHsiirF1u2y f2RkKxskUX3jIrfmq5CRraJ6GdXK/5GQrWtq1mLiUT3ETS79j6quiSdbKatKlitW1rNe1Vb1Hanb f/Igm0aH/kcLqvCKlZUN1nwVEoo1qyBHs6oR61Zlf0DEY3WLm1wRgiqeblXFU600z5V9QPNVw2Sz w8IEo/R7VABl11OtFMW5sBarKFCtWQUZmlU1lnwd4oleA+wml03ayv4g/i7QrOIbOZpVHlyJolnV 04mYHZZNMEq9aNLJw12XrCfq0aKwFqso0Kyi+hzNKirI0az76nEIPWEk/EjiVSCJV4EkXgWSeBVI 4lUgiVeBJF4FkngVoOIlokniJbqBZh7swYlEe6TMS3RDyrxEN6TMS3RDyrxEN6TMS3RDyrxEN6CZ tzYS3edY7wK110MiURNI5h3u7kDHzZMb91kaqn3IEok6wM+2WZfh3bu310Z3bYNeJ0yw84U4cyzD Z0LGmnlUs6/sTtiBTwMefySsfDT5Jfv4/HcaG3K9h0CGuLFlHj3tssLyE/0tUvy1Zz8CYivRkW+s K1NxOl0b/Yb1yEX2XxcDlCrA15Z5ayOWc4e7peu8lHleZJnH9Svvv04GKFWAL555DlLmeSEyb7zM L5RPwi+XByhVgG/KPDdRroe7rEVq8t4rsBhxkzFAqQJ8U+a5GWDIA/BNmedmgCEPwDdlnpsBhjwA 35R5bgYY8gB8U+a5GWDIA/BNmedmgCEPwBfNvLyvimgQKHVWSZnnTfI1gWRe0VcFHp+VSJnnxSIb qJzy3DJzio0BShXgi59ts6dnhoeNKfN8uEY+/u4VytsfEMuw6RYGKFWAry3zVjfYs8bVjVL+vd/C JP3D5x0+RD4bcp5cgD+dBSBHnHgc81JflTjXm4TNL8DG6zfNa+pggFIF+Noyj17nXWLL6Q4DFsJY 3CRffv2ll370csSI/ZwBShXgi2eeg5R5PhxvkX8wQ28w/mlc3g1SqgDflHlu4lwv80PddLoQeX8x SKkCfFPmuYlxXZwh8+xzOj1nnY/WxgClCvBNmecmwnWOzIr5GanvZXKTLwYzQKkCfFPmuQl3PcqT jfkuiVlMgxmgVAG+KfPchLo+IuQRLHLfiyRu9sEBShXgmzLPTaDrTXIESxTuO0/WRSmMAUoV4Jsy z02Q69VZMgeLDO67uEKUWbk9GaBUAb5o5hV9VdhieXCLlHlG5snMIixyhO9jsslLYQxQqgBfJPOK virsoe3vIsOqpMwzcLylN96B73NynX8GMUCpAnzxs22WeYd/8gAb0CdlHo5oPFYA32MyG96oN0Cp Anytmbd/9zY93WKZB/0SEhI/fpN8HRbL/A75LVg67UCOOLFlHh89j5Fd9GWkYx7CHJm9BYsSue8M 2YYlbwYoVYCv/WxLSWdbP9cjcgBLCrnvI/IQlrwZoFQBvnjmOUiZp/OIzOaNxwqF7zOyB0u+DFCq AN+UeW7crgty47FC4bu4QpCzsY0BShXgmzLPjctVazxWkHzvGdPTwAClCvBNmefG4ao3HivIvkfk Hiz5MUCpAnxT5rmxupYbjxVk31tk1pyiCAOUKsA3ZZ4bm+tlsmVtIlZ89/D7XxMDlCrAN2WeG7Pr 4ozrhlX1fRjUqDdAqQJ8U+a5Mbo+Jiuu21XVdzuoUW+AUgX4opmX9VWhnxOkq0rKPMGmx8lT8z0I adQboFQBvkjmyX1VKMjQ0mcn8/g+yFxXN/SniNumxmMFbbWLswGNesOSSuDvi59tU+ZxYB+krjAP lzTOh7nxWEFfbUij3pCkyvD3dWUeOvnUGeqrIubx+bP/zGfzgUl9KL93gfw5LAbygnwblk4pkCNO HJmHT9l1hq7zxDEP9MhlsTYeK5RWG9CoNzCpOP6+1sxDhlThnLnMg4EEYWyj4y3/Hsbl1e6RZ7Dk YmBScfx98cxzcOYyT+yDkHhPHY3HCshqHxbvRNoZmFQcf9+UeW4U18WHQb2dkNVu+w5qNkCpAnxT 5rmRXe+5G48VsNUekKewZGeAUgX4psxzU7gu+jQeK2CrPTdLvAY2G6BUAb4p89zkrn6Nxwroaq+T 57BkZYBSBfimzHOTuXo2Hivgq90kj2HJxgClCvBNmedGuF6djRkSCl/tVbLi0ag3QKkCfFPmueGu 82QpqFsnYFjtuk+j3gClCvDFMo+9Z8tbknkDKvIY40xl3vb6ixfz91YCe7JnmFa7RS7CkpnBSUXx 98WPeeIZxuqG3HIvcYYyb56QH3zyyWcI+Uv4QyCm1V4jS7BkZmBScfx9bZmXP0PTD3pnJ/OekV98 yvlW1GhQltXedA/cPSypBP6+tsw73DVmHvRLOPW8SX79hoAQ+FNNvHWBvAWLpwvIESe2zBP90ZDZ z87OMe86efWL7zK+L4Z6D8a82stkAZZMDEsqgb8vknl8ZtHJhOUbu9coXeWdqeu8q/+CEPIqIStx g2zbVuscuHtgUnH8ffFjnoMzlHnHs+RiQ6t1Dtw9MKk4/r4p86wsstaPplbrGrh7WFIJ/H1T5tmg iTfX4GodA3cPSirA3zdlng2eeM2t1jFw96CkAvx9U+ZZWBIP9ptbrX3g7iFJleHvmzLPzBI09ja3 WvvA3QOSKsffN2WekXx60AZX+9Q2G99wpCrw902ZZ2IhbztucrUzlka9wUgl4e9ryzz+JAN78/Es ZF6ReI2u9pGlUW8oUsn4+9oyj49rsbpxJseGn5eeljW6WsvA3QORSsHf13q2Zc/RkKGkaObB0+FT yxfIX8BS0/z4t8kfwOLpAHLEifWYxx7Z7vMHuCqn/pj3VHma3+xqH3uMKx9O/30tmacO6SBz2jPv strC2/Bqn5u6Ow9BKh1/X+vZ9oT1WSnfYJz2zLus9RdueLXGMX4GIFUJf19r5pk43Zk3p3dUb3q1 poG7+y9VGX/flHk6c2RLOwQ1vlrDwN29lwrB3zdlnsZ2KfGaX61h4O6+S4Xh75syT+UictHV/Grx gbt7LhWKv2/KPAWaeOXBdppfLT5wd7+lwvH3TZknczyLJF4bIaMDd/daKgP+vinzJNhLF7Ao00bI 2Gx8fZbKhL9vyryCc3jitRIy1qjXY6mM+PtaMw8fGf60Zh5/2wejlZCRRr3+SmXG39eWecvIVBic U5l54m0fjHZCLg/c3VupLPj7WjJvbfQbNu9ZucMAzTzol3CaeCd2bpWa+Al5E5aGDeSIE2vm8R5S Z6THQPbSBUJLIZcG7u6rVDb8fd1n27Mx75kl8doKeVEfuLunUlnx97XeYfARVpCbjNOXefnbPhht hawP3N1Pqez4+1ozz8SpyzzppQuE1kLWBu7upVQO/H1T5lGe2Ycoay1kbeDuPkrlwt83ZR5728c+ vUp7IasDd0ev92RnPP3phqlNzEk725syjyaeYwjFFkPekhv1qq0XaZPwpJ3tTZnXq7E7r8mz8UWv d421wyJvMXjSzvae+czTX7pAaDNkeeDuauvFXpT2o53tPeuZd71nswOcmyX5GD/V1jvwzKPHbST+ 05N5cz5zzbYa8vXi5B+9Xja8NfbU05N2tteeeasbvyseoamcmswrv+2D0W7Im3nHhV5J5Ym/rzXz Dv/kATy8VTktmXfRK/FaDvkiWWEfJ5fG04/QsUW86JPMOLbM2797O+s2oHJK+qp8iVz4OSz2iS+Q r8PS9PPf+X1YGg6QI04smcevFhilJ7en45iHvu2D0XbI2cDd0z8T44vE0B+ZTTjuMEzHPFiIoDeS 4G/7YLQd8hwM6/K1X8W2BfdIZiOuzEM5DZlneNsHo/WQF9jA3cuTz/VEqhD8fc9q5i2ueCde+yEf k9n/yx5DUGJvMXois4UzmnmLWwFTw7cfshi4O3a9i+uE89wy7ryNdrb3jGRePk25wPy2D0YHIfOB uyN9r5GPv3uF8vYHtu6uFtrZ3jNzzPtIzrylkMTrImQ+cHek7xL57B3O98gs/CmMdrb3TGae7aUL hC5CfkbWg31vPZ7fpCfZD8g3X+P8zOfRIEI723sWM+8o8CzURcj0DuiWp+/F6wdL/Lpua+Hp9iJ1 3SRffv2ll370Mv3TQsylXjvbewYzb8E8DwBOJyE/Jkd23+2nNx/yhJs5uKy9I744P0Pz8OB4fJUe Aw+Ck6+d7bVlHu9giN3WDy7zpGnKHW/7YHQS8vhfkf/zYr50OXru2t7zFZ5wm/P3LHOU5uu9So+H 6z5Ppwva2V7nMQ953XaQx7zMV55ixZMuQp4n5AeffPIZmmC8eGtu/Yjn2+zR+pzPoxd5vY/oETAk +drZ3nYz73B3Zzo1jRPkoIovBbbS+dIFQju/hMIz8otPOd/i+UZWnu+xSzh/tPVub5FZbQQDA/XI 7IEj89ZG2BtMsX1Vfvqnn2Mfn//V3/BiEFV8C77e2tw+1XiT/PoNASHwp6r8vb8iF/4dLJupLjPk iBN75hlyP/aYx6bwo2vjM/mFUsWXwbfS/bYPhr+aZSJ9r5NXv/gu4/vhFwccdL33VsiKYdaXjFpk 9sKWedg0j5zYzDvcjd+sKr4MtpUeb/tg+KtZJtb3Kr02I6/S06z/Qz4F03pZ8tmqrENmP5zXeRix mbc2unF/OmX/wh8CqOLLoFtZmmLFk3CBCnro+3SWbBmTrwaZPWk188Tz09g3kKv4bq+/ePFf/7dX 3/cyPcweJ3bfPUJm9HEiM6rIHBJzy5nXzU+hNVGE0kXIjCZ9WX8WU/K1E/NZyDypiSIq9ToImdOw 77kDuitijdHtxHz6M+947q+lJgr4YxCthww078uTr9Qw3U7MpzfzHj1d4I+ZVp7/+4pNFK2FrNGK 7/FzQp53MVbpqcu8W4+fiZ4bS/OPsxmdKjZRtPNLlGnL9/hI7VfQznpPS+Ytbu89n2UJt7Wg99wQ VFhvQyE7adFX6dTSznqtmbe6Qe+wkSbF+MxjrRvlDhh+oL5Xrx+wAxq9XFmfs3YHqiBnO79EmXZ9 L0K/gio/Uch6bZl3wpoTsUbF2Myr0rqh+p67Bn03Ht687vcOWYWfsd0MKGjd99EM+aBaA1TAei2Z xx6kUJAHKZGZV6V1Q++8cbR3rbVOZ61nANCBb9UGqID1WjIPUg57hPd+FP9Rat0Ip/CF6hL1I/9E 8KdAIEPcWI95vMNA/Hi7OlU6YFTuvJHwoUWZbdd5vK9KfYlXrXWjaueNhBftyWzLvESiOVLmJboh ZV6iG1LmJbohZV6iG1LmJbrBJ/OksQaKJ7n0j1kLMz5phsDqK0ZiNs4M51gvHzjANJCwzZf/ITeX sK+Wx2wcvtjta26kQnzR6jDsvkUEGFZfuRYEt6/x1/U+5vE3vvMnuYe7O/mzDcOkGRIm332PtkKT L7RzWzHHTMFeYS8wucKfrNtr8BWT8jim5lF9TX/CMflqG45i8tWWUKy+xvbgoMxTnuRmG2OaNEPC 5OubeYiv40cQGGOmOFrITa6Hu3dv46+/Fxh8YV9hVjMlX/RPOAZfht2RYvGVl1BsvsY3Z30zT4gN 9YqPrEAN9swz+3JOpOUSRt/VDZY5qxuW/LOut1jCsLguT76ya53ZyezLzz43/g4zG0B8kT/hGH2L shGrb7GEYvWF3wnDL/NgrAHYa8XhQqxEXKpR+BcwzL4C29HL7AteliOXdb3wVwNmV+VPKK7NtZ1t EV+sOhSzL0OOoIzVV6oFw75ey8/rk3nFEVN+kittjOWYZ/NdG9F/LXuUdb2Hu3SdxTd0rL72iy2b 69qIlfi6UeyrpSznXyiB+OLVIVh9KVIEJay+Si1lbL6rG3SdQjAM7+u8RKJWUuYluiFlXqIbUuYl uiFlXqIbUuYluiFlXqIbUuYluiFlXqIbeOYlEq0znf5/n1j2IEb7QtsAAAAASUVORK5CYIJ= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image010.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAlIAAAD9CAYAAAEADan3AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AAKSISURBVHhe7f15sCTFteaLnv9fm7XZs/usrdue 9bv3nmttr9vubXvdp6/6jAJNoKPp6GjiaALEICGEJCRmkIQAIQSIQQeBKKaiQFADFPM81gBUMRcF VBXFVFAMBUXN8+gvfhH7y1rp6R7bc+/M3Jm5/TNbmZ8vH1Z4eITHCg8Pj7945ZVXzinEZRld2FlO ePfdd0sRbLgubuPGjdE4MFqcwnVxE22jsbNiCQB8586dDR5LWxdH/lgcgPe7jaadFUogjBZHi4jH 0tbFgdHiUmyQRulAKCyE4nbs2NHgNo7yGztLithGfPjhh9E4MFoc+cVjacdrY8uWLSWnkuecc447 88wzG2FVnDR2J9g4UBfXtLNAaCMUrouj0FgcGC1O4bq40WyoYuff+1bJDznkEHfTTTe5b37zm2UY mTdvXvl/7rnnlmkB8R999FHJzz///DIsKB9o7Ky6jYAPQp+1Z8+eRsWArSiAk0Y8ljYUh42mnRXb CDBa3O7du6vAnH9TSYHvXPlyKUIonx8WQnGqQChO4VBF/bAQiut+nzX337dKgYOvXtIiIFZOJ/ss fyco3JE+Sx2wThc/vGvXrpY4N/8v41LgsKlLgnLaLa8l27BhTqFYHCC/dphOST/MfyyO8N69e4Nx 2GjsLIwiQigsrF692rnH/2u9FDhq2rJaqbMRimOjxWNpSaN0IBQWQnGdPw0X/E1DHr7875r+G1Lg Jze8MqpEbRSwcWC0OB0NoZ2gMGlicaAurmlngdBGKFz+P/XpNClwwsxXR5VrH3uvxYY4sGE2PBYH VLF1fzio5Icffrh79NFH3auvvlqGb7jhBvfBBx+UHD8MnHLKKW7dunWNvBxZ4gCucGNn1W0EnP6h xHNfTJMCv7zl9aicMHVhgwNrI2Rf4bo49S8C/N577x0JVWHSiPtpFQ7FYaNpZ8U2AsBvvPHGUkq8 8PV6KXD2nW82yf7779+ik4DR7KsCoTiFQxX1w0IoriN9Fpg+fXqTuG0rnHvp22EpgCedKqDTfdZ3 vvOdMszRxSkIHnnkkTIOzx74O8XnNty0s0BoI5B33nnHzZgxo0XKw3z5T51bcmizFPjDg28nixCz D9jwWByoq6gN18Ul91lS8u+HaYk6KfuCpYfvkwKXPfJOssx+5kO3fv36Ml/IPmFVJLat8pF0Kim9 DW/fvr3BQ2m5EwnFYaPpyEKBCDY8e/bsJCmx7Mjyb8qcd9uSoXEdbrvttrZEuHLeu8kCYvYBGx6L A6rYzJkzS/7GG2+4RYsWlaMIZ511VukicORoJ5x44ollejhxHHUcRRqB4Iw5/vjjG+U2dlbdRsDv uuuuZLnnnnvcmtM/FhWLq+a/15BOuA4W2imAHXb00Ue78847r/S1qDNhoNOOnccOY/iGMHkQODaa dlZsIwAduRUK9HWStWf8fduy6Ybjau3DVfFQnMKkUToQCguhOPVTfhzlN3aWFLGNoD958MEHRxWw 9uxPty2g033WqaeeWro4U6ZMaVSc0+r00093U6dObTolBZ/bcNPOAqGNUBgfZTRZd/6XxiSyUWef DY/FAb+iGvE89NBD3dVXX93Q6Z9RUUBYeXVKCjausbPqNgJOfzJ37txa2fbEzOK+7F/GJLIhe759 heviQrc7frgjtzs6BbTBfvi9994r/+fPnx8UsP7yw8YkAjZi9gnLD4ttKztCroF2ih/etGlTNI6w /DA/DhuNnSVgFBFsmP/HH388KBumHjMm2b74gRYb4sCG1cKCn5Z4Ae6HL7nkkgZXHFdv+LPPPluG dRqGTtHGzqrbCLhaEb5gwYImARtvKPyRiHx03c/dRT8+KBgn+DZ8+wrXxekocEu/V/5p6IXOnPtE +GOPPVbGvfDCC2W/hS8F7E7hnz5OIIyNpp0V2whg+apVq9zChQtLef/9992mWaeOSepshOJUmVCc wrbSIBQWQnEdcx38uCeffNJtmv2rtmXHS5WLAUaz4YeFUBz5xWNpx2OjaWeBUGaFQ3Fg861nJAsI laNwXRwtHYsDo8UpXBdXZ6Oxs2IJADylPwGbbz+zRQD56/LBx9tnddtGY2dlGV3+wu45MNGHOhgt TuG6uE7bKHcUCEUKNjwMpxJo18Zf+JG0hLgfp3BdHBgtrhs2VCaAxy79NlwXBywvd1TdBvjhbl+S 4WOxYSupG2TAs0IbB+DcwojbOMa1FCaNbAxVH6WnQhs2bGgaLcAr585C4WOOOabkGoVgJJQwo6jA xsnG0PVRVFI7xHJgw9wGxeIAXLdKlN+RPqrEU/+9MQdL868ueuDtMsovZyw2QmEB7leyr/oot+zY 4Pyr0Nyr9Vt3lflAOzZiaev6KOBzPxzro2y4pY/SoY5xDjdxPw5s3bq1/A/OuRqR0JwrCUixEYtT ODRXS6cTFYzNo1I4da6WbLR/6u3ZHp5rZSQ0z8qKELXhcRAKC3BtN4BP6KlXws6tGpHdjzeHQ/Or fBFC9nWEhOIUJo2Nq6tkKE5HTyhOYdLIRnvuQWhuVUBCc6tCIjTZKBC1X8CG/TjmWgGeysg9uOCC C0qdfCs7gCcXwPpdAK6wbCS7B+6V48PzqgJi51VJPvmZA91pNy1r0QvWpvoFwcYBOGnEbZytpOXA htUPCaG0pAGUn9xHMceq7MhD86o8Cc2l0jyrw065yH2q2GnSa2OAtenbD4UFuF/JCemjWuZXgdDc qhHx51DVyYwnP2ix2Yk+itOJaY6AhwoPPfSQO+KII8ow4+pd6aNCc6uQEv7cqkJCc6jqxNoHPo+F /ThbSXsLA2wcGC1OYdn4Cyn4RyEDcMXRAdZJCTO3KjR/qk6AtcljcWvf3x7+/blYOtW0/bF5Ugq3 MxcL/ainHgjNoQqJ2/hUOa8qNG+qTrRBAJsD6R6A0LypmLz44otlnvfW7wjOnQoJsDZ9Hgv7ccyn AvRNXHhUYRoCl4Fto+/iYS7/Rx11VPn/1FNPlf/qw+A8KwSykeQe+HOm6mT3mreD86iQrY9eOVKi cys+2taYSwWszfG4B4COG+jBKPPTqTxTmFasWOEuv/zy8mqLDgHMc3/ggQdKzo5lXKpt9wADBx54 YPnPZV7zpnxh40NzpUYTwdq0HITCAlzbDeDqa+B+nMJ1ccDyJPcgNGcqJKE5Uini2xxvH8WppyOF 0xF3gKOLbQTLli1zL79cvYYX2jkKt+0ehOZL+QJC86NGk00z2n/crrAfp0rSBzFlnFmEOr04lZhn wGnFvCrOAMHuHGDDspHUR4HQnCkJEyFC86JSRLA2+/YWRkY5nGNzlEJzpiShOVGp4tsnzFiRb98P +3OtbMU4ZeRywP04heviAHOtZCPp1FPYzpWSgNCcqBQRrA0Qsw9s2I8T6Je41FMXAe6HgR40xNLK RtKpZ8P+nKnQXKiQ3HXmYU1hELNBK8biAFwt3RQ3Ml9KlVSF2Rn0S7gAhLmb4KiBq9NXWgGuI4vy k9wDoDCZF47Ml9py/78G50KNJkLMhs9BKCzA/UpOiHsgwOkPhNBcqNEEpNoIxSmsPksIpRVCce3a aKuPApbvfG1hcD5USNzuXWOyEYpTuC6u0zba7qNC/QfYseThlvlRu955qYwTbDmWAxsecx9VwIbr 4tq10TRNURDnP8YFcWvYT2sNCrG0lgvi2Ub/2yjnkvEjhSIFcXvKj5YWxNJaLohnG8Nho+mgAvxb LoS4n9ZedAVxe7Hl33IhxP202UaFEPfTTpSNxkElxDJz1IoLsbSWCyHup802Kig/EOffcnv7IcTS Wi6EuJ+2HRu2Ho2DykbYDOjgGBCPpWWoRtxPqzc0Q/mUNtuo0vJITQ16xNSlpQjEL168uNwORm9P OOGEMi0PUQAPV9ARv3Tp0jIOzoMUyifMgMD111/f4Lxde/LJJ5eDmjxXoFymazL8xBu3zBYgLfl5 QYuX4q+66io3bdq0cliLOKB6NA4qVZx/y4UQ99MOc5cu3gsbGkv0gU4zBnh4xEgSBwUHA3N3eUmf 0W90LJZ0//33l2lVFg+mSEc8NniMAEdIo3wC5TFShV6rJMBZ35GDj3/KAbYejYNKsBW3XBtmM8fS Wi6EuJ82ZGM02LQhzr/lE1WPWFrLBeUH4vxbrt4hJa3lQoj7aduxYevRdFDZitlEMS6Ij/UWtsSW 5c7N/V/qpcB3r3q5VnzYbYhxQXyibsXFNSad0piWC+Ia/wZ+2m7YUD0aB5VfMUGcjDa+Li2IpW2k 2ficc/P+Y3tS4NBrlrQlgux2uh76B+KdsEEZaiz9A3H5OGC0tCCW1nJBvF0b2vamgwrYiukfhLif ts5PKJcLBY/957FLgSOvXTpmAaFt49/yfvKpUhozllb+Tihtp23YejQOKsFW3HIVZDPH0lpeYmfh 5D3xVy3y8OX/0+2Y91flJKPTfvh35T/6U476u5a0pRT40fXLxi2gsW0FYttuuRDiftpx7asCyg9s A1o+aX2qEk9+PCoPX7Ff+f+Fz1b/o0qBn09f3jEBKfWwvJc+FUMLPmhArcfpN6wgbv0d8ti0PfOp 6JJtZeHqphlXsV12KK2WXoK7zcXl5pnPdlYKnHLzax0VUFcPv85MWYrVX2nb3Vd+WttQdqoCei43 jDsxPqQhA+avMZa0bdu2Mh/jR9z6v/nmm+VYFfmIZ2yK+EceeaTUaSKe7PEKMmXokoYNewmF222D M3UK2Ho09VRAFeffchUkHQilpWAWY9RyTu75f+6cFDjjtjfaEl7NET/95lfcd3/+26Z4RLD18LkQ 4n7a1H3lc0H5gTj/lk+qyx8DapwVvjSw+F/GLgV+d/eKrgiw9bD1tJw4cSGW1nJBvM4GPQBIaUzL 9VKOdLZX4d9eNsdqQxC3NlSPxkHlV0wQJ6OND6UFode1QlLi/aKSLx+cLgUuvP+trolg6xSrs+WC eMq+CnGbljLUWPoHcCbYc9mCM8KulTA4qHSFYCKu3tHjEqh4rYEH+LdcEJ/wIYU1a9aUM3fHIky0 L8HE1jop8MeHVnZNNm7b5y+BUJ2JE+ffciHE/bR1NvBd2mnMWFrrDwninbZh69E4qARbcctVkM1s 48HNN9/cESmxp9jYZUc0S4E/PfpOVwUnG1Anv34gxP20o+2rGBeUH9gGtHzS+FS33nprV6TEyt+X f1fMfberAvrVp9JH9y6++OKGzjasIO77VJbLBpdDIZbWcsBlVLzrPtUdd9zRNQFrfvVXLbL10Sll nI/31+9wV817r20Btk6xOlsuiKfsqxC3adVQ3P4jAsMHQP6OXgBixgCAy2HnvR2+Dgm08DJ+lmYi kJaDSmUIGmpguMDakL+Gw+/fFABte9NBBWzF9A9C3KYFd999dyk4h4yOw6kA/6ytwv83vvGNRrpU AWt+/dcdl7W/+bjbNn9aWb7Ajsw+VYUQ99OO6lNRUdu9w7UT6ebsDvXTMijIYBzChznExytu7x63 9qz9eiJ7d+0o66QBTlt/ANcaZX7929lXo9kgDtBgukzRgHBWM4Az2m4PjJNOOqklLSJu08LrbCit byOUFoHbejT1VKqY/oE4GW18KC14+OGHOyKMOK+/+Otu7e/+sWci2DrF6my5IJ6yr0LcpqUMRFzQ MvhaPoOhAy5z6DRiDuT3sIopsGXpsgi3ekF8wocU+OdIZTbCnDlzxiVg3YVf7akIqoe4IG57Ff4t F0LcT1tnw/YOKY0prrErwD/liAviY7Xhp5UNW4/GQSXYiluugmzmUFp21pIlS4JLB6QIWH/pwT0V wdbD50KI+2lT95XPBeUHtgEtnzRDClxXxTFkl1kYTeiS925Z7zZc9YOeikWoHvxbTpy4EEtruSBe Z8P6LYJtwBgXxOXvAD9tN2yoHo2Dyq+YIE5GG1+XFog/8cQTowo7eON1x45ZZv/iuw2+8opjSll9 zU+a0oQEpNaD/xgXxMe6r2zaRgOaaT+A5TIAvYi+TkhaROsjAWYYMJ7FJREQv3LlynJIAR0vNDA0 oDLQMXQAeKmClyR+9KMfNcojvz5b1Ni2ApZr25sOKmArpn8Q4n7akJ+gKR5aysMXsGn6SWMWhi4O /9rn3PobTiz5SYd82X39Cwc04vz0iNBOPcT7wadieAbO0A0OOR8qBPKp+Odg4F86wEGHoMMG/5TB wWX5mWeeWR6AHMCUz7J1HGgqS+Xx3xOfyueCeMsBddMveiagU/UAsbTjtaH8QJx/ywfCp7IRNgM6 OAbEY2nbeQlz7+6dbvMtv+66CNqeTtdDcUBpJ7uNxkGlDPxbLoS4n3a8l43Nt505PrnjtyMlxW2E uJ92oi9/g25DB9UCSJYsnZKyp8qSpVPSsigjmOhxmmyjgvgg2Wisyaj/GBdC3E9rnTYhltZyIcT9 tNlGhRD30/bSRqOH0j8Icf5jXBCn8NS0IJbWckE82+hPG/mSN6IDsbSWC+LZRnPalmWI+R/m21vx bKM7NvIlz3BBfCJsEAb6ByHOf4wL4gxYpqYFsbSWC1bH9menvEAs7UTZkI7/GBdC3E/LASUuxNJa LoS4TWvrkS95Bfi3XAhxP203bNjG4l8PeBFB8YoDfj4hxP20evgbSsuDZpvWckHb3rjk2YT52dbE 2VA80AKxTFPhDRbAWzHk0YwAZgyI8684gE4fmIOzuCuLvBLmdS6mHD/zzDNlWuVl0VhbDvk4oGy5 WpwWEI8Qph75klcglnaibEjHJ2oF3jjS5860YCsgrQ4A5dOBIK63u0Px/Gu+FAcrcR988EGpZyFY wAGleVTojzvuuPJfZdh65EteAf4tF0LcT9sNG2ocgcsRPRF6Ghzwz5I+vB1jdZRBj6ay0Ok9PDgH DQfHnXfeWa4qDJhTpUseaVhTgYOKT2ZyMKLTasWk1fbZ7ZS9PA41ogOxtJYL4p22YRtJvNdTff20 o9mw9ejLS57t0kPgDNTiWTZfrFzLhRD30463HiHupw3ZsI0V40KI+2mtvyPE0louhLhNa+vRF+NQ dK8NvHuVc3P+TbO8/2f3nStfbpF31zV/g9v+gxDnP8YF8XbrEUtruSDu21DD6B+EOP8xLohb/2q0 tCCW1nLB6tj+Cb3kqSt1C/5LeP1zyarpwbXPrdy5aGQV4wLWht0GyztZj1jasdgINdZAXvKsstvO rF6bdnP/fZqsmuEOvnpJkhw+sjw1L6Z2ux78d8MGjWQbrG6MiDib1nIhxP2047WhbZ+YS15o4fw6 WTWrZdH80eSC+9+ubI0gtj2WC+Kj1qNAiPtpLRfEfRuhxgpx/mNcEO/pJY+zyHbN8G4sLlFi20rn 5v9l+7LqZnfY1CVjEkB9/O3pxSIZY7FBb2AvMXBE3PYW8E4vkmHzAfhoNmw9enbJcws/Fv76Qop8 cEvwywup8tQbG6ptKKDtGWs9/LTd2Fc0lhqUfxpNXBC3jc+/5UKI+2nHa0Pb3vVLXonH/+v45IPb 3FHTlo1LLnmo6B0L+NtuuSBu6zFaWhBLa7kg7tsINVaI8x/jgnhPL3kEbIViXAhxP601GPp8hz7r wRu/CPyzB+zXlKZJPrwj+PmOduWcu94c2aj26pGS1nIhxP20IRu2kWJcCHE/bU/HoaSwlexYN77g b4KyeHpxQI3wT39qP/fe3X/rLv3F37vTfvgPTeka8uFd7ic3vNIRefDlNeWm5UteZ21o27s2DuVe Pqr5+y9GFs9s1Z3yw/3c1/9pv6KnKnosL86tvif4DZixCkith88F8U7sK8ttIwlymHmW5jeodZIF G6/neHCrF8RlA/hpR7Nh69GVS16Jpz7dOVl9vzth5qsdFYtYPbTTGnUqEEtruRDiftqQDenW/eGg 8h+gQ3ggzD9LJDEFRQcMi11oNgLxLIbB1BV0XPJYaB89Mwc0rQYQtiuuSK9/EOI2ra1HY9hAFYKP 94M8wY8JjUc+eiD4MaHxCju6rh7MdRKP1bnTHy/i8qIeQR8i4rklSyOip5cCLNnDmqUvv/xy2Zgs 3WN7md///vfl2qjMHODZJ2t56ssMzCJQWk1N0bNR9Pbyp+3xObBpVY+OXvK0Y9xzX+ysrHnI/fKW 19uWrxx2rPvkZw50X/j6we6o301viQehevAf44L4WPeVn1ZcjQVsw4nzj9BD8U+c9IKfNsQFLWMd siE+mg1bj45f8uhqS+xcF/5C1VhkzcMtX6SKySc++any/9e3vNbQHfjFr7ijz53eCFsBoXrwr50m HYiltVwIcT9tyIZtrBgXQtxP29O7PFs5IcT5j3GB63XL16xWzXLuha+PT9Y+6s6+881R5WuH/bQc hoDr/6xblzeFfRFsPcTZSbaelgsh7qe1XBD3bahh9A9CnP8YF8R7Og4VquRYu3F7MEluv/32Ms4t +3H482cpsnZO8PNmnRLB1jPGBfGJuuSJEyffSPDTKt7qBfGOX/Ks0jqJgjhxNq1NM3369KiwMkeJ l77dvqybW86v7pYAWychxPm3fCz7KpQWiNNItsFwfDX9VtAdHSet/dQGetYxV37d6Qly6kM2xAVx 4mxaywVte8cueaFv64VE1/Pgd/Vism5e8Dt5nZLtu/Y06gHE2WG2npYLIe6ntVwQ922EGgtuDwTA Swtw1uHkgIJr6MAujE/84sWLGwcjLySoDP2DEOc/xgWrY/s74pSD0MFTJw0sOXR0WT/f/eHBt7sq wK+zdlaozn5ay4UQ99OGbNhGEtegJtA/CHH+Le+pUy6FreRYuvHQxxlTpMSWpeGPNkrWPxb86GIn RQjVGYTqzH+vLnnignjK5SjE/bQdv+TZhO2+vAjobscjJd75Y3EAHd4qxQF12SPvdFWAX2fObL/+ QGHQrRc90atnYWDS9jKKgzPXSRwoDiittkNxobTjsaH01KMjl7znnnsu+GXPduWxxx4ry3Ov/LD5 S6DrHw9+vbOTAvw6aweG6uyntVwIcT9tyIZ0aqwQF0LcT2sbX4iltVwIcZvW1qMjlzy+gzd79uyO Cd9ALrHsyEqKA2rKnHe7KkKozsCvs3i+5FXQtndkHCr0SdhOCF1tiQ2PBz8F20kBsTpbLoj3ahwK p1yOuW3Q0caIYlwQTxmH0p0msPG2Hh255N12221dFYsdxS3+gtc3uCvnvdtR2bhtd0udtdNCdfbT Wi6EuJ82ZEO6xk1LAWYEoOdhLq+fM7704IMPNj4Zq4PN/oMpU6aUY1Wk5dMe+FN8goMHxIpftmxZ Y5EMfROZYQZsAcrj5dsnn3yyyQYCbD3GPQ61atWq4LeFOynA/0bxxmu+73a+Wa0cYsEBt7A44ELf Ia4TC9WNnRSqs/5BiPtpLRfEfRtqGPDIyDeK0THbQFwNSiPjHykMV37pFi1aVHINbmqNAqC0AJ1e uEXPAcu/to1BU8a7rA0grrQdueQxjYKjvhsC1pz+sbZl49SjigOuGkG22LZzj3tk6Tp31fziQDIC YnW2XBDv5iVP4JLzpz/9qeTE64DgX1NUrI6ytGCGVlRRD8e8KMJy1OFMfeFfI+70Tgyc6u5Ql1x6 M8qF2+0V578jTvlrr73W8rFq5KCDDiqf5R1//PHB+NFk+fLlbsOfvhP8aPV4ZeOfj3W7Vr5Y1sMi VGfg11k8O+UVtO3jvuTpny7VCp/MQuAcWFy6/DSjCVh7xt/3RCxUJ3ZYXZ1BiPtpLRfEfRuhxgpx /mNcELeXqdHSglhaywWrY/s78qIn0FfPf/GLXzQ432XjnwPqc5/7XPmvuNEEhL503i0Bfp3p6v36 j3df+Wl9G/QGuquikeDItGnTyn/bW8A1YzSUT2kH8kVP7iI6JQxw7nz9abf27E/3TFgLAYTqDEJ1 5n8s+yqUFojTWGpQ/mm0qVOnlr4NjjPzynUHhj9DGi1IhkjHrE5WoZNO6YHSimNDXBAnzqa1XNC2 d+ySF/qs/lgFhD6Z3y0BqgcQZ4fZelouhLif1nJB3LcRaiy4vcvjDkwzDHTA8Kl+DjK7thbzzrlK 8BlYlaeDDegfhDj/MS7YtGx/R8ah9M9t7ngFrDv/Sz0VgXrYOmlnSQdsfIwLIe6nDdmwjSRup51w 58YcM3/ZQtsLUR7PSOG8gKADibs0vTkDrA2fCyFu09p6dOySB+bMmTNu2btrh1t34Vd7KjzgtXUS Qpx/y3t1yRMXxHU5wtZTTz3VlE8Icf4t7/glD4jjNIrzb7l1LgXxl156yc2dO3fMAtb94V96Kha2 njEuiI91X/lpxW0jicthBvxbbp1kIZbWckF8PDZsPTp2yROfP3/+mIQNW3/pwT0XEKoH/9pp0oFY WsuFEPfThmzYxopxIcT9tBrETElruRDiNq2tR0df9MQhfP3114MHzGgC1l9+WE8FhOqhOvsvYYbS dutFTzUQfLwvYeI3xfIBeF++6Kl/blfbEbDhqh/0VDZe97PSbqweMS6Ij2dfhbgaC9iGE+ffcuLE hVhaywXx8diw9ej4JU//oQMnJPRoWx68zG2YekxPxSJWD+006UAsreVCiPtpQzZswwk8dZDeDg3Y tOL8W55yydPaB1YvKF5c/+K2Hh0bhwLi27ZtK5/DPfHEE6MK2HjdsWOWZy44svyf/YvvuoXnH1n+ f/6AT7aksyKMVg92ko2vSwtiaS0XxH0bapgSrDxTQDouXXyrBTDmxANfxqc0pMD4lB0+UD6+E8Mz VdIyVUUPgTU4CuAMQyDkI6wHy4BxLpWnf2B1bH/HL3lWv2DBgloBG284flxy0iH/VP4/c9FR5f9H 1/3cfe3zBzT0vuxc/kTDpwGj1cPngng3L3nlCxoFdDmicdWwNLh0AM4BxwwBPQdFhzBmpYFQYA8o 6eC2LMLSYV89mCDOv61Hx8ahQmnBwoULg0Kldn/0lts0/aQxC6+X618cefKio9071/y8EZZsXzir 3Omg3XrE0nZyX4nTSLbB5PjaFz1paJ55MpODyyGDmDzvmzVrVhnHQUWPBR544IHyssfkOS2OQU9F OkbS+UeA/adcVmZh8FR6f9sEbXtXLnkYsvrQAQU2zTq1Z7L92Wrmp7/tlgvith6jpQWxtJYL4r6N UGOFOP8xLoj3dLYBAVuhGBdC3E8rIzbt888/3ziY6EI33fSLnsnebfHvwgC77ZaH6hFLa7kQ4n7a kA3bSDEuhLiftqfjUFLYSnajG6dSXN+Zl+z2FgfU7F/1RMD7779f/gNtTz9f8vy0g2SjccmzR1yn X160acHmW37dddm5dE5py982bc9466G03dxXSjtINnp2ybPxGpXdfOsZHZct9/+hLFsj2NiztoUQ 99OOVo8YF0LcTztsNnp2yfPTygbY9uRMt/m2M8clu955qSxLlzdrQ3aBeKfrEUo7GW10bRzK54K4 b0PYs/59t+We89zm24sDpUa2zrliJEeFFBuWd6selk9GG3/BQmBZsnRKygNK8I9Ae+SNxrmGioNU rnAKzzaqcArPNqpwCs82qnAK77WNRicVSwxSOQWLKy6Fg1SebVRhoY5nG1VYqOPZRhUW6nivbTR1 UkIdtz6/4lK4vY8AdTzbyDZSebbRWlaMD6qNRidllXXcjnSBVG5HzxQX49lGtpHKs43WsgSfD6qN Jk9KEZaDVJ7d2Sos1PFsowoLdTzbqMJCHR9GG41OSj0gLpjlyizOa2fipLOcOXTiwHJWubHlWk46 y7ONbKOfbJBPM7JJZ7lOJnH+xe0rjXBWWBIHlmcbW6Lt0eikAEqkjpNJHKRy2/iKi/FsI9tI5b2w YU9GnWgxTlpxkMqzjXgbNDoplIqwHKRyGYQrLoWDVJ5tVGGhjmcbVVio46PZIF5pLAepnHnT4opL 4SCVD4MNvz2aPCmgRgG2kVI4BYuDVK5wCs82qnAKzzaqcAqvs0GcYHkMpGHtd60eyJICvJnNyR0r S5yXbH29wik8xQbwucIpvM4G9RT8NArHeKw9mjopmyjGJ7vrn220liX4fFhshG5hwImzXm2IoFsY fUoHYQVLoLysJgDnC79w1kJZu3ZtGWc7Kb6SonRw1koBrFSgNACuFQToEPVZSsoViGfbVL7y2Lxw VjZgeQvSwlWW0rDGCtvCG3f6qovNr05KH/QAxLOQEIswobvyyitL/Zhu94Q6zuCWuOJSuAbFhDqe bWQbqbwXNuygr8Xlc95piEBagCel/CxHwuLfgJNVS5nohOUklg2d8KTj6zwAPUukiJ9xxhmNEx4B 5IPTibCwE5wlUNgGON4PNlQ+EFdeQOfK2j+kJY/KUho6QT6Zzj9xwOank4JjW54k5QA49VJ67Ss4 Aux+F2/ypIASgFCGOo4hcZDKFU7h2UYVTuHZRhVO4XU2iBN8rnAKn+hbsTqucArvlo1YezQ6KbnC XG0sB5azpoA46SxnQQZxGRDn0aQt13KQbWQb/WqDK75uTXwOLGddD3HSWa7F8OxtTqxcy8FksBFr j0YnpYYBddw2vuJSOPnEQR3vFxsc1LXYtsK5NQ84t+Js5xZ9thLCBX5z14pSZj/7YSlL3ttc6mPg g1my3el6hHi20VpWjHMi6WQEddyejIpL4dlGFRdqg0YnJSgBCGWo4xgSB6lc4RTeLRv05E1Y86Bz C/8v5+b82/bk/RvK7N+96uW25c8L9q3HJ+hrfyC27TE+yO1h+UTbIE7wucIpPN/uVeEYj7VHkycl peUglYeMpXCQyjtlg1mzDbzxG+fm/rvOyKoZZZEHF51OJ+So65a5LTt2l2UKsTr5fJDao473gw3i lcZykMo5ucUVl8JBKh8GG357NHVSQh0fVNffLjDvXju96FD+Q3dk1czSxCFXL+mKHHHtUrdzd9XB 4i4Panv4vJ9tDMJtUgofBBuhNmh0UlZZx+3AIkjl5BNXXIx30kYDz/+zc/P+1+7LqmpeyfeuWdIT efatfQ0P6vaPAJ+o9ojxfrahoQB7MsW4BoqFVJ5txNugyZNShOUglcsgXHEpHKTyFBsNvHS4c/P/ U29l1ezS9OFTl/Zc5GEB9kO/tEeIg1TeDzaIVxrLQSrPt3tVWIhx9rnC8CZPCqhRAFzhFE7B4iCV K5zC62w08Nj/OXHyQfWprO9PWzphMvOpD8ptwJ2O7as6rnAKn+g2r+MKp/A6G8QJPlc4hXNyi4NU rnAKH2QbsfZo6qRsohjvV7fc7fzIucf/28TLB7eXm/PD65ZNuJxxe/UZWuDvt17cJg2LjX6/TUrl /W4j1gaNTgqlMlhuC+Vfk6zgKkhcPazyW867PrZcy5VWPNVGAws+liRf+Ox+bvH0v3YPX/43LXGX /uLv3LqH/mcZz//dl/yN2zb3Y42wnz4qH95ZbtIxf36lb2Tq/Gq+FxMftd+70R78Wz4sNrR+EmmU R5x/yzXREU46y9lWcf4tzzb2tZPfHk2eFEApwBVO4SpUSOUKp3Bs6KmAe/qzzi38+7Zk8Yx/cA9P +YdRdcinP1V0akUcn9de93BzXFQ+vKfctGNvfKXvZMXqbeW2Ae1P4HOFU3iv2lwcpHKFU3idDeIE nysc47xoy/tqwJ6MIJUrXMd5H46XgbHBe368JKw4IcZ58s2n1AF6xcV4t+oRa4+mTsomivGJdstL rL7Xuac+MSZZPPMT7uEr9oV3PPEJd9rR+zWlee++T7glN+9f8m98ufr300SFbStw/IzlfSkn31Qd vOro7X6P8Ylu8zreCxuhWxiw9qz9GiLYWxhe9qWD0soA0j/44IPlC8dHHHGEu/zyy0v93XffXXYy vIxMHrwVOh51HnQkJ510knvppZdKvTo+vbDLx8DJT1lTp04tOynyECc577zzyjxTpkwpwzNnzizT r1ixwh111FElV37ily1bVqYH6IU63vXbPaGOT9R8Fn3r2C06qPCgDuhfWX1/uZknFZ1BP8vGbekT RCeqzVN4L2z4c3+Ejdcd2xBBnb/fQWjFAMphCRStYvDss8+WncvLL79cLoEC8FTEgWxTDpxPKbMS AXmVznK8N1YyAKTXEi+qx6JFi8rOkfIEdaSsXkAa1QOOpHJ/X9XxkI1QGzR5UkAJQChDHceQOEjl Csd4Y3b4s5/rf/nowXJTT5v9WkfkW8eeXf7/+JJ73Ve+d2xL/KcO/Fz5f8AXvlL+Kw35Tp7xciNd SOYuqya46vvhINYGMd6tNrd8om3oBAKWx0AH9dvf/rbkpEfwmh555JGSsz4Uy7DA1VHYtZvQ01mo g9O2qJNaunSpO/HEExv58abkHaGjU6ITxBsjnTB79uzSu8M23hPp33nnnTKPOil5ZghLyhAH+Bef sNs9m8BykMpDxlI4iPEW7Nnh3OJvOff8P/WnrHm43MzTb329o3LStQvdISdd2KT7yvd+6n4xa0nJ v/+ba8uxM8Jf+PrBTenq5E+PrCy3l44qpT183o0293k/2CBeaSwHqZyTG+DpyOtBr3QxDlK5bMAV V8fpnMgjz06o4+3aEAcp3G+Ppk5KqOO9dMsFGtRK0+oEG58rbgG/2j+y5pFys866/Y2OCZ2Przv4 5791x095qEn3w7OnuV/fvNSdet2TZdxxl91fhm2akMx6clW5zUKsPeCKS+FjaXO44lJ4L2yM9xYm hWcbVVyoDRqdlFXW8V4NcKoCN95446iitCVW/L7wtA6aOFk7p9yMc+56c6DkvhergdhYe4iDVN5u m4uDVN4LG+MZDE7l1ga3aNyWaZVL6cXrbHCbZm8bBXiv66G4GPdtxNqgyZNShOUglcsgXHEpHFjO PT2YPn162zJ37twyb4ndxQ576RDnXixuD3slayv7592zYuBk+859nX2sbXzeqTav4/1gg3ilsRz4 nLGgU0891T3wwANlp8F8II5p1gRn0FrjSTzlI/6SSy4p87Ikrx0PUoejJ33ckunJ4Jlnntl4Mgg0 lkQaPeXDJmNhdHZ6GoheeSwHqXzCbvd0RcIltlyNJM6EQHHSWY5HIw4sb+cjjmDhwoXBTqhd0QL3 JdbNKzqt73ZXsFHggvveGkgBuhqqPXrR5v1sg3zaJ6SzXCeTOP8IHQbpLOefNHAGxuk44Jz0DGbD GRSfNWtWEycPg+2PPfZYOcDOP+UyXYF0ejIIX7JkScnVKVp7a9asKbm21/JYPZTfck3YVH7Lx7Kv lD/WHo1OCqBE6jiZxEEqt42vuBgHM2bM6Io0nhSCN8507uXC0+qkrJtfFn3xA28PpOiJn22PXrR5 P9uwJ6NOtBgnLZwOaeXKlW7BggWldwPQCXQiCvPRBtlgUF3TFejE8KjwpM4666wy/VVXXVUOccgG XprlesoHp9x58+aV+SlzLPUQUvl4bMTaoNFJoVSE5SCVyyBccSkcWH7XXXeVE826Lc8///yIxQK7 1ju35Hvjl/WPlcX960MrB1aAXlkAsXaCd6rN63g/2CBeaSwHPtftma/v9m0SfBhs+O3R5EkBNQqw jZTCKVgcpHKFN2+u1gHHxZ0I0VWgxEd3O7f0sPZlpJO69OGVAyvPrth3gKhtYny8bZ7CJ9qGThjg c4VTOCe3OEjlCqfwQbYRa4+mTsomivFuuuWA+ToM/E203H57tZpBA6+f5Nyyw0eXkU7qT4+8M9AC NMmzn2/FemGj32+TUnm/24i1QaOTqmskAc7glrjiUrgGxYQY5+nczTff3Hfy2muvjWxhge1vFx3S kWFZX40/2A9HDqIItE232xzezzbsoC+o46QVV1wKzzaquFAbNHlSQAlAKEMdx5A4SOU2fMsttwyE 6IAv8eHMorsvOihkQ9VJXTHn3YEWwNiK2sa2k+XjbfMUPtE2dAIBnyucwvPtXhWO8Vh7NDopucKc fJYDy7v1EUfN47j11lsHTngny8eVc98daLHo5w939sIGV3zdmsCbnhB70Acvr7/+evfiiy+WnOkD rGCghxH2NseWG+PA8on6OCh1grdjg4dTTIlQWXU2Yu3R6KTUMKCO28ZXXAonnziIccaCBlUefrh6 b2/7C/e6jdcc6bY+MsXtfOOZUjcaduza495fv8MtfH2Du2reexMuAm3T7TaH97MNTiSdjBZ33HFH QwSddHYlAuYzMQET2Kd+zHlSGi50nMznn39+GSYNc6cAekBnB2fOE+DCTjo8XvvCMf92pQVeOKZj YduIB+TRS8V0PqQDyq90TDCVfbvtdja81WtfMUcL2Ben/XpoX5Fe+UNt0OikBCUAoQx1HEPiIJXb 8J133jmQokHmdb/d36351f8Yt2y85gdu66NXuJ1vjqGTm190NOMUwIGttrHtZPl42zyFT7QNnUDA 8ieeeKIhFqShk2JNJ7jycJukkx8wj0mL09HhsPwKM8Stbc2VApRz5ZVXNvjpp59edkR0JJpbpQ6D jkCdFB0fbQmXfbg6KTox2VTHp3Iom+2yeZlAq7xAS8EA0jEJVXngdFJ19UAA26DtQCfe5ElJaTlI 5SFjKRyIP/PMM+UCYIMkwprTP9Y3snHqUUUnd2XRyT07snVxcPeyaftu9/qHW939L61xV490UkKo nQC8E20O6ng/2CBeaSwHqZxOSlxxKRyk8mGw4bdHUycl1PFuu+XMxL3nnnuC8rvf/a580qbwQQcd VLrS8CuuuKKMIw23XgceeGAjXTcF7N2x1a0542+HRtaee0BZL0Db9POtWC9s+Ld7dTx0C5PCs40q LtQGjU7KKuu4HVgEqZx84orzuSZz3nfffS1ywgknuGuuuabkzEj/xS9+UXLcY5uOuIsuush96Utf KsNHHnlkU3ynBI8PbLn/X93aMz8+VLJjUdX5qm262ebi/WyDQV1gT6YYt4PJIJVnG/E2aPKkFGE5 SOUyCFdcCgeW86Y4b5AjdAispySh01EcQiclTsckzpgA6W+77baGrlOieq79zSeGUsC2bWkfbehU m9fxfrBBvNJYDlJ53W2S3sfz9UIqH+rbPUGNAmwjpXAKFgepXGH+5ZLzNKQfRVh7zgFDKdvmXz9S w9a2CfFOtPlofKJt6IQBPlfY5xoUh2vAmUfuWs6XgW2OJ56yabUCpeMCu2HDhpLbJXx5IgbX0zH7 BI9hD3Dttdc20mvw2z4NFJQGwBVO4XRS4iCVKxzjsfZo6qRsohjvhVsOWIOZR/r9IhwYYM+GD93a 8z4/tCLY9ujnW7Fe2BjLLQyP9f1OSsunAD6cQAfD4nZaoUCdCvKrX/2qDKtjsU/HSMvTMfsEjzsK wJM2dXB+p6SngbIhfYj7t2KpfCz7Soi1QaOTQqkMlttC+dckK7gKElcPq/yWa/YyHFiutOI84gQ0 Qj+IHhNvmnGKW3fBl4dW9u6qvFi/PXrR5v1sY7wfvBRnW8X5t9za4LG9OJgxY0aD898JG8BypRWf KBv8++3R5EkBlAJc4RSuQoVUrrDlqsCcOXMmVLRT11389aGW7YsfKOsZa48Y72Sbx/hE2yBO8LnC KdyejCCVK5zCB9lGrD2aOimbKMYnwi1n4a6JkAp73fpLvj3UsuXuC8ua2i/G1LVHKh9Pm6fyXtgY zy1MKs824m3Q6KTqGkmA93o+i96Tmj9/fs+Er8GC3e8uc+v/dOhQy7bHbyzrar/AU9ceikvhY21z xaXwXtgYhPlFKXwQbITaoMmTAkoAQhnqOIbEQSpXOMZVGdZ27rbo9ZYN1/7UbbjiyKGWna89VdbV 76BCbRDj3Wpzyyfahk4g4HOFU3i+3avCMR5rjyZPSkrLQSoPGUvhIIWDp556qnxC0Q1RZ7jh6qOH XgTtX/5T2sDn3W5zeD/YIF5pLAepnJNbXO++wZVOXC/vSg9SubWhuDpu38EjrK/L+HoBjg1/Gy1n nXX7mXfpQQr326OpkxLq+ES65bri84jVvtzZCSmxZ5fbOO0nPZMpxx5U/n/t859xK6ccXfKTDv5S +c9EVP4/uubH7q7TD3YX/ehrZRg57Kv/2ODtyqbpJ5VV5Tba3++CzyeyzUfjvbDh38I0MP8v98kI dKHj8b/mRJEX4UIobvXAt1HHZQOuuBROPrsqgfQArqkS8PHY0MvVQHrg85CNUBs0OimrrOP9NMD5 9NNPl1/jGI+w5g/YsWy+2/jnn/dUTig6JDqjKT//Zkvc5w/4VIOTho5p9i8PdquvPbYpXTvCO4aA fdiLAedhsREaDC7xwtf3yQjsYDBTCbQ6gVYFEOSpsEIBq9FaG4pjQqjmOrEaAZ0eU2JY1oV0mhtl y4UzRYA4f4kVbLBNmhQK5BEBpQPSx2xoG+G8IWJtMEcMT0p5+A9xu69ArA2aPClFWA5SuQzCFZfC QSq3NoRQ55MimvS28cYTJlQ+uv44d9IhXy757F8d6qYc962WNId97XPl/5f/8dNN4RTZtnBmWU/A ftO+i3GQynvd5opL4SCVj2aDeKWpg00D54TVCRy63dMMcSZ1MgNdcfxbr4dOCk+MTkpvPtCBkE6A yxtisqjfSQGrly1BeYH0dKLqaO38LeJjNuxaWuikByncb49GJ6UrEi6x5WokcVZCFCed5bhv4sDy bn3EUQPd6PmgaKoIm2acPLSy/cnqAGf/AbvfhuXDnb2wQT55OqSzXCeTOP/ipLNcEx2V3/JsY8A+ DjoWG6tWrRph1eB6qGNCiAN7t29xm246bShl9/vLyzrqyg38/dbt9oAPiw17MupEi3HSioNUnm3E 26DRSaFUhOUglcsgXHEpHKTyFBuaW/X222+Xc54kr7/+eqnf9uRMt+nmXw6X3HpGWTeB/dAv7RHi IJX3gw3ilcZykMrbffImDlL5MNjw26PJkwJqFGAbKYVTsDhI5Qqn8LHYAHrNZtMtpw+V7N1ZLami A4d6q+792h5whVN4tlGFU/gw2mjqpGIZLB9k11/YvfpNt/nWXw+kbJ171UgtKgxye1iebWQbMd7o pFISwxncEldcCtegmFDHe2FDt4Rgz6bVbvMdZ7vNt53Rd7L96ZtHtrKCDgJAPYalPbKNbCPGmzwp oAQglKGOD7KradfeEXa8eH/RUZzZG7njt27XOy+NWN4HbR+IbXuMD3J7WJ5tVOEUPow2Gp2UXC96 N8uB5f38Ecdu2Ah1Xj52r17hdn/wmtu5bG5QiI9Bj3OBtndQ91W2kW10w0ajk8qSJUuWfpTly5dP DQ6cZ9e0CqfwbKMKp/Bsowqn8GyjCtM/NQ2c28gYxy0TB3XcunmKS+HZRmtZMZ5ttJYV49lGa1kx 3i82WjopAKf3E1dcCgepPNuowkIdzzaqsFDHs40qLNTxQbDR6KSkUAIK9hMLdVzhFJ5tVOEUnm1U 4RSebVThFD4INlo8KRsZ45PJ1QTwbCPbSOXZRmtZMZ5io6WTAnB6P3HFpXCQyrONKizU8WyjCgt1 PNuowkIdHwQbjU5KCqGOM3dBXHExrnkSQirPNlrLEnyebbSWJfg822gtS/B5v9ho8aT8BCE+mVxN AM82so1Unm20lhXjKTZaOikAz65mFRbqeLZRhYU6nm1UYaGOZxtVuNFJSSHU8cnkaopnG9lGKs/t 0VqW4PMUG41OisRyveB2+U4lFs9Lz2YblpPO8mGyQVl4AqwiafkgL9NreT/ZiLVHo5OSAsApSFxx KRyk8myjCgt1PNuowkId74YNlQngeZXNKizU8XZshNqj0UlJIdRxe4VSXIyTVhyk8myjtSzB59lG a1mCz9u1oZMHpHLrMSguxkkrDlL5MNqItUdLJ6VImwmkcoVTeLZRhVN4tlGFU3gnbVAW4nO8A3GQ yhVO4ZPNRqw9Gp2Un0CZbeIUDlJ5tlGFhTqebVRhoY53w4bKBPB2bmEsB6l8MtoItUeLJyXU8X50 y8VBKs82WssSfD5ZbejkASl83bp15YcyrfAZNdIoneX2Nom0+tgmkB74vNe3YoqLcdU75fPqAjzf 7hXINqpwCs82qrDllIX4vA6csIceemjJSc+Xhjl5Y2WJ+59AT71N8rnCKbyTNmJfLk61EWuPRidl GwWuguH8W8635sWB5UorrmVA4aSzPNvINizvVxsqTxwcMXVpkwDSEM9j9UMOOaSRFg9j9erVJUd3 1VVXlTo+nc6n1liimvCcOXPKz6rL3jXXXFPqly1b1sh3/PHHl3o91kf/4IMPlp9e//Wvf+0uv/zy UodQV/KfcMIJpW04naD05Ln//vvdjBkz3OGHH16WxxQNOJ9R37ZtW6njc+984v300093l112WVkW 6SiDdNiiHnxSfsmSJWUe2WB74UqvumjbbT1AqD1aPCmhjvejWy4OUnm20VqW4PPJakMnDLD8xFmv NomgE4sTUiep1XMi2zTc7px44ollmkcffbRxu6d0gHR0ZHQU4Morr2y6TVInAqeDkV5l0RHB8dTo BInDFnmeffZZd8EFF5Tp0NPpiGMXUD4dGlBndv7555fbRH7KZHvwpHS7J9uq0zHHHFOG7TcDKCff 7hXINqpwCs82qrDllIX4/Px732oSC3u7x4m+YcOGkpP36KOPbnDE3uJZzkktj0OgrOOOO67kVq9O CqgTIa/KAvyrQ4Erz+LFixsdCnnUYQK2lW2no1Enxa0r+RH4Aw880Miv2z3fNuEFCxaU2z9v3ryG Hlgea49GJyWFjYxxOxsU1HHSiisuhWcbrWXFeLbRWlaMj8WGTkpxcPmcd5oEKI583O6BDz74oOGR AJ34AK/i5ZdfLj0Z8tpOROng8j7gK1asKMuzs75DnQgdAx0lnLTTpk0ry1eHIu/IdozcluFJqVw6 Sri8LjjlA3lsyo8NvD86KbZXthFsi5955pmlXTiw9QCh9mjxpIQ63o9uuThI5dlGa1mCzyerDXsC WR4DafCkdLIjnLyEOXnpPOhkEE5kbnfgjOlMnTq1wf10lMl4E6ADtLdJeDDq3JQfTkenMqiTOi7K Ouecc0r97bffXuZVWdzG4e2Q5rzzziv1lK/OjTzUg86KMs8666yyk+U2D3vy6HzblMt20TlazzLf 7hXINqpwCs82qrDllIX4nBNeHKRyhVP4ZLMRa49GJyWFjYzxfnXL4YpL4dlGa1kxPplt2BMuhfu3 MHWctOKKS+HDaiPUHo1OCtdWjQLX41frVovziFWcPJYDy/MXXbONQbahk4/bEsu5dRHXSSZOuhgH lm/atKmpXMsnm41YezQ6KSkQQCZxkMoVTuGDZuP9999vnABjAQOTQsxGjOf2qMIpvJM2KAvxeb7d q8IpPN/uFbzbNqJYN8+5FWc799K/OLfos5UUeP7tTe43d61ws5/9sCHvrquuJjFgbxj2FXzYbNgT LoXjHYiDOi6PA664FD6sNkLt0dJJAbgywhWXwkEq70cbevLQhC2Fp7nsB87N+TejS4FHl61z37ny 5Vr5/rRl7uEla8v0IWibAHyytoc4SOXdsKEyARzvQFxxKRyk8sloI9QejU5KCiUgk59YqOMKp/B+ sqErQQPLf1Z0Ov+2fSkwp+ikvnvVy23Jabe+7pa8t7nML2zevLntevhc4RSebVRhyykL8XnqLYzP FU7hk81GrD1aPCkbGeP96pbDFZfC7RhRieXHOzf3fxmfFBhLJ2XlxJtfc6s3VXUC2s5YPYalPfrV hj3hUvhE3CbV8UGyEWqPlk4KwJURrrgUDlL5RNngSUQDOz5w7vH/VHQw/64zUmBu0UkdXHQ2nZBb n6smHwo8cVI9bJ1iHKTyYW7zFA5iXGUCeDu3MJaDVD4ZbYTao9FJSSHUcR4TiisuxvVIUUjl3bCx Zs2aEVZg29tFb/LvOy8F5r5SdFJXL+mo3LBwVVk2UKMD6jeo7eHzfrShkwekch6piysuxu1jeZDK h9FGrD1aPCk/QYj3q1sOV5zPWRKixK4Nzs3/34qe5D90RwrQSR1SdCzdkFlPF57fCDQdYhDbI8T7 1QYnkE6uFD6st2J1vFM2Qu3R0kkBuDLCFZfCQSrvhQ3WxGngmU84N+8/dlcKzF2+zh16zZKuynvr 93lTgLqq7paDVD4sbd4NGyoTwPPtXhUW6ni+3StQZ6PElteKDuR/7Y0UoJP6XtGRdFuOnb68tCfY fRLjE90edbwfbejkAal8GG/FFBfjnbARa49GJ0WDyBWG44aJK7F4P37E0ZZLuIFFXy1u7/6yd1Jg XtFJHTZ1Sc/EelXt7ivLB7nNu2WDsnQyWd5PH9Ukj+Wks5x/W67l/WQj1h6NTkoKAKcgccWlcJDK u2FDZbodq4tO4z/1XgrMLzqpw6cu7alcM/+90jawTwBBKh/UNvd5V4+rAvB8u1eFhTqeb/cK+Dbc 2vnOPfafJ0YK0Ekdee3SnsvR1y8r7QPeM0zZV6m839s8lbdrQycPSOXWY1BcjJNWHKTyYbQRa4+W TkqRNhNI5Qqn8E7awD0ssfKqorP4PydOCjxWdFLfn7Z0wkRgVcjQvorxQWvzGO+kDcpCfI53IA5S ucIpfLLZiLVHo5PyEyizTZzCQSrvlA3uf0u8cqJzj//XiZUCjy1f746atmxCZefukSkXBWL7zeeD 1OZ1vBs2VCaAt3MLYzlI5ZPRRqg9WjwpoY73m1teYtG/FJ3Ef5t4KfDYq+vdD69bNuHy0cirNdaj 6kV7DJMNnTwglQ/jrZjiYrwTNmLt0dJJKdJmAqlc4RQ+XhuNd++e/aJzT/zVqLL7sb9y+++/fyP8 jX/6eBmWoFt848dKvu7B/9HIM/Wsv2nkGVUKPFF0Uj+6fllfiDyq2BiV5YPQ5im8kzYoC/F56i2M zxVO4ZPNRqw9Gp2UbRS4CobzbzmdgziwXGnFNSsaTjrLx2ODR5clXjnBuQUfG1Xeu/t/Fp3N31Wd USD+swfs1/R/5Lc+3hROlgJ0Usf8+ZW+EYH91q32sHzYbKg8yylHnH/L9cgdDixXWnGtWgknneWT 0UaoPVo8KaGO94NbXmLVLUXHUHg5bUjVSTXr7r7k79ySWX9b8i98lk7pb9xpP/wHd8pR/9CULkkK LHhtvfvJDa/0lQjdag/Lh8mGThiQyofxVkxxMd4JG7H2aOmkFGkzgVSucAofi41Vq0ZetN26wrmF f9+2lJ1Ugm7xjH9wS26q4j57QGt8VAosfH29O/bGV/pKjp+5b3Y6+1P71PJ+bXO4wim8kzYoC/G5 vAEhxu3HNm3+FJ5qg89E8ekogN5+hVjpYhwbfN7KfmZKqOMKp/DUesTao9FJSWEjY9zOBgV1XFMD 4IpL4XU23J7CNXyyuB0bg5Qdkgm/d+/H3dTfFN6T0e1e8HF32tFV3LqHP+4Wz6z+bZqoFFj4+gb3 8+nL+07shE+7r1P4RLe5z3tpw55w9qTyoTjNtuajmnQeNo/P9WQarrgULhuCOilg9fBO2ajjnbIR ao8WT0qo4xPllmtHuKc+MWYpOykT/saXm8PIP3+h6LSK/x1PfMI9fMUn3KW/bE0TlQJPFp3U8TOW 96Ws+Mi8cF2grg0E+ES1eYz3yoY9gSxfe9Z+TSKQRrcwfK2XD2vy4Uz0COMzJ510Uvl5cjqWtWvX lh/iPPXUU92iRYsanpc+FLpy5coyfOedd5Yf3qTMSy65pGHj9NNPd8cff3yjM+QLx0cddVTJ9QFQ CcA+3Hpb2NI2Kp4y8+1egbHYcK+dXXQGn+5fKUAndcLMV/tWLNi32r/92uZwhVN4J21QFuLzdX84 qEksSMMtDrdQb7zxRvnVYOkROgH+7ZeO1YnA6dgAZUgf+pQ6X0ZmwNrmV5kAPUJePn8O50vCfIFY n3TX7R6dFNCXiskjDsgrqNxUPmlu90pwm/f0Af0tBZ56c4M76aZX+1ZOu+W1cjtZQx3E2sDyiWjz Ot5LG/aEa/xfd2yTlLqRODz+kBcDSKOw5fwrP58ob9gp/hF1UnA6KWzYci1XJwXokH7/+9+XXGWR H09OnRCdIp0YnQk60gD/VqyO6y4HrrgU7tsItUejk8K1VaPA9fjVutXiPP4XJ4/lwPJOfMSRx5Ql nvls/0uBp4tO6pSbX+tref3DreW2jqU9yGM5sLxXH+7shQ2dfNyWiINNs3/VJEC3PKR75JFHGvx3 v/td2cEoPx2KOB0KHJ1sHHPMMeUDIrwkOg70DI5zuwc//PDDG3lkw3J5Z9LbD3cq79KlS92NN95Y 2sAje/HFF8sODa9P9bj22mub6mQ5sHzSfxy0xHtFr//s5/pfCjxTdFKnzX6tI/KV7x1b/jOW5scd N3Wh++6JF7pTZi11PzjnRvetY89uxH3+6wc3pQ0J4CBptz18rnAKHzQblIX4vA54UToxSc+Mf3Ui CHzZsmVuwYIFZccjndLTWRBGDjnkkFJPRyLPBz1p8K5OOeWUchwKHVx5AdtBGHDbSdl4UdTtrLPO chdccEGp17gZwIuTbe0DQF4BrnAKnzy3e5sWO/fcF/tfCjzz5kb3y1te76gceda17uQbFjXpDvzC V8r/n/7xvjKONKfOXOI+deDnmtLF5MYF1XQO63HYNrB8Itq8jvfShj3hUjgdvzjwuToRuDwOuNKl 8NFsCPDRbNBJqe5W30kbMe7bCLVHSycF4MoIV1wKB6l8NBucPMBWwn14h3PP/1P/SoFnV2x0p9/6 ekeFjseGfzX7VfeFwltSGE+L8Pd/c637xawlTWnrREhpjxgHqXxQbdhjEI53IK64FK6nZ4L0wOdj tQFSOJ0Tt6XcXtr8KRyk8nbqEWqPRiclhRKQyU8s1HGFU3iqDdxchAZu4K1Lik7hn/tPCjxXdFJn 3PZGx+S7P/+tO+7yh5p0X/3eT91p019o0p1+8yvu6HOnuwO/+JUqzWE/a4oPybTH9s2d6qc297nC KbyTNigL8XnqLYzPFU7hk81GrD1aPCkbGeO9cMsZ4AT33HNPo5NCeGzahFeOq5YI7hcp8HzRSZ11 +xsdkR+ePc197+SLWvSf+OSnWnRf/MYh5f9nPvelpvBoAvRwItYevWjzfrVhT7gUPhG3SXV8kGyE 2qOlkwJwZYQrLoWDVD6aDcATiJA8+OCDIykK7C0OppcOde6Fr0+8FFj09iZ39p1vjlt+c3t1Gyf5 +uE/K/VH/3aa+/H5M5rSfrbwnsRPuPyBMv3pMxc3pYnJTSOfyeqHNo9xkMq7YUNlAng7tzCWg1Q+ GW2E2qPRSUkh1HGNFcEVF+N2UBa0w+fNmxfsoKy8/PLLZdoSO4rtWnzQxEoBOqlz7npzoAToiRTw 26MXbd6PNnTygFTOI3VxxcW4fSwPmGpAO/AUjrlLgk0DD9nw3+GT3reRysdTj1RubcTao8WT8hOE eC/cchDqlGLCY94GNjxddBj/MjFS4IWik/rd3SsGSpavqg6WWHv0os371QYnkE6uFD6e2yQ6GXGr 93nMhvIL8E7ditXxTtkItUdLJwXgyghXXAoHqTxmA/BKwfTp09sW6w24VTOce/FbvZUCdFLn3bNi oOTC+94qtx347TEaB6l8Io+r0TiIcXsiwetuYRiKYPImEycvv/zyUse7d4yn4iExd4mHQHAmXuqY JT2dDHLhhRc2vCLNXicP7/099dRTZZhyZNu+wwe0HYR5109QegDPt3sFxuKWg1tvvTXYCaVKY5Y6 WHGucy99uzdSYPHKTe78e98aOLHw26bbbQ7vRxs6eUAqv//++xuTNPVeHO/KnXtucRyOpNGrK9zu qGMBo3H+yc8ETjo9OFMJ6OjgSsetn24X2R4eOgmkE+p4393u0SByheG4YeJKLN7NjzgSD0IdT7ty xx13lGU1sOyYoiP5bnelwIvvbHIXFJ7JoMmTb1RrCtn2EM8fB03/4OXDDz9czj8CjJkyHMFrKLNm zSrT4VkwOxxOmcxTwh751QnFuDohXtk577zzSo5OtpWOMqkrfNu2beXrLiortR7UX5w8lpPOcv5t uZan2oi1R6OTkgLAKUhccSkcpPKQDcCb3DNmzOiY4B43sGt9ceQc3D0pQCd14f1vDaQADhS1h22b GAepfKKOqxQOYlxlAnjdLYx9GVgrEGjVAeCvVECHIq5OKMbVCTEGi2emOP5tOnlwgNtCXoEBpBHg +XavgD3gQQrnKhTqbMYruMgNbH2t6FQO6bwUeOmdze7iB94eSBH8tul2m8P70YZOHpDKub2S56JO g9sv3XKhpxPh6TVct4Gaja4xKt6jYz0pjS3hfalDev755xveGGX77/DREco2LziTTkjl1vNRXIyT Vhykcmsj1h4tnZQibSaQyhVO4b4NdiwIdTCdFC2VWmLN/c4tObRzUuCldze7Pzz49kDKhq0jH7go YNumjiucwifiuErlCltOWYjP8Q7EgeV0GoxJAT+Nwim8zkYdVziF95ONWHs0Oik/gTLbxCkcpPKQ DTBz5syeSNNrNu9eVXQy3xu/FHi56KT+9aGVAykPvry2rIPaw7ZNjINUPlHHVQoHMW5PJnjdLYxW LPD1Qiqvs1HHQSrvNxvsc78NWjwpoY530y3n+3ChDqVbwlPEJrx5unNLi85mrFKATuqPxQk/qAJW r15d/gPappttDuD9aEMnD0jlvb5NUlyMD4qNWHu0dFKKtJlAKlc4hfs2AAOMPAXptehpTAles1l+ TNHpHNa+FFhSdFKXPrxyYEWwbVPHFU7hE3FcpXKFLacsxOeptzA+VziFTzYbsfZodFK2UeAqGM6/ 5dwmiQPLlVZcqyTCSWe5bwPcdttt5VOQiRIeFTews/Amlh7enhSgk7rskXcGVoAeIattutXmlver DXuSiVOOOP+W65E7HFiutOIaJIeTzvLJaCPUHi2elFDHu+GWawXBUMcxEaI6ltj0nHPLig4oRQrQ Sf2pONkHVbbvql5xEGinbrS5z/vRhk4YkMqH8VZMcTHeCRux9mjppBRpM4FUrnAK922Am2++ua+E iXANfHRH0REdUS8FlrxXdFKPFif8gApjasC2TR1XOIVPxHGVyhW2nLIQn8sbEFK5wil8stmItUej k5LCRsa4nQ0K6jhpxRUX4yDUUfSD4JY2sPLiokM6MiwFlr6/2V0+552Blfteqrxa2zbdanPL+9WG PeFSuG6VhTpOWnHFpfBhtRFqjxZPSqjj3XDLuW8Fs2fP7lth/ksTXjsu0kltcVPmvDuwcueiqpMS aKdutLnP+9GGPYFS+TDeiikuxjthI9YeLZ2UIm0mkMoVTuG+Da5ct9xyS9/Lk08+ObLFBfYUO3n5 0UV3X3RQSIFlRSd1RXGyD6pMX1h9oMG2TR1XOIVPxHGVyhW2nLIQn+fbvSqcwofqdo+5OcxbGhTR J7BLbHu92JvfL2nZSc0tTvgBlavnV+ue27bpVptb3q827Ak3GueOgNdRJLyjx+erBKUH8Im6FZs2 bVpjlQSrt3y8Nrjz0Ks5Vm+5byPUHo1OCtdWjQLv5AcWbbkxG2DQOimJ6iHQSV1ZnOyDLILathtt Th7L+9GGTj5uS8Rj0C0P6fwPdPL0WvmlB534qKbPQTdssJpDuzaoe6qNWHs0OikpEEAmcZDKFU7h vg06KeZJDapwAoSwZ68r34mj87rzhdXuynlFR9DnAviKrmDbyecKp/CJOK5SucKWUxbic//NBQvS 2FUOWNyOFQlY+I7XZbTwHe+qauE7TcHRS8KXXnpp4zZp6tSppU4eGWEWuMMbAnqZWB0j4VNPPbX8 8Cd63lUlrd2mKVOmlNuEDeU/8cQTyzheaObdQxbSY9E+6x2ymgJpqAthFtQjrHLF7SJ8sXoApQex 9mh0UlLYyBinlxMHddz2iIqLcTqp22+/fWBFV4+1Z+/nNt34c7f9qZvc7tXV+uF12F30Yuu27CrX Rp/x1AfuqnnvTbgA2zbdanPL+9WGPfn0z1plVoDiOA7UISxatKg8MQEThbXiASCN9TjoLNQJ0KnQ ubCgncolDZ0ZHQj5rrzyylJ//vnnl3rKZ44f6WUTPasiAG6/WEIGsAqDbvf0niHLysD1gjQ2WC0U ULZWcdDyM+LoVQ/KCS3C59dDnHziINQeLZ0UgCsjXHEpHKRyawPg9vmNPyiiRts062S35ld/VSvr Lvyi23zrr9325+5we9bt2ycx7Ny9132wYUf5ZeTrnlgV7FQ6KXSUAm2j9olxkMp7fVwpLoWDGLcn EuA1KiuANEonrwZIbzsRvAsttQJYU2rOnDlNqyeQJvThTk7y4447rklPZ/LAAw+U5QN1DnhBeEgA ++qkeAmaY5bbNG2TyrKdGeWiVycFZ5vUCbGNWpZGkG0Aj9UjxEPt0eikpFACMvmJhTqucAr3bdBJ 4UYOopTYvbPohP7HuGX9v37Nbb7zHLdj8f1uz6bm6QAh7Ni1x72/fodb+PoGd9X8oqMZp9y9eN88 KaGOK5zCJ+K4SuUKW05ZiM+feOKJJrEgjb21EngvVd4IXpNNw9pRLGR3yCGHNPJwcqPX0kK6JQS6 LQS+t0N+4vjHjjpD7NMJwvFsuN2jk8KmgHeGd6R03I4Cu2if9cLYJrssMiLb4nX1II0Qa48WT8pG xni33HJw1113DZxoYHDN6R/riaz/03fclnsvdDtffcLt3VW981SHdjuxR5ZV63rZtulWm1verzZ0 wonHoDjyqQMC0uvWSOBknzt3bunt2FU2EfJzXHFCS0dnQqfDOBG3Sepc6EjYXsrjdpExH9IDxqXw dAC3kOpQ6DTkLcFlg3LowOiQsIGO7dBKoCyNrDEqwK0m221v9/DE/EX4/HponwzU7Z5eP7n77rsH SuSeb1s4M9ihTIRsnHqU2/rolW7nm8+W2zYabCfG9AP+BdpG7RbjIJX3+rhSXAoHMW5PJDjegbji UjhI5ZPRRqg9Gp2UFEId5zGhuOJiXI8UhRiXK+h3Ajwh4J+nEVwxbNwnP/nJhu6LX/xi+a8w+Xji prTdEmHNr/96YGTjtUe7rXOuSu7EaKdutLnP+9GGTh6Qyhm2EFdcjOvxu5DKh9FGrD1aPCk/QYh3 yy0H99xzT1Q+85nPNDidEHOU6JRs3EEHHVTO58DtVdpuyZo1a8ptXnPG3w6V7N22qayXbZtutbnl /WqDE0gnVwr3b2HquL1NUlwKH1YbofZo6aQAXBnhikvhIJWHbHCfzD2tL3yi6rTTTis5How8Jv7R cb+8//77l0/a6Khs3m6InujsWvmSW3vG3w+VALnotm1iHKTyiTquUjiIcXsiwfPtXhUW6vjQ3O6J sy333Xdfi3BrJ/6lL32p/MebOfLIIxt6xTGYfdFFF7kTTjihKa6TIqw98+NDJ8DOoqdtutnmAN6P NnTygFQ+jLdiiovxTtiItUejk6JB5ArDccPElVi8Wx9xBJTNJ4Gs4CH5OgSPhk5KYT6WSAfFDGBm t1511VVl2ObphOjTWBuu+J5be9Z+QyeCbZt+/HBnL2zodoSTyXKtKGlPMnHy6ekeeaRXfsv5R5hG sHbt2oY+xYYtN8WG8lveTzZi7dHopKQAcAoSV1wKB6k8ZAMwKU3C7RydlMTG4dHQScHxqn75y182 4kjLOJXCnRI9tt27Zb1b+5tPDJ1svuWssn5qD9s2MQ5S+UQdVykcxLjKBPBO3ibxSF+TIwV4vt2r wo1OSgqhjtsrlOJinLTiIIXz7lC/ClcIsPbsTw+l7FkfXqal220O70cbOnlAKmd1jKOOOqrkTPRl moreZdMcI9YnU3rCdmInc5JsGoDevvtGmPfz+Do3OnVyeg8PW4QBEzQJ610/6UEdt56P4mKctOIg lVsbsfZo6aQUaTOBVK5wCo/Z4OuseCz9JnzXH2y+7Wy39pwDhlIsQm0DfK5wCp/I4wrUcYUtpyzE 53gH4sByO5ucIQnNpWPSpGZb05GQR+/daUY3Ok3SvPbaaxvbwWsssqG8/AMmbGo2uGaca+IoZWv2 uN71g6usunrUcYVTeKoN1RXYNmh0Un4CZbaJUzhI5SEbgEoxs7XfpMSe3W7t7/5xKGXdRV8rq8i3 D9Uetm1iHKTyiTquUjiIcXsywUe7haGTgtNZcIGD0yHJ41EHA2dIg0+uaza68uK58+oKnA4OwBGg zkqzwemQ1FkpDSAd7/oBq4ePVo8YB6m8HRuh9mjxpIQ63m23HIQ6iYkUzYhfe97nh1Z2vPhgWUfg t0232xzejzZ08oBUzi2MOhp5UnBeW/E7KfsCrzwpOiziL7744jIN8N99w4Y6KTwp5gWilxeGXp4T ae27fsQJddzeiikuxkkrDlK5tRFrj5ZOSpE2E0jlCqfwOhsLFy5sedN8ooT7frBj8QNu3flfGloB GnMDsbbxucIpfKKPqzqusOWUhfi87haGzkIdAu/B8a4doKPRi7nqYPCisHXWWWc1vXcnYb0mgD3p tOoAHHCrqOVY/Pfw9K4f6W0Hpu2tq0cdVziFp9rQPge2DRqdlBRkgqtgOP+WM/gnDixXWnHNt4GT zvKYDUAcrnI/iLDugi8Praz/47fLOnJl89uD/263Of/9akPlWU454vxbrkfucGC50orjWYmTDrA2 GRwb3PIpv9LwP14b4t2sh3g7NkLt0eJJCXW822755s3Vd99YX2eiRa++rL/0u27dhV8dWtn9YfPi fH7bdLvN4f1oQycMSOXjuU3i9lCeF16QvHibBj4eG6m81zZi7dHSSSnSZgKpXOEUXmcDvPXWW8GO o1eidYJ2f/CGW3fx14dagJ1AB1K5wil8oo+rOq6w5ZSF+FzegJDKFU7hk81GrD0anZQUNjLG2zmY SSuuuBQusN7ORImw7g//MtSy9ZGrRmoab49etHm/2rAnXArXbGuhjmsMEK64FD6sNkLt0eJJCXW8 F265brMYFORpR6/l7bffLu1vvPFkt/6Sbw+1CHXt0Ys270cb9gRK5cN4K6a4GO+EjVh7tHRSirSZ QCpXOIWn2pg/f37PBezdvsWtv/TgoZZtj+1bKbKf2tznCqfwTtqgLMTn+XavCqfwob3dIx+TCsGS JUuCHUm3RK7r+j8dOvQCqG9Ke4iDOj6eNhcHdbyXNuwJl8In4japjg+SjVB7NDopXFs1ClyPX61b Lc6by+LksRxYPt6POPKIEoQ6k26Ivgm2de5Ut/7yw4Zatj9ze1lXkNoealvLgeXD/nFQuB6529sc cdLFOLB8kD4OajnotI1YezQ6KSkQQCZxkMoVTuGpNgAvbT722GNdlxJFx7jhiiOHXgAHSbvt4XOF U/ig2aAsxOf5dq8Kp/Chvt0TF3i9oJvCWkNgw1U/GHrZu7W9jy1MRJvX8V7asCdcCqfjFwd1XB4H XHEpfFhthNqjpZMCcGWEKy6Fg1Tejg1AhUKdSyeEL82Cna8/7TZcffRQy5Z7LirrymRBgf3cb21u OUjl3bChMgEc70BccSkcsGQKLw4Dq4ezTLZeKh6PjRTOdjDeC9AvWLCg8UqNXt9BrzzidhsFcV4J +sEPflBygL6deoTao9FJSaEEZPITC3Vc4RQ+Fhtsa6iTGa8IG6YeM/QCNNbHvtX+7dc2hyucwjtp g7IQn9eBF371Xp3Ss1KBXW7FlhXjnNz6ZDmQHtRxhUOc7bB63YrxrxecWQsLKA3wucI+1zI1Vi8b QozH2qPFk7KRMT7Rbrn/9djxiuZkbZx+kts47Sc9kYt+9LXy/6NrfuwO/PQnm3QLzzvcnXTwl0r+ tc9/pvxXmDSrrz6m5GORPZuqutp9ncInus193ksb9oRrnFTz/7JZCigOj58XfW3nwioH4gK8U7dJ ddzasJ2n0vFv17OSfqw2tJYWXOli3LcRao+WTgrAlRGuuBQOUvl4bIQ6m7GI3o3as/59t/G6YydE Pv3JT7Toyo7L/B/21X90r156tLvr14c0pWtHdryw7wMSwO5PeL+3eSrvhg2V2cCTH2+WAqRROryp E088seTotJqBVt3U7R5rSPECLisgyAPTrRRrRNHRcRtGWXhixPM2BC++a50qwD9ejL5WrM6If5Z8 IT1LvUiv7dDtHp0U2yK9bve0lAyrNXArZ7eRpWd4oMUy3myLoE4KkLfjt3tCHecxobjiYlyPFIVU HrPBY2GgxhuvCBv//POeyrrrftZYt92Pe/VPP3JTfv7Nks/+5cFlmtXXVh2VnzZVNt/6m7Ke7XgS Anwi2zzEe2VDJw+w3L3w9WYZAWl4pA44mQlzknKCKz+3cHQCdE66NRKIowMgTp0coLPgmFeZrA9F xwZXfnHGV5UOD47vUCqN9IBOT50R6bTonvTYYChE5QL+tY1wOkY6MGvDr1Md176Cx9qjxZPyE4T4 RLvlNDigwwp1PKnCVQBsvrto7BuOnzD52ucPaAqXnpUJI6T56Lqfu7vOPMxd9OODWuJHE8A4VDfa w+fDZoMTSCdX4yRb+r1mKaA43cLgvXALxYqcAno6AZ3kdIR0HHhNiqOD4BhnjSh0CGWwTaQFTHQm j0AaoA5C6fCQZs2aVXKrh9vOxt7uSc9y2eq4AHFA26gBdN9Gvt0bgVbKxP0MdUApAvbu2u423njC hMrXvlB0UiO89KxMHDL7V4e61dMKD2vKT9wzF//QLbzwqDLsp4uJhd2HPu/3Nk/l3bChMutAGqUT p1Owt2XAeku64OKNkMZ2YLZDwZMC6AhzW6aODfCvjgYor/WQgPSA7fBv9wB6eXqk1zaqHtrGmI1J f7tnua507DBW8mxHaACwafpJEyJPXnR043Zv9XXHl7oTDv5yQ4egW/PnE9yU477dyIeecSqFRxNB t8ndbA/xYbKhkwekcnsLw7iNOKIxH4RjcPny5SXHq7dxgFspOCc9HQXeFGE6BKVDL/v805nxrUkG 7lmbSulUJ7wfvhxjbVnOWuji1ENxWspYY1IIn3hj2+iE5MHR2RIX8sCAz9u63aNB5ArDccPElVi8 nz7iiABeZwl1RiHRqy/bn7vTbZpx8tCKhfZbt9sDPkw2KEsnk+VaUdKeZOLkEyeP5aSznH9bruWT zUasPRqdlBQATkHiikvhIJV3yoa8olSPqkSx4zbNOnVoxSK233w+SG1ex7thQ2UCeDu3MJaDVD4Z bYTao9FJSSHUcXuFUlyMk1YcpPJ2bdDzioc6Jol67U03nTaUsvm26gvEQKtI+PtKHKTydttDHKTy frShkwekcusxKC7GSSsOUvkw2oi1R0snpUibCaRyhVN4p21obXQqHuqg9Lh117tLihP6F0MnWx68 tKyfULevQnwQ2zzEO2mDshCf4x2Ig1SucAqfbDZi7dHopPwEymwTp3CQyrthQ7PHuSd+8sknm0TY dPMvh052LJs3Urv0feXzQW1zn3fDhsoE8HZuYSwHqXwy2gi1R4snJdTxfnTLxYFuc8Drr79edlB6 jLrpjt+6TbN/NVTidu8q68Zkv9D+sXwi2iOVZxutZQk+n0w2WjopRdKziYNUrnAK74UNoPGqPZvX uE23nD40sv2ZW8t6Wdh6x/ZJjA9Lm2cbVTiFD4KNRiclhQrUfSScf8t5miYOLFdaca2SCCed5b2w wSNOYcfi+9zmW349+HL7bxreE7e1g9Qe2Ua2YXmKjRZPSqjjg+pqClvnXuU231qc7AMoe9ZUr/II 1G9Q28Pn2UZrWYLPJ5ONlk5KkfRg4iCVK5zCJ8IGE8tKFJ7IlnsvKE78MwZCdr42Mr9rBLZOdVzh FD6sbZ7KFU7h2UYVTuHjtdHopKSwkTFuZ4OCOq7xILjiUng3bWgQXdj+3G1u821FZ9CHsmftPs8p NjA+6O0hnm20lhXjk8lGiycl1PFhcTXt8rlg93vLio7hzAmX7U/Pdm7PvrE0UFePYWmPbKO1LMHn k8lGSyelyMnmavJOl8Wete+4rQ9dFuxEuiGhjmnt2rVt18PnCqfwbKMKp/Bsowqn8PHaaHRSUtjI GJ8MrqaPXe+85LY9Ps1tvr3oVDog21+42+3d0uzJCXYbU/hkaA+fZxuTx0ajk8LtkiG4HilaN06c x/ri5LEcWN6rjzh2ywaP+OuwZ/0qt3v1Crdz2dyg0Lnt3b5pJHUrGGfSNIlB31fZRrYBSNdJG41O KkuWLFn6VN7MnVSWLFmyZMmSJcsYpeFIWXArKLHQQH0orlP6bCNdn22k67ONdH22ka7PNtL12Ua6 PttI10+kjRZHKpQIWD2FWdg4i/Hos40KKfpso0KKPtuokKLPNiqk6LONCin6bKNCij7bqJCin0gb LY6UYDNbtKvXhAcEbhHL064+20jXZxvp+mwjXZ9tpOuzjXR9tpGuzzbS9Z22EXWkQCwjXlksrlP6 bCNdn22k67ONdH22ka7PNtL12Ua6PttI10+kjRZHSgnIINjMcFYBlV5x4r6e13WkZ4VQ6ZVH8PXZ RrYhPeLrs41sQ3rlEXx9tpFtSI/4+mwj25BeeQRfH7PR4kgJyoxYtKsfxGG6kD7bSNdnG+n6bCNd n22k67ONdH22ka7PNsL6qCMFYhmtl+bHdUqfbaTrs410fbaRrs820vXZRro+20jXZxvp+om00eJI hTKHMoIUvVbVA3AbZzEefbZRIUWfbVRI0WcbFVL02UaFFH22USFFn21USNFnGxVS9J220eJICX5C oV39IA7ThfTZRro+20jXZxvp+mwjXZ9tpOuzjXR9thHWRx0pEMuYhwLT9dlGuj7bSNdnG+n6bCNd n22k78NsoxKLmH7YbbQ4UqHMoYwgRT+Iw3SC1WcbFVL02UaFFH22USFFn21USNH32gYfJOUiI7EY j95+6DTbqNdnGxVS9Kk27PFu4etbHCmGuTTsxYmik8XqeXXQnkTSK4+Ani+ZSs/XSaVXnmyjAvps I9uQXnmyjQros43+tMGFSBemLVu2lKKLVUjPV9qlB9Irj4B+06ZNtWXF9NlGtiH9WGy0e360OFIW OoEQCwzF4jqlzzbS9dlGuj7bSNdnG+n6yWyDPBKLmJ61eGJxndJnG+n6bKNVX3esh+JaHKlQ5lBG kKK33hvcxlmMR59tVEjRZxsVUvTZRoUUfbZRIUU/jDa4q49dlMajtyMJ2Ua9PtuokKJPtWGPdwtf H3WklECw+rEaE1L02UaFFH22USFFn21USNFnGxVS9NlGBfJLLKyekQMLG2cxHn0nbDz11FPu9NNP dzfddNOItvM2RtNPVhsrVqxwU6dOdUcddZR79dVXR02PdKse9liPxbU4Uha2AAsKi8V1Sp9tpOuz jXR9tpGuzzbS9ZPZBnkkFjH9aGCEYNu2bSOhCpTx0UcflY7NoYce6jZs2NDQ4/Acfvjh7pvf/Ka7 /PLLSz0X1Zj9VP3SpUvLMm+44YZg+k7YEGL6yWqDz7acc8457jvf+Y574YUXRrQVQulBJ+tRd6yH 4locqVDmUEaQoh/GYexso16fbVRI0WcbFVL02UaFFH2vbYz2CGYsIJ99BIM9Lq6HHHJIy3bhZB19 9NHlhZcRDKFumySxxzzPPvts6UhpRMrmsUjRx2wgFuPRD5uN66+/vuFIjZbHIkWfWg97vFv4+qgj pQSC1Y/VmJCizzYqpOizjQop+myjQoo+26iQos82KpBfEsMxf34lKhZ+WYxSnH/++Q1HCv3atWvd gw8+6I444oimiy6jEwL8rLPOcnPnzi3jcLqOOeaYcmRL5Ug3c+bM8u0vHi0x+mUdKaC0lPfEE0+U OuW124UToHzr1q1zV199tTv33HPLsEA6CemxhVx88cWNbaVu6B5//PGmPNjEqWQ0DrC9OJJsg0br Hn300TKvRtQA+1C2HnrooXK7ZPfSSy91K1eudPfee2+jLtrnp5xySmmTchYsWFCmR8e+QueXw3ah pyx01Ef21YbLli0r09x3331lGupIWCJHyj7aq6v36tWrS532Pem17y+44IIyDqgsxCKmZz9IYnEt jpRgM1u0q7evz8ItYnna1Wcb6fpsI12fbaTrs410/bDZ4OLCa+MWsYsSOOO2N6Liw77CjnAR1qM9 jRjVjULpwq2LvC9cYLkY82gQh8PWw3+0B0YrD2eJi7ceS+mCb+sR21dyOqzT9MYbb5TbZh0Ble/b lrAN2ND2y6mQyMGS4+KPvAH0siOHCage2i4bp+3HQRM++OCDMh3bRD4Lyscp02NZ2ZcNHCDbtuz7 0epNmbSP9j3lSCxGa4/Q8S5dSN/iSMUSjlXf6yHmbKNen21USNFnGxVS9NlGhRT9MNoY7TGPxSUP rYyKBfnsIxjscSHVaAmwjk3oYs0IBiMWxFloO5GXX365zM+F3NYj9GhP5aWMcOCgTZkypXGhV57Y vpKDgyMiPY4Io22qG8IIGyNglCcdYvcVXNuPI2jhOzyxuWCyc+KJJzZGo2SD/X7eeec12oI430FD cLjYftUd3bRp05ocJN++bGhESqOMbIPqDWQDsSAc2vc2vb+vbJyFPd4tfH3UkVICwerHakxI0Wcb FVL02UaFFH22USFFn21USNFnGxXILxkv/LLkNNmLt6CLuB4Z2Ud7epR1/PHHl3ECeXAm5Bz5k9jl iOjCDdDrMdYJJ5xQPgoTcFAoj1GRG2+8sTFSQx6N4Gi0CaCXAN+RQt55550WRwTRNuDksA3Ssw2y ERsNkh05LosXLy7D1mGUKC1xVi8HzzpNdSNqtBsIOW2xkbPQo726evP4kGNE+15xcubsdkksYnp7 rMfiWhwpwWa2aFc/bMPYSLZRIabPNtL12Ua6PttI1/fSBheX0OOR0EWpXVBu7FGW71BpBMWm0cUT Z8k+kmMej/+46oEHHmg8ZiJ+0aJF5YV81qxZZX4LRjxC5VEO23v77be7t99+25155pllvJw44v19 FaofToUcE4mdk4SwDRdddFEj/g9/+ENj5Eg2cFJwIojXNuAcHXfcce6WW25pzAOTyJmUDQTnZPr0 6Y002ifMTwN2VFDC9ssJk+D8sP3z5s0rt4lyZs+e3RhpIkycHrXavNbJC+171Zt9ef/99wf3vYXa HPHbA13oeJcupG9xpDg5dOIxlKphYatnKMwOF0sPfL0+T4B+69atLWVlG9mG9NlGtiE9yDYGwwZ5 4Loo6cKEHvH1e/fubej9C5mvJyx9tpFtSK88Vt9JG+2eHy2OlBIgFlaPUQsbZzEefbZRIUWfbVRI 0WcbFVL02UYF7b86fbZRgfwSC6u3j92AjbMYjz7bqJCizzYqxPQc45JYXIsjJdjMFu3q8dikl/cm xPK0q8820vX9YuP9998f0VTQAczdswUnB3cBDB9bcFegD0/aOw/Aa7CyYyFdqr5f9pWfp119tpGu zzbS9bIROgd1PiMW7eopV/pso0JMn22k60ezETrepQvpo44UiGW0hvy4TumzjXR9v9jw5xH0KxgC 1lwDi9Hql6rPx1W6PttI1/erDfJILGJ6bo5icZ3SZxvp+myjVV93rIfiWhypUCJg9alGx6PPNiqk 6CfCBs5IEtbNc+79651bcbZziz7r3BP/u3Nz/h/pQt4RPLpsnfvOlS8ny2m3vO7Ou/ctd8uzH7p5 r6xzS97b7HbuTttuPlGxfv16t2rVqhFNBbtPLKw+H1cVUvTZRoUU/SDYIL/Ewuq54FnYOIvx6LON Cin6bKNCTG+P9VhciyMl2MwW7eqHbRgbGXYb77333ohmFGxa7NxbFzr30rece+w/Fo7Pv+28vL9v DZTSkbqqcJI6LMfOWO6mzH3XLXh9g1u/tZpAOxq0rxCLdvX90uZ+nnb12Ua6fthscHEZ5sc8oTzt 6rONdH0/2Agd79KF9FFHCsQyWkN+XKf02Ua6vpM2gvhwtnNLjnDu8f/Nubn/z97KqhtHNqLwqwpH 6ruF49NLOeaGV9yfF7zv3ltXvSodgj9/Kx9X6fpsI13frzbII7GI6Rk5iMV1Sp9tpOuzjVZ93bEe imtxpJTAFmwzw9lg6RUn7ut5PCI9FxzplUfw9dlGd2ywRojSt2DXeufeu9a55z9bODH/r/6QVdNH Nm5iHKmY/PbuFW7e8nVuy45mJwrosafd7+K+Ph+72Yb0yiP4+n62wTFPXsWrHODr2R7pFSfu65nL KH22kW1ID3x9N2wQTjk/WhwpQZkRi3b1wzaMjQyyjSZse9u55Sc6N/8/Fk7Lv+tPWTVjZGOLYOFI HXzVkr6Uo657xd2wYFX00SAXnVB7DMtxlW2k64fNBheSYX7ME8rTrj7bSNf3g43Q8S5dSB91pEAs ozXkx3VKn22k6+tsNGHHB84tO7bwSP7D4MiqmSMbXwRfWecOuXrJQMgR1y51NywMO1abN29uWf4h 1n4xfT4/0vXZRrp+LDbII7GI6e3dvx/XKX22ka7PNlr1dcd6KK7FkQplDmUEKXrW+xHsiqCIxXj0 2UYFhiubsKcIMxn8if/i3Lz/92DKqlkjlakcqUMLJ2UQ5ac3LnfPrmg+WQHDysJkPnZT9NlGhRR9 r23YlaP9i9J49FqBGmQb9fpso0KKPtWGPd4tfH2LIyX4CYV29cM2jI30kw1e02/BWxcVTsj/Zzhk VfWNJTB3+Tr3vWuWDLx8f9pSd9MzH7QsxaBn/EKszdvV9+ux264+20jX99IGF59hfswTytOuPttI 1/eDjdDxLl1IH3WkQCyjNeTHdUqfbYT1PBLyG77E239y7rH/XDgf//twyaqbRypYBAtH6rDCERk2 uXp+cXcfWd8qdizk8yNdn22k68digzwSi5g+P0pK12cb6fpO2qg71kNxLY5UKHMoI0jRD+Mw9kTb aGDVbOcW/Hfn5v8fwyvUcQTzC0fq8KlLh1aOum6Ze+zV9SO1bUbsWEjR99OxOx59tlEhRd9rG5Ph Mc949NlGhRR9P9mwx7uFr29xpBiu1ZAtJ4pOFqvnDSR7EkmvPAJ6FneUnq8sS6882UYF9CEbLY/u Ni8tnKf/u/Aq/r+TQ1bdMlLxIlg4Ukzingzyi1tfd++v3/caLuCOS98RzOdHtiH9RNvgQqQLE6Pl emwS0zOXU3ogvfII6PU9zVhZMX22kW1IPxYb7Z4fLY6UhU4gxAJDsbhO6SezDR7fcdFswge3OvfE f3Pusf8yuYR6j+CxwpH6fuFkTDa5d3HrNwx58y92/HRKn8/zdP1ktkEeiUVMnx8lpeuzjXR9J23U HeuhuBZHKpQ5lBGk6K33BrdxFuPRD4sN3Tk24Y1zCw/i/5q88sFtIzuiCBaO1A+mLZ20cu1j77XM pbIjBhb2uBqW8yPbqJCi77UN7upjF6Xx6O1IQrZRr882KqToU23Y493C10cdKSUQrH6sxoQU/WSz YV+Dd7uKPC/xSZb/X5YPbh/ZKYUj9er6ch7RZJff3PWm27pjX0cA9MjPP65ix1uKPp/nFVL02UYF 8kssrJ6RAwsbZzEefbZRIUWfbVSI6e2xHotrcaQsbAEWFBaL65R+MthYtWpVk2fsthfxz37BuSf+ exbJh3eM7JzCryocqaOvX5ZlRH556+stDhWIHW/t6vN5nq6fzDbII7GI6bngxeI6pc820vXZRqu+ 7lgPxbU4UqHMoYwgRT+Mw9idtFFiT+FJv3hY4Th8rGOy+Ma/dvvvv39DHr78b4LpfHnvrv/pvvDZ /dzUs/6uDO+Y9zH3jX/6eCP/pb/4O3faD/++KQ+6I7/1cbdtTnNZHZEP7xzZSUWwcKSO+fOyLJ5c 9sjKlkd+mgiMDPL5YfXZRoUUfa9tTPQjmPHos40KKfrJZsMe7xa+PupIKYFg9WM1JqToh9UGHw1u wluXObfgr7smi6f/7YgjVThGgXgrO+b/deE07Vc4Sv/Q0JH/swfs59Y9VIXvvuRvK6dp7l+79+7+ m9LpSil7zPLhXSM7qnCkXlvvfnzDK1kiMvvZ5oUXgT0WLVL0+TyvkKLPNiqQX2Jh9YwcWNg4i/Ho s40KKfpso0JMb4/1WFyLIyXYzBbt6u1kWLhFLE+7+kGzUWLDc849tb9zC/+2q7J4xt9VjtSUvw/G S3Y/8bfulKM+XjlJ85rj7r7k7xsjW4pHF0rbcfnw7pEdVvhVhSP108JhyFIvT77e7KyvW7eucRzm c7BCTJ9tpOtlg4sLr41bxC5K7ertK+yTwcZLL73kzjzzTHfTTTc16adPn+6+853vuFdffbVJbzGe etBHnH/++e7EE08sb/Zj6cdjI1XfDzZCx7t0IX2LIxVLOFb9MA5jj8VGA7s3Obfo6849+Q89kcUz P145Uld8PBiP7F7wD+6UH37cffaA/d26h8NpJDse/wf3jS/vV5ZnOXGX/vLj7rSj43bGJKvvGdlx hV9VOAg/m748S4KcdUfrhHQwmc/BFH22USFFb22M9ghm69atTY9T6kA61s8jX90jGEYgjjnmmNLB eOGFFxp6C5vewurrbFiMR59q49lnn3Xf/OY33Q033DCiqRBLb/X9VI/x6PvJhj3eLXx91JFSAsHq x2pMSNEPg421a9eOaEbw2hmFc7BfT2XxzP1GHKlwPHLpL/dzn/7Ufm7JTeF4yd1/3M8d+a393Lb5 Vfi9e/dz//yFffmwZeM7IqvvHdl5RbBwpI6bsTxLGzLvlXUje68Zox27SD7PK6Tos40K5JeMF7Gy CDOCcs4557hHH320dKZOOeUU99FHHzXSD+qjpKVLlzYcKfSD/EjM6gfZhj3WY3EtjpRgM1u0qx+2 YWwk1UYDO9c49/zXnHvqkz2R9+77RDl3SY/jrBz57f3dtsc+0Uh79x8/UeofvmKfzpcdT3zSfePL +7upZ7emWTyzyo+UI1qPNMePW1bfN7ITK0fqhJnLs7Qpv2W5hJ377sAsYsduu/p+PQfb1Wcb6XrZ 4OKS+ggGrD3381HxEXsEc/311zecDY3iXHDBBWWc0iOAtMQjF198cTl6BXDC0J133nll2quvvrqR 7tJLL3UrV6509957rzvkkEPKenKhxnl76qmnyvQrVqxwRx99tDv00EMbc1/9MkgL7r///lL30EMP NepBeTiBbB9OIOXxWI90erT3xhtvlDbQ2Ud7OJLXXnttuZq3gJ7t4/GcbuL5EDqP7KjDsmXLyjT3 3XdfWd7jjz9ehrEdsqE41RmwT0hLebx1bqE8iEW7+libg1iedvWj2Qgd79KF9C2OFCeHTjyGbjUs bPUMhdnhYumBr9cik+gZ3vXLGjYbvC3V9BX/9cUB+PRnsoxVVt8/siMLv+qNDe6kWa9mGaMsfG3f d/w49ll7CujY9Y/pfJ5nG9KDmA3ywHVR0oUJPeJfxDZccWRULCiH/MDawCnB+ZGe7eJijyPwyCOP lHrW5ZNt5ZHzUKdnjhLhG2+8sake1kZIzj333EZ6OWg4TdhAz9cqjjjiCPf73/++rAcO0uGHH17a AdhA5BRKr3rgoOHkvPjii6UeoFc9cMIoHwcMfag9qMPzzz9f2k2xwXWM/aw6+kJdfBuUo+2yer89 pAe+nrD0ox1XVt9JG+wrHe8p50eLI6UEiIXVY9TCxlmMRz/INhp461+de+bALOORjx4Y2ZmFX/Xm BnfyTa9mGYdMX/j+yN6sYC+UwB7T+TyvkKLPNiqQXxLDphknR8UiVBaPvhhx0WM84YMPPigdBDt6 ZMHIEhd/nBsLOS7S+4/WZEOjRzhM0sceJckWzpn0cpw0aubbEWKP9hi1is0FI071tnpAeNq0aY2R JpBqg31MnWMjfUKKPravEIvx6Ltlwx7rsbgWR0qwmS3a1dNRS1/XaVu0q+8HG03LGrAu1MvfL87S f8wyXjGO1DOFI3Xaza/1lZw6a7n750N/0ni8iXzle8c2pTll5lJ3wBe+0pTGik3/40vubeg/+ekD 3InXP99Ulux998QLm/TtyMX3v+V2mXWn+BCnf7zrWE/V98M5GMrTrj7bSNfLBhcXe/cPYheldkG5 KodRlx/96EeNvta3IQfBOjuCP0ok4DycdNJJDceMERvSMbIDVA5CWuJw5PSYDKFs6zT5jhRg23Gk NHLFRR8nhceC2oeI6oDzIh0iJ8c+dsM50ygUsPtK7eE7TYh0/puBIRt6VEmdeawnG9RRo3+C8iAW 7epD9RBiedrVj2YjdLxLF9JHHSkQy2gN+XGd0g+ajQZ2fODc818pnIAvZOmEfLTvDhJH6hezX+t7 +daxZ5dO0El/fj4YL/HT/aRwomz4iLOmus9//WB3yoyXg/HjkV/f9rrbtG3fI2h9BNkin+fp+sls gzwSi5g+BTw+EXA6NIcHsaMrKl8jS1asQyVH6vbbb3enn356yY8//vjG3B8eY/mP7jT3SWUgOFwX XXRRIw1zruSEaT6SLQMHRrYlGlED8+bNK50h9JS1YMGCsn5sJ/Of3nnnncajOAkOkF+mL3akSzYo d/bs2Y2RJsLEsX9Jq0d72rcAPU6grRdzv1Rn2RCk8/WyEYrrlL6TNuqO9VBciyMVSgSsPtXoePSD YoPXdKNYv6D6Zt5zX8oyVlmzz5F69s2N7le3vN738u2f/dZ98jMHulNuWBSMR75/1rXuE5/8lDv2 sgcbuhOnLnSfOvBz7oe/m16GKeerhx3rfnnzq+4r3/tpyZW2U7L0vc0je7eCPW/yeV4hRZ9tVCC/ xMLqueBZ2DiL8eh9G7FHezaPRYp+Iuph4yzGo5cNRqT8tx8tbB6LFP0g7yt7rMfiWhwpwWa2aFc/ bMPYiG8DMOzJXcBjjz3W9CZFA7uLC9Z71zn3wtede/7LWVJlzcMjO7Dwq1ZsLEdS+lVOv+VV99XC 4flU4USdOn1RMA3ys8vuKx/dHX3u9GC8FdLicP388gcb+ZDRbLQjvjMFYudBTD/R52AsT7v6bCNd LxtcXCbqEUwoj9VzcWX0RaMpCP20xXhtWMT0/WiD0SiNdjE6549E+elBP9YDtKsfzUboeJcupI86 UiCW0Rry4zql73cbdiRKTlRIeJbO2wQt2PqGc6/90rlFX8lSJ2v2PYfHkTrz9jf6Uo46e1rp4Pzo vOnBeMkp1z3pPn3g59z3Tr4oGC8549bXSqfsa4f/rAyT78Av/LP7xfQXyvDPL7u/dKYUHq+8v775 bg7k8zxdP5ltkEdiEdPj3MTiOqXPNtL12Uarvu5YD8W1OFJKYAu2meFssPSKE/f1TGSVnmfI0iuP 4Ov72YZ1jHCieI00RXju3bJIp7D2UedePsK5F76WxQr7ZQTPv7XJ/eaON/tKjv/TA6UDddgpFwXj rZx5y3L32S9+pXSOQvGS065/yn3mc19yJ0x5uKFT3mPOn1GGDz7unFHLaVdWbdjnTHFuTPbzPNtI t0GfSF7Fqxzg69ke6RUn7usZ3Zc+28g2pAe+vhs2CKecHy2OlKDMiEW7+mEbxt60adOIpj0nKiRP PvlkU6M1sGudc+9d69zib2QxjtSitze53975ZpYuinWmuFC2e34gw3CeI9lGhZheNriQDPNjHoRJ 4JoUzoTsBx54oBFnIZ2vH2s9mAzP5Hi9mQdi6cdqox39ZLEROt6lC+mjjhSIZbSG/LhO6fvVhsCj vZkzZwYdpLEKjhnecQs2v+zca78oHIuDJp+snTOyEypH6py73szSRbmIpRH27DsGWb24nfOjXf1k 7kva1ferDfJILGJ6e/fvx3VK3ykblMMbg0zTkJ7lA4466ii3ZMmSYB7QKf3ixYsb87pS87SrH6T2 ADF9J23UHeuhuBZHKpQ5lBGk6O1rrHZFUMRiPPpe2wDckYScoU7JPffcU44IBPHRPc4tOdy5F785 /LJ27kilnXuhcKTOvXtFli7LHc9XK54L9jywsPphPM+zjXq9tWFXjvYvSuPRawVqMBE2YmsuWaTo x1qP0DpQFjb9WG0IKfrJZsMe7xa+vsWREvyEQrv6YRnGtp3GokWL3PTp03sqzz33XOMZcBN4DPjO 5c699K3hlHX7HKnFhSN1/j0rsvRAFr3V3KEIsfNjWM7zbCNdLxtcfLr9CMb/hp0WjdSyBlp9W4tm IqzLxCg/ay5p4Ut97JjX/JknA5hiQXr7jTpB61PhyFjIrtXTP2s7WWbBbssf/vAHN3fu3HKb7Wdp gOqt9Z140sG2sX6T1ryyj/ZUB7ZXdeCaRDqtUTVRj8RCedrV94ON0PEuXUgfdaRALKM15Md1St+v NvgUQcjR6aWwqBrf9Ati0wvOvXZa4YR8Zzhk3byRihWO1MpN7vf3vpWlR7Jha/UtNbBmzZoRViF2 frSrn8x9Sbv6frVBHolFTD/WRzChFcND+tgoDo4OC0vK2bA29IkZu1gm8MsSYja0UKZWUPe3DZ3/ uRggne+w+Y/2VIfQek/UgXlcofoBpfX1+dFeq77uWA/FtThSocyhjCBF3+sh5k7b4GOTFrfeemvQ uZlI4aT1veoSe4v9svpO55b9wLmXvzuYYhypF9/Z5C68/60sPZLrn9h37DP8XXfeDPp5Lsk2KqTo rY1ePILhkyTWSRHk1EivsP84jgstIz6+E4INOSixT7b4ZcX0cqRwnAjLkWJ9QYFrCk6TVl4HMcfM 17PdqgOjUUqL0B6qA6NWNs5iPHrbHr1o84m2YY93C1/f4kgxXKshWxpGJ4vVM3fHnkTSK4+AnpET 6fnKsvTKMwg2BCYXzpgxo++F7bQHSgM7Vzv39h8KB+XgwZEmR2qzu+iBt7P0UF77YOvI3nflG6uh 84PzZhjOc/TZRvs26GvU33BDp8cmMT0OgO2fpFceAT3HnPRypPi3Nq677rrSseCxHHo9jps1a9ZI SftsyLHRozLZ0Hfr5PCgD5UlvdL//ve/L/UAvcpXejlWDz/8cGN7caTIe95555V50PPyEg4SThAv eEivESmNXoVsAPRvvvlm6aBRB+1H9CoLXUg/1vYIlRXTD5qNds+PFkfKQicQYoGhWFyn9P1ggwNa 4I6Fky/kuPSz3HLLLWVjB7HxWedePa7wEA/pX1k/f2RjnXupcKQuLi7uWXon18wPP0KuO2/a0U+W vqQT+n61QR6JRUw/3kd7rMd35plnlpwVuTX3SKNK6CWHHHJIy/YyWjNt2rRGGn3bzo5S6TGZLQux j+NwcnBc0LMdmo913HHHlU8KNL9JwvVDdZD4I0u8xCS7zAV75plnyu3DaWL7BOoaqoMtC7GI6fOj vVZ93bEeimtxpEKZQxlBit56b3AbZzEefbds4J0KfBWcSYCDLnQ6we8D7i7q+kFxl7b0yMKBObR/ xDhSL7+72f3rg29n6bEsKfZ7CPa8GeTz3OqzjQopemuDu/rYRWk8ejuSEHu0B2weixS9tdGLemQb 9fp+smGPdwtfH3WklECw+rEaE1L0/WRDa0YNoyxfvjy8dtW2t5x7+8LCsfrexMr6fXMLcKQueWhl lh7LtMf2zZXiWOGRjkXsvEnRT7a+ZDz6QbBBfomF1TNyYGHjLKTTvCCNviCaM2Sh9Ei7NsaizzYq aP/V6QfZhj3WY3EtjpSFLcCCwmJxndJPtA2ehQo4GwytDrvcdddd5bB3EDg0r/6scG4O6614jtQf H16ZZQLk9Q/3zZUCsfOmXf1k6Es6pe9XG+SRWMT0XPBicZ3SZxvp+myjVV93rIfiWhypUOZQRpCi H+RhbIGJgiHHY9iFzyLYfdtA+Rhwetjx6bQYR4pHTJc+/E6WCZA5y1odbHveDPJ5bvXZRoUUvbUx GR7zjEefbVRI0feTDXu8W/j6qCOlBILVj9WYkKKfSBt2yQMe6zFJMMtN7q233go/Btz6unNvn+fc ssM7L54jddkj72SZALl63r7Hef4xYM8pixT9sPcliMV49INgg/wSC6tn5MDCxlmMR59tVEjRZxsV Ynp7rMfiWhwpwWa2aFev1wMR/+2xWJ529Z224T/WCzkVk114u2TDhg0je8nD2gede+24whE6Yvyy ft/ie0ve2+z+9Og7WSZI7AeN7RtEYBDP85A+20jXywYXF/tiDohdlNrV63V0JNuoENNnG+n60WyE jnfpQvoWRyqWcKz6QR7GBk888YS7+eabs4wiL7zwQmO9mibsKpzSVdeHnaQUMY7U0sKRury4oGeZ GFn4erPjbM+bQT7PrT7bqJCitzYmw2Oe8eizjQop+n6yYY93C18fdaSUQLD6sRoTUvQTacN2EKz7 wSdZsqTLHXfcUe7HILYsc+7NMwsn6cg0sY7U+1vclDnvZpkguXNR8yiUoPPGb/MU/bD3JYjFePSD YIP8Egurz4+SKqTos40KKfpu2bDHeiyuxZESbGaLdvWDOIxtEXIUsrQnc+bMaRk+LcEnbNbc69yr Py1c+sJpCsmG7Ej1i8x86oORlqjekLEYxPM8pM820vWywcVloh7BhPK0q8820vWTxUboeJcupG9x pDg5dOIxMqNhYatnKMwOF0sPfL0e96DfunVrS1n9agOwg1kZPEtn5eWXX24aWm1g50fFUXlZ4UB9 f58YR2pZ4UhdMffdLBMk05/ct9I/E87teTOo53m2MX4b5IHroqQLE3rE13PsSO9fyHw9Yemzjc7Y YEV0VkJ/8cUXS/0g7ys+4cMK8szb7aSNds+PFkdKCRALq8eohY2zGI9+omzYSbSrV68uP1KcpXvC 2lXs5yA2PV94s/tGSbMjNfESgj2nLFL0w9yXSCzGox8EG+SXWODM6eKVCr8sPoty1VVXlU4AczLR o7vvvvsan0mRPj+uqpCi74YNPrHD0wjpu1UPfQuRBVq7ZcMe67G4FkdKsJkt2tXjsUkv702I5WlX 30kbviN12223ZemhsHZV8BM2BYobDrdj1x63aftu9976He61D7e6Ba9vcHe+sNpdOe/dLD2Qjdt2 j7RGMwbtPI/ps410vWxwcbF3/yB2UWoXlKty4Ndff33pML366qtNNvRtPOtMIRY2vYVvwyKWp139 ZLKh7wkySmT1iEVM3049li5d2rTSvfSCn14YzUboeJcupI86UiCW0Rry4zqln2gbAEeKD0FmmRhZ tmzZSEt0BntGHLG1W3aVjthL724uHbHZz34QdBqytAr7T9DX/y1i51NMPxn6kk7p+9UGeSQWMb0/ h9JKDCrn6quvbjhSVq+L96GHHlouy3LttdeWYeTiiy9ufFCYeLafLzicc845jY8GA27iSH/iiSc2 dDhofJiY5V6wI4eNfLLNzfdZZ53lnnrqqTIP4aOPPrrpg8k4gDgWpMc29bAfQNb2kIdtBRpp07cF yaM6XXPNNY2PNdvtvvHGG0v7Ks/uqzfeeKPcLtJaPSM5qgNlAsJ8lkd1sLb5mLJsa78//ng1BQOd RonkSAFsaJvs/l20aFGZFh02LShLAiiDbWJfknbFihWNj1dji3jSqi517SH4NgTSSSxIF4prcaRC iYDVpxodj36ibKxatW8eyNq1a4MX+CzdF/a9sHfHFrfml/99VFl37mfcxmuOdJtmneK2PjLFbX/q JrfzjWfc7tVvjpQ0PuwqPDEciY827XTvF47Yorc3lUsCzHjqA3fVvPeGXqaab+5Z2HPKIkU/zH2J xGI8+kGwQX5JDDgIMbEIlcVFlAvnaaedVjo4cIQLqi7uCBdVjVbIgZHwOPD8888vnSEustIDOUpc 2MmPDTkJwJaDDZWl7fAFZ8k6Nbq4A1uWBelxjlQ/65DIccG5EtgGOSjWGVH9/Y88a1RPI3c8dh2t DiBkW47mueee27ARGiWSDTmu0iPWOfXbQ8AJxA5lWviP9lLaw9q2iOntsR6La3GkBJvZol39oA1j W0eKIT9e5c/SO7n//vvLyXzCrjefcWt+9Vc9kXUXfrFwxL7vNt/6a7f10Slux+JiWwr7ezY13ymN FTt3V47YBxt2lI4YThgSclr6UXAYBdtGYNDO85g+20jXywYXl9EewVjMnz8/Kj78RzCxR3sW0vkj I9JzsWZkQxd1awPhQszI1ZNPPlnml0NgobQqS86G9H56bDCCMmXKlKaLOlB6TQLXSJF1EgRG1dBZ 50jOw0knndRwRLAnhwZHUDYQfx+ShxEbbQ+w6QXfNjbkBFkHJbTfZUP7XHoEx1H7nNFE2x5wEHLO Qvp22kN62RDQhY536UL6qCMFYhmtIT+uU/qJtgG4WNx5551ZeiRPP/30yJ6vsOXeC92a0//vgZH1 f/q22zj1qHK7tz56hduxdE7piO3d1nwSjxU4Ydt27imdsJVrt5dO2Pzl69xV8wtHpwdy9+J9DiWd Yei8iZ1PMf1k6Es6pe9XG+SRWMT0Y4HKiT3a820wOhFyRABp/Xk8AL1GPnA+7OgGIy5cpAUu4BoB 02MvRoT0WE42cDooh0dudiQGOzggGu0KbWvIeZAzY50jOSL+aI/KlA3p/X3IvlIdjj/++EYdgOpA vpBt1cM6Lr4jBbChfe63h/a5HekCsoGQHwdJj2al1z7CPmnQjdYeFioHscCGxIJ0obgWR0oJbME2 M5wNll5x4r6ez61IzwElvfIIvn4ibVCGMG/evPLNsizdFe7WGti7x6276J8K5+Rjk0o2XHlY5Yg9 eGnhiF3pdr76ROGIPev27mp+G2WswBHbsmN36Yit+Ghb6Yg9snSdu7pwklJkXuG0WdjzZhDPc8TX Zxtjs8Gr5+RVvMoBcI1CpEKvq5Mv9ujJdwZkm/TnnXdeU1rmxzDnVdvFP+kYBbLl8cKLykFIx6iL 5uIgzLni4s9+VVl8n9VuI/OIlB9H5+6773avv/56o5wTTjihnAOqNIBrDU4J28F8sU2bNpXOA+EH H3ywdOZUPoLzsHjx4iad9okegUrYNo0eWf2MGTMa9aAOlKm4Sy65pLH/fds4SY888kiT7uSTT260 85///OdSh2Nm9xVlKQ5he5nKof3AP2Von/jHFTZVB7aPR6CUwbI6GlkifV17jGZDekA45fxocaQE ZUYs2tUP4jD25s2bR0KuXGuDk6BOGE3Bo95///0bQmOH0kpsHj8tw78q5zOf+Ux50Np45T311FOb 9IMo3CXYb/bt3bLOrfn1X2cZg2y89uhSts65ym2bP610wnatrNaKGS94Y3I3s/VHQOdhMYjneUif baTrZYNjIfR4RGLRrn60RzChPO3qs410/WSxETrepQvpo44UiGW0hvy4Tukn2obAm0n33HNP24In jhPEd+j8OOYCffGLXyw9ZhwiHCnFXXHFFU35fve737mDDjqo9NpD8YMsDI3btWV2LJ1bOAR/k2UC ZO3vPlM4YT9ym2acVDliC2aUjtju95ePtE4zcH5D503sfIrpJ0Nf0il9v9ogj8Qiprd3/35cp/TZ Rro+22jV1x3robgWRyqUOZQRpOjtpFS7IihiMR59t2wAhiIZNWlXGLrF4WGI1uqnT5/uPve5z5XP cRmRkSNl4w888EB34YUXlmHK0YiVn3aQhSFpi003/9KtOeNvs/SprD33gJGW2gd73gzyeW712UaF FL21oUdxoYvSePT2RivbqNdnGxVS9Kk27PFu4etbHCnBTyi0qx/UYWy8W+GZZ54JvqobEkZacHZw onhua+NYldfqlfbII49sSucL+T75yU+Wa4fA7WM/38YgCKN8DezZ7daf91m39sy/z9LHsuX+fx1p MFc++vbPm0E9z319tpGulw0uPsP8mCeUp119tpGu7wcboeNdupA+6kiBWEZryI/rlH6ibdh1jJik x2v5owkTHHFwLrroopY46wDFxM/HyI0cLcIzZ84sHwnyaRWViTOlcL8LEyY1GRHsWfOOW3vWflkG QHavqib1CrHzpl39ZOhLOqXvVxvkkVjE9ON5BOMvERBLnx9XpeuzjVZ93bEeimtxpEKZQxlBin6Q h7Ht8B9vC7C6bUh4TIcj9Mtf/jIYHxNGZ+Qo+XGzZs1yn//858sVeqVjBOtLX/pS+dYIYV7vDOXt R+HtCovtT93i1v7mE1kGQDb86ZCRVmuGPW8G+Ty3+myjQore2pjoRzDj0fv9vBa2rMtjkaLvdT2y jXp9qg17vFv4+hZHiuFaDdlyouhksXpee7UnkfTKI6DXZyTQ85Vl6ZVnEGwAXl0NOQhZRpfly5sn LG+cdqxbe/ansgyI7Hhh34rTdDT++cF5MwznOfpso30bXIh0YeIxiR6bxPSMSksPpFceAT1LANSV FdNnG9mG9GOx0e750eJIWegEQiwwFIvrlL4fbLAWhcDOfvjhh8vHU1nSpelTL7u2u7W//UyWAZIN Vx810nrNqDtv2tFPlr6kE/p+tUEeiUVMP5ZHMKxFFPpOnBZfRJhDqk+wMK8VHW9PM6rPRZa1jHhT mvz6PIp0LPSodZ14Q5q8diFLLRqpRSZfeuml8mmCbLPOkkD99N068mq1bS0mabeZ9Y3YZtIxlcPa BVzw68pCh7BulLaNdauwYbcJKC1ikR/tterrjvVQXIsjFcocyghS9NZ7g9s4i/Hou2nD7mDuwFgZ NcvowuJyHNjCrneXuLXnHJhlwGTXWy+MtGDVQVvY82bQz3NJtlEhRW9tcKMZuyiNR29HEuA4CHKE hLrPpviP6bQSttJaG+R5/vnnS4eJNFqBW2Xpo7cqy7eLKC36kLDgJfbkNJFXYC4utnGAUssiHeel /y2/XrWHjbMYj76fbNjj3cLXRx0pJRCsfqzGhBR9P9mwO/25554rR6ayxIUveltsnXedW3vu57IM mGy+43cjLVghdn6MRz/Z+pLx6AfBBvklFlZvb7CAjbMI6f0P7oKQQ8OyNTghKZ9N8Sew+59mAWwz q5L/9re/LR0zvsTwox/9qOXbccSN5bt1QCuPy5GiLGyMVhYgHPqWX116yXjaA6ToB9mGPdZjcS2O lIUtwILCYnGd0verjW3btpUTErOExf/Uy4apx7i1530hywDK3u37VvinU7eInR/t6idzX9Kuvl9t kEdiEdNzwYvFjabXiJR9ay/0SAxHilEajUgJ/oiUwjwWkw3/W3HS+Y/KYvXQ51l4rMjjQgHnSXb9 bUanx4fWceKx5GhlMSKlb/kBW5bdJ+glFuNpj1T9oNmoO9ZDcS2OVChzKCNI0Q/LMLYdlWLieciJ mOzC83yBi/C63/9TlgGVHUvnjbRkNQlztPNjWM7zbKNCit7a6PYjmNB34lgOxn/0hbMj50iiESz/ +3Ma+WH+EWWTjs9vaVSJMFMUZF+P/EJiR5YAZdht++Mf/9iYp+V/BxCHTSNUEhxAOUZ+Wcyrsk4T jhTzuriJ1bf8yK85X3a7gHRj0dvrYLfbHEy0DXu8W/j6qCOlBILVj9WYkKLvNxvMj+LjhgLf4OPg z/JoubSBPTB3vfmcW3fhV7IMqGydc81ISzaj7vwYq34y9iVj1Q+CDfJLLKyekQMLG2cxHn0nbeBE nX322aXzYvWywY31ypUrm+IsxqMftH1lYfWDbMMe67G4FkdKsJkt2tXb12fhFrE87ep7ZcMve+HC hW7OnDmTWpYsWTKyNypsffBPbt1FX8syoLJpxqkjLcmHivc2vbkK6s4P6bt5DkqfbVSI6Xtpg4sL o5YWsYtSu3q9jo5MpA0mcfOoUKNCyOmnn970uA0oPWLRL/Xw87Srnyw2Qse7dCF9iyMVSzhW/TAO Ywt4wPPnzy+HhiejrFq1amRPFNi7x63/0/fcuj8clGVAZf0fv+P27m49zu15YGH1w3ieZxv1emtj oh/BjEefbVRI0U82G/Z4t/D1UUdKCQSrH6sxIUU/CDYAz6dDTsYwC84jk+6FPRtXu/X/+s0sAy67 P9z3ogALz+XzvEKKPtuoQH6JhdXnR0kVUvTZRoUUfbds2GM9FtfiSAk2s0W7+mEbxkZ8G3zElUmJ k0F4e8V68zuXP1GOZGQZYPnT99zu1eZtywKx8yCmn+hzMJanXX22ka6XDS4uw/yYJ5SnXX22ka7v Bxuh4126kL7FkeLk0InH0K2Gha2eC6kdLpYe+Hp9ngA9r6T6ZQ2yDb05AXCmGKkZZmFSpcXmu37v 1l92cJZBlimHu71b1o+0aLWScqfOD/TKg155rD7bGHwb5IHroqQLE3rE1zP3Tnr/QubrCUufbWQb 0iuP1XfSRrvnR4sjpQSIhdVj1MLGWYxHPyg2cKAEOizW7Qg5IYMuzZ962eHWX/2jciQjywDLFd9v cqKAPdbzeV4hRZ9tVCC/xMLq86OkCin6bKNCir5bNuyxHotrcaQEm9miXT0em/Ty3oRYnnb1E23D OlM05hNPPOEee+yxoRDeTLQH6J6177r1U47IMuCy4frjnDMTy5kTZRE7D2L6iT4HY3na1Wcb6XrZ 4OJi7/5B7KLUrp5ypc82KsT02Ua6fjQboeNdupA+6kiBWEZryI/rlH7QbNgLEcN/fLMp5JgMkrBW lsX2Rfe6DVd+P8uAy5Z7/zDSohXWrFkTPKbzeZ6un8w2yCOxiOm5MYvFdUqfbaTrs41Wfd2xHopr caRCiYDVpxodj36QbQgs08+jvkGUt99+e6QWYK/bdMtv3Iarf5hlwMWuWI7DX7dOVD7PK6Tos40K 5JdYWD0XPAsbZzEefbZRIUWfbVSI6e2xHotrcaQEm9miXf2wDWMjqTYAyyOEHJV+Fnuw7N253W24 5kdZBl2mHev2bGr+Xh6IHbvt6vv1HGxXn22k62WD/iL1EUy7oFz6UH8xTOSQQw5p2Bf40oJNYz8q rI8T87kYi9Ee8/gfNQZKj+jzNdjicy7SW4xmI5SnXX27NqZPn97YH1YP+BagvlNoP89j07dbD38/ xtLbetD2xxxzTIttP490qfrR9lXoeJcupI86UiCW0Rry4zqlHxYbgFn+rIzL3Kl+lqeffrp8g0HY vepVt+HaHw+drL3mGHfCd77o9t9//4Yc+OlPurcv/+Go6U767heb0iALzj0sqZzLj/1Gk75Xsvnu fR9BBanzofJ5nq6fzDbII7GI6ccClaOP/doPCvs2GJng23QxpyaUB7Srxw5PHWbPnp2cp109NmJx qXq+MWg/yiy94NsIfcgZsWhXP956UAc5YVZv0Yl9JdQd66G4FkdKCWzBNjOcDZZeceK+3i7sxwcb pVcewdcPgw3f0+V7fSEHph/E/9TB9qdvcRun/XTSyOzTvuM+/clPuGd+f0QwXnLRj75eOksrp/yo DC8874imMOUc9tV/dKuv/nEwvtey653mT/hMtnMQnm103wavnpNX8SoHWF7i8f8WFwPKYTRJ+WXj 6quvLi/0LA4syDYjGBdffHHjLWP0CB/0veqqq9wPfvCD8mIsPenRUx4jMK+99pq75pprGvXg0ffU qVPdUUcdVX4OS3rlf/DBB5tGay677LIyHvAWN47fSSedVH5Oa9GiRY2PCpNOjh7lCHDfBvbJIxs3 3nhjI4+1MWPGDPfMM8+U20Nd+D6g8kkuuOCCMi/7Y8qUKeX+0ADKO++806iLlUMPPbS8Pii9Pgum 9qCss846q5GejyqrDqoHo1rUQ/nRs+3a9wh1w2GKtTnx9pNk6K0NjnPpFSfu60M2bFkC4ZTzo8WR EpQZsWhXP2zD2Ei7NqxDxbyUxYsXlx/67Rdp/tTLXrf5ljPdxut/Nmlk4e+PLEeTpvzsX4LxVi46 5huVY3Rl4SgV4VcvO9p9/oBPubvOOLQRf9LBX3Lrph3rTvjul0pu8/dKtjxw6UiDVmB9KI7FyXoO puqzjXS9bHAhCT0ekbTg2c/FxUPoEQwXTEacuLD6j6V4XPXQQw+12CYPjweVB3BR5LHRI4880kiP Y8UjKEGPFclnH+3hvNiyBI2Y3XDDDWVYjxqtDRwPHJa6UTUg2zhFejyp0SLKV3rpzjvvvEY52ld+ euWp24chG6H0CDqcMyAd+w/na8OGDQ29vx/VHnp8CGQXR1FlqR4akbK2LaRL1YeOKwFd6HiXLqSP OlIgltEa8uM6pR82GzgrOFECB1nIqemlPPnkk01LN+zdusFt/PNxk04+mvYz97XPH1CNSF14VDDN uut+7k44+J9GnKifBtNIFv7+B42y4Pax32h5xy3TT2pZpVyIHaMxfT7P0/WT2QZ5JBYxvXvpO3GJ wC9LTpC9uOK0yDmxIwzKE7oYM0rExRv52c9+5h544IFGekGjIeQDsn3yySe3PD5UnOZvybFi7ikg HY8DDz/88IYDAlSGyhEoj76a9Jdcckn5dQnKs4/d+NqEdMCWJeck9JhO+8OOtCGxPP7jNdlV3YBN b0E9/P0I2P+qG/s+Vg/ftsQi1OZCu/q6Yz0U1+JIhTKHMoIUPfODBLsiKGIxHv0g2WA43GLlypUt Dk4vhAPYOna7Vr7kNt54wqSVdX8+vnSUDvva59zqaT9vipv9q0NLR+iusw5v0vuiMk465Mtl+NUp PykctM+4lVcfW4YXFo5V6UyNhDst256aPdKaFbgL5JgbpPOjTp9tVEjR99oGfUnsouSHU0E+20f5 NjQJmtEPFg3mYuzbsuljF2PZwCk644wzyou5RrWA74BxXml0xi9LjhROEmE5UiwnI/C4EOfh3HPP LdNY2LJUP5WFhJwm6WbNmlXqgPaVnx6oLDk21MHqY46Zn171kNNooTyIYPcjzqTqBkhXVw/fNgjZ ACn6uuPKwh7vFr6+xZES/IRCu/phG8ZGxmuDuVIaqhV4Nh9yeLohHMQWWx+/wW2cfuKkkI8KZ+dr XzigcopGdOtuOKFwgL5cjSL94eiGfuFFP6we+R337YYuJq9O+an78j9+uim/b+uin/xL5WSNxHdK ti3c1/EA/9gatPMjps820vW9tMHFJ/R4JHRhahejPYLR6I7/KEki4OAcffTR5YUaJwnocdUf//jH xsjS/fff31QWeuWzIy96VIWeUSKgx1XWQcJ5II19XMUag+j0RqH0yiOobjgqbA/bIpvY4HrNjbge H4YeickZIz3bfPfddzfmB+Hwkc86jdRB20webIJQemxo9MoKDo99W5K0/n5ku6wTZuvGI0rqxrws bIRsa3sF6VL1ox1XoeNdupBe/lN+tOfFdUpfZwOP3r+r4+BhNfFuiU6MEnt2u023/NptmnFylgGU 7U/uu8u0iB1v7erzeZ6un8w2yCOxiOm5MMbiOqXPNtL12Uarvu5YD8W1OFKhzKGMIEXf6yHmQbTB /CnuBIRuOFQsv2DrwJpCm2aekmUAxXegaNe6hTW7eexKso0KKfphtFH3eGQ8+tRHMOPRZxsVUvST zYY93i18fYsjxXCthmw5UXSyWD3zfOxJJL3yCOh5jCW91iiyZWUbFdAz3GkbGLDCeMgxakdeeuml kdIq7Fz+hNs069QsAyY7X3typAUr8NquUHdc5XMw25BeeTppgz5L/RaPSfTYJKbnkY/t56RXHgE9 b5vWlRXTZxvZhvRjsdHu+dHiSFnoBEIsMBSL65R+MttgdIGDwoLn2yyYGXKU6qT5Uy/ObX30Crfp ptOyDIhsuef3bs+690Zabx/yOZiuzzbS9WOxQR6JRUyfHyWl67ONdH0nbdQd66G4FkcqlDmUEaTo rfcGt3EW49EPsw08YAv0fEyYpQtGE02YLLF7p9t08y+yDIhse+KGos2qkQTA6JPewrOwx4+F1U/U sSuxGI8+26iQou+1De7qYxel8ejtSEK2Ua/PNiqk6FNt2OPdwtdHHSklEKx+rMaEFH22UUE6hhB9 4Cg999xzLQ4UOtvJ7V7ztts0+1dZ+ly2PHSZ27Nx9UirtcIeI/n8qJCizzYqpOizjQop+myjQop+ 2G20OFIWtgALCovFdUqfbcT1TSNNI1i9enX5eQD/Uy87Xn64uEifnqVPZfPd57vdH7450lqtiB0L +fxI12cb6fpsI12fbaTrh91GiyMVyhzKCFL0vR5inkw2mOwZxd69bsvDl7lNtxQX7Cx9JZvvOd/t WvniSEPtA29ujtbmY9H347E7Fn22USFFn21USNFnGxVS9NlGBV8fdaSUQLB6vDILG2cxHn22USFF 79uw2Ltlndu2YIbbfMuvs0ygbH/qZrd326aRVtkH3h7xHWLbthZWn8+PCin6bKNCij7bqJCizzYq pOiH3UaLIyXYzBbt6vV6IOLP84nlaVefbbTqmaRuJ9QJfApmy/1/cJtvPSNLF2XLvReU+9qHXS8M DNpxFdNnG+n6bCNdn22k67ONdH2nbbQ4UrGEY9UP4jCdYPWDbIMFP7dt2zYSagYX+23zpwWdgSzp snXu1UHHCdgPQwPbToN8XFl9tlEhRZ9tVEjRZxsVUvTZRoUUfadtRB0pJRCsPg8FVkjR96MNXqOP Ye/ObW7nawvdlgf+1W2+7cwsAdly93lux4v3l49NQ7AnKRitPcaiz+dHhRR9tlEhRZ9tVEjRZxsV UvTDbqPFkRJsZot29YM4TBfSTwYb/mMnAedq1zsvue3P3V46ESHnYijljt+67U/PLuvu9uxb08nC 32ex/R7TT3Sbx/K0q8820vXZRro+20jXZxvp+k7baHGkKFQFc2etYS+rZ+6NHQ6zG+Lr9XkC9Fu3 bm0pK9voTxs8DmS5/JhzJTAqwwjWtsemhZ2RPpct917otj050+1c/pjbvXrFSK3CYLV5Jofrw8/a V/4+zMdVtiE9yDayjWxjuG20OFJKgFhY/bAP0yEW49EPqw0OPg6qFOzdvsnt/uA1t3PZ3MJpmeW2 PHiJ23z7WV2TrXOucNsev658/IZNbJdOUmRUKQQm6+NM1u0TC6vPx1WFFH22USFFn21USNFnGxVS 9NlGhRR9zEaLI5UlS5YsWbJkyZKlHXnF/f8B09MGBxsq4RgAAAAASUVORK5CYIJ= ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image011.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+ikz S5oAKKKKAMXxTqU+keHbu+ttvnRAFdwyPvAVwtj8WpRgX+mq3q0D4/Q/411/j3/kS9R/3V/9CFeC 4r08Fh6dWm+ZHm4uvOnNcrPeNL8eaBqgULdiCU/8s5xtP59P1rpFdXUMrBlPIIPWvmPFbGkeJ9X0 Rh9jvHEYPMTnch/A1dXLesGTTzB7TR9DUtYHhLX38R6Kt7JCInDmNgDkEjHI/Ot+vKlFxbiz0oyU ldBRRRSKCiiqGsapDo2lXF/cH93Cm7Hqew/E0AVtf8S6b4ctPOv5sMfuRLy7/Qf1rzbUPi9qEjsN PsIYU7NKS7f0FcLrOr3euanLfXj7pJDwOyDso9hVGqSA7X/hafib/npa/wDfkUf8LU8Tf89LX/vy K4qigDtf+Fp+Jv8Anpa/9+R/jXoHw88Saj4ksb2XUGjZoZFVdibeCK8Kr174On/iV6l/12X/ANBp MDoda8f6NoOpvYXi3JmQAnZGCORn1qvYfEvQtRv4LOBbvzZ3CJujAGT+Neb/ABN/5Hi7/wCucf8A 6CKyPCf/ACNulf8AX0n86LAfSNFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooArX95Fp2n 3F7Pu8qCNpH2jJwBk1x3/C2PDv8AcvP+/Q/xrofFv/Ioax/15y/+gmvm+mgPo/w94lsfE1tNcWAl CRPsbzF2nOM+tbVecfB//kB6h/18j/0EV6PSAKKKKACiiigAooooA8KtPiH4jtcZvFmA7Sxg/wD1 66PT/i03yrqOnDPd4G/of8a8zor6KeDoy6HgRxVWOzPoLRfFWk6+uLK5BlAyYn4Yfh3/AArbrwTw JkeNNNxx87f+gGve+1eNi6Coz5UethazqwuznPHv/Il6j/uL/wChCvBa968e/wDIl6j/ALi/+hCv Ba9HLf4b9Thx/wDEQUhpaDXpHAezfC3/AJFRv+vh/wCQruK4f4W/8io3/Xw/8hXcV8zif4svU9/D /wAJBRRRWJuFeZfGDUjHY2Gmo2POdpXHsvA/U/pXpteIfFicy+LkizxFbIB+JJ/rTQHC10ngvwuf E+s+TIzJaQgPMy9cf3R7mubr2r4TWSw+Fpbrb89xO2T7KAB/WmwOnsvDGiafCIrfTLZV9TGGJ+pP Wrf9j6Z/0D7X/v0v+FXaKkCl/Y+mf9A+1/79L/hU0Fpb2qsLeCOINyRGoXP5VPRQBxfiDxd4a0nV 5bTUrIy3KqpZvIDcEccmqum+NvCd7qdtbWtgUuJZAkbfZlGGPTntXCfE3/keLr/rnH/6CKx/Cf8A yNuk/wDX0n86YH0jUU88VtE0s8qRxqMl3YAD8TRcTxWtvJPMwSONS7MewFfP/i7xdd+JtQb52SxR v3MOeMep9TSWoHq178SvDVnIYxdvORxmGMsPzqp/wtfw9/du/wDv3/8AXrw+lqrAe3/8LX8Pf3bv /v3/APXrp9N1u11TRV1W33/ZyrMNwwcDr/KvmmvdfBf/ACTSP/rhL/7NSaAh/wCFr+HgSNt3/wB+ /wD69H/C1/D3927/AO/f/wBevEW+8frSU7Ae3/8AC1/D3927/wC/f/16tWHxK8OX04hNzJbs3AM6 bV/PtXg1JRYD6njkSWNZI2V1YZDKcg0+vHvhd4omg1AaHcyM9vMCYNx+43XH0NeralfwaXp097ct iKFC7f4VID7u8trGBp7qeOGJeryMFFcrdfE7w1bSFFuZZyO8URI/M15D4k8S33iXUGuLlysIJ8qE H5UH+PvWNTsB7f8A8LX8Pf3bv/v3/wDXo/4Wx4e/u3f/AH7/APr14hRTsB9KyarZyeG21aRGaya2 88qVySm3OMfSuL/4WB4L/wCgaf8AwFWtc/8AJIf+4P8A+068HpID6K8L63pWt2k82k25hijk2uPL CZOM9qPEXi3TvDDW4vxMfPyV8tc9Mf41y/we/wCQHqH/AF8j/wBBFZ/xj/1uk/ST+lLqBu/8LY8P f3bv/v3/APXo/wCFseHv7t3/AN+//r14hRVWA9wT4reHWYBjdIPUxf8A166fStc03W4fN068jnA6 gH5l+oPIr5oq5peqXejahFe2cpjljOeDww9D6ilYD6dzRWXo2t2+r6Pa36HaJkDFeuD0I/PNFID5 1ooor6w+ZOi8Cf8AI6ab/vt/6Ca98rwPwJ/yOmm/77f+gmvfK8PMv4qPXwH8NnN+Pf8AkS9R/wBx f/QhXgte9ePf+RL1H/cX/wBCFeC11Zb/AA36nPj/AOIgoNFBr0jgPZ/hb/yKjf8AXw38hXb1xHwt /wCRUb/r4b+Qrt6+ZxH8WXqfQYf+EgooorE2CvCPihn/AITefP8Azyj/AJV7vXifxbtjF4qgnx8s 1svPuCRTQHBV7x8MSD4Htcf89JM/99V4PXsvwk1FJtAubAsPMt5i+P8AZYf4g02B6JRRRUgFFFFA Hg3xN/5Hi6/65x/+gisfwn/yN2lf9fKfzrY+Jv8AyPF1/wBc4/8A0EVj+E/+Ru0r/r5T+dV0A9d+ J2otY+EJIkOGupFi/Dqf5V4UK9f+MJP9kacO32g/+gmvIKEB6V8OfDmkSWx1bV5bV2LYggmdcLj+ Ig/pXpgm0NQAJdPAHQBkr5pz70ZPqaLAfS/2jRP+e2n/APfSVJeCL+xrnyQnlmByuzGCNp6Yr5ky fU19FaV/yIVr/wBg5f8A0XSaA+dm+8frXovwp0yw1KfUhfWVvchFTb50Yfb16ZrzpvvH616h8HP+ PjVf92P+ZpsD0B/Cvh90KnRbDB4OLdQfzArwzxlpEGieKbuytQRApDICc7QQDivouvBPiZ/yPF3/ ALkf/oIpIDL8IMV8YaSQf+XlP516V8XNReDQ7SxRsfaZSX91UdPzI/KvNPCP/I36T/18p/Ou3+MZ P2nSh22SfzFPqB5fXqPw98CWV9pq6vq0QmEpPkwt93aO59ea8tNfSHhJVXwjpITgfZYz+O0UMB48 LaABgaLp+P8Ar2T/AApf+EX0D/oC6f8A+Ayf4VrUVIGH4nhjt/BWqwwxrHEllIqIgwFAU4AFfOVf SHi3/kUNY/685f8A0E183U0B7H8H/wDkB6h/18j/ANBFehyQRS482NHx03KDivPPg/8A8gPUP+vk f+giofiT40udPm/sbTZfLlK5nlU/MoPRR6cUdQO+lOlQNtlNnGfRtopn2jRP+e2n/wDfSV81PLJK xaSR3Y9SxJJpMn1osB7F8RNK0K98PzXtq9ml7b4ZWhZQXGcEHHWvG6XNFMDb0/xNeafZR2sTkImc DPqSf60ViUUwLdFFFfUnzJ0XgT/kdNN/32/9BNe+V4H4E/5HTTf99v8A0E175Xh5l/FR6+A+BnN+ Pf8AkS9R/wBxf/QhXgte9ePf+RL1H/cX/wBCFeC11Zb/AA36nPj/AOIgoNFBr0jgPZ/hb/yKjf8A Xw38hXb1xHwt/wCRUb/r4b+Qrt6+ZxH8WXqfQYf+EgooorE2CvOfi5pbXOi2uoRrk2shV8dlbHP5 gfnXo1V76zh1CymtLhd0MyFGHsaAPl6tnwz4iufDOrrewKHQjbLGTw6+n1p3ifw1d+GdTe3nUtAx Jhmxw6/4+1YlUB71Z/Erw1dQq73bW7Y5SVDkflVn/hYHhj/oKR/98t/hXz5RRYD6D/4WB4Y/6Ckf /fLf4VqaTruna5HJJp1ys6RkK5AIwfxr5or174O/8gvUv+uy/wAqTQHI/E3/AJHi6/65x/8AoIrH 8J/8jdpX/Xyn861/ib/yPF3/ALkf/oIrI8J/8jdpX/Xyn86YHqvxXsWufCqXCDP2adWb6EEf1FeJ V9PanYRapplzYz/6qeMo3tnvXzlrmi3egapLY3aEMp+R8cOvYihAdr8P9F8L+IbJ7a/td2owkk/v mXenYgA9q7X/AIVr4V/6B7/9/wB/8a8Hhmlt5VlhkeOReVdGwR+Nag8Va+Bgaxe4H/TY0Aey/wDC tPCv/QPf/v8Av/jW7PbRWWgy2sC7YYbZkRc5wAuBXz9/wlfiD/oMXv8A3+Nex+Fbq4vfh4txdTPN M0Eu53OSetKwHgrfeP1r1D4Of8fGq/7sf8zXl7feP1r1D4Of8fGq/wC7H/M02B6xXgnxM/5Hi7/3 I/8A0EV73XgnxM/5Hi7/ANyP/wBBFJAZXhH/AJG/Sf8Ar5T+deh/GG0Z9P068AyscjRsfTIyP5V5 74R/5G/Sv+vlP51734h0aPXtDudPkIHmL8jH+Fh0NAHzVXtvw08SW1/oMOlySqt5ajaEJ++nYj19 K8b1HT7rSr6WzvIjHPEcMD/MeoqurMjBkYqw6EHGKe4H1Pmlr5hGq6gOl/df9/m/xpf7V1H/AJ/7 r/v83+NKwH0J4s/5FDWP+vOX/wBBNfN9e8yO0nwlZ3Ys7aRksTkk+XXg1NAexfB//kB6h/18j/0E V5r4sne48W6tI5y32p1/AHA/QV6V8H/+QHqH/XyP/QRXFfEbR5NL8WXE20+RdnzkbHGT94fnml1A z/B+j22u+JrWwu3ZYH3FtpwTgZxXrw+GnhUD/kHv/wB/3/xrweKWSCVZYZGjkU5V0OCDWqPFevgY /ti9/wC/xpgeleK/Afh7TPC9/e2lkyTwx7kYzOcHI7E144K1LnxFrN3bvBcandSwuMMjyEgisygA ooopgW6KKK+pPmTovAn/ACOmm/77f+gmvfK8D8Cf8jppv++3/oJr3yvDzL+Kj18B8DOb8e/8iXqP +4v/AKEK8Fr3rx7/AMiXqP8AuL/6EK8Frqy3+G/U58f/ABEFBooNekcB7P8AC3/kVG/6+G/kK7eu I+Fv/IqN/wBfDfyFdvXzOI/iy9T6DD/wkFFFFYmwUUUUAU9Q0yy1W1a2vraOeFv4XHT3Hoa4K/8A hDYTSM9jfzW4PRHUOB+Nek0UXA8l/wCFOXH/AEF4v+/R/wAaP+FO3H/QXi/79H/GvWqKdwPJf+FO XP8A0F4v+/R/xrsfBfhOTwpaXUL3S3HnOGBVduMDFdTRSuB594p+HE3iLXZdRTUI4RIqrsMZOMDF UtI+Fc+maxaXzanHILeVZNoiIzg9OtenUU7gFZms6Bpuv2vkahbLKB91+jJ7g9q06KQHl938HYGc mz1R0XsssecfiKq/8KcuP+gvF/36P+NetUU7geS/8KcuP+gvF/36P+Nd9omgvpHhddIacSMsbp5g XA+bPb8a3KKVwPJT8Hbgkn+14v8Av0f8a6rwV4Mk8KSXbPeLceeFA2ptxjP+NdhRRcArz3xR8OJv EOuzaimoxwrIqjYYycYGPWvQqKAPMtH+Fc+l6zZ37anHILeVZCgjIzg9Otem0UUAYuveF9K8RQbL +3BkA+SZOHX8f6GuGufg6hcm11ZlXsJIskfka9ToouB5L/wpy4/6C8X/AH6P+NH/AApy4/6C8X/f o/4161RTuBiHQ3/4Q7+wvOG/7F9l83HGdu3OK4D/AIU7cf8AQXi/79H/ABr1qilcDmPBnhaTwrYX FtJdLOZpfM3KuMcYxWnrmg2HiCxNpfw716o44ZD6g1qUUAeVXHwd/eE22rYTsJIuf0NRf8KcuP8A oLxf9+j/AI161RTuB5L/AMKduP8AoLxf9+j/AI0f8KduP+gvF/36P+NetUUXA8l/4U7cf9BeL/v0 f8aK9aoouB8w0UUV9WfMnReBP+R003/fb/0E175XgfgT/kdNN/32/wDQTXvleHmX8VHr4D4Gc349 /wCRL1H/AHF/9CFeC17149/5EvUf9xf/AEIV4LXVlv8ADfqc+P8A4iCg0UGvSOA9n+Fv/IqN/wBf DfyFdvXEfC3/AJFRv+vhv5Cu3r5nEfxZep9Bh/4SCiiisTYKKKKAIJ7u3tsfaJ4ot3TzHC5/Oov7 W07/AJ/7X/v8v+Nec/GT/U6P/vS/yWvKKdgPp3+1tO/5/wC1/wC/y/40f2tp3/P/AGv/AH+X/Gvm KiiwH08up2DttW+tmb0Eq/41aBBGQcivlfvWvo/ijWdCkU2V7IsYOTC7bkP/AAE0WA+kqK5nwf4w tfFNmxC+VeRAebCT+o9q6akAUV4prnxC8RWWvX9rBdRrFDO6IDEDgA8VqeBvGuua34ohsr64R4Gj diojA5AyKLAer0UUUAFFFFABRRRQAUVg+MdSudI8L3l9ZuEnjC7SRnqwFeR/8LM8T/8AP5H/AN+V osB71SE4Fcp8Ptbvtf8AD0l3qEiyTLctGCFC8BVPb6mupl/1T/7poAq/2tp3/P8A2v8A3+X/ABqW C9tblisFzDKwGSEcNj8q+X2+8frXo/we/wCQzqH/AFwH/oVOwHsNFFFIAooooAKKKKACoZ7mC2UN PNHEpOAZGCgn8amrzn4wf8gCw/6+v/ZGoA7r+1tO/wCf+1/7/L/jVmORJUV43V0bkMpyDXyzX0X4 L/5E3Sf+vdabQG9RRRSA+YaKKK+sPmTovAn/ACOmm/77f+gmvfK8D8Cf8jppv++3/oJr3yvDzL+K j18B8DOb8e/8iXqP+4v/AKEK8Fr3rx7/AMiXqP8AuL/6EK8Frqy3+G/U58f/ABEFBooNekcB7P8A C3/kVG/6+G/kK7euI+Fv/IqN/wBfDfyFdvXzOI/iy9T6DD/wkFFFFYmwUUUUAeW/GX/U6R/vS/yW vKK9X+Mv+p0j/el/kteUVS2A6TRfA+ta/p4vbFITCWKZeTacitA/CzxN/wA8rb/v8K774V/8iYv/ AF3k/pXb0rgfOGs+E9b0Fd9/ZOsP/PVCGX8x0/GsWvqO5toby2kt7iNZIZFKujDgg184+JNIOh+I bzTznbE/yE91PI/Q00wE8O6zLoGuW2oRk4RsSKP4kPUV9IwTJPAk0ZDJIoZSO4NfLRr6D8A3v27w Vpzk5eNDE3/ASQP0xSYHn+tfDfxDfa5fXcEduYpp3dMygHBOa0/BHgXW9B8TQ317HAIFR1JSXcck YHFY+ufEPxFZa7f2sF1GsUM7ogMQOADxWp4G8ba5rfiiGyvrhHgZHYgRgcgZFGoHq9FJ2rivFHxG sNAmezto/tl6v3lVsIh9z/SkB21FeF3HxT8STOTG9tCvZUi6fmTUX/CzfE//AD+Rf9+Vp2A95orw b/hZnij/AJ/I/wDvytWNP+I/iS41O0hkuoykkyIw8odCwBosB6p4v0y51nwxd2FoFM8oXaGOBwwP WvKP+FWeJv8Anlbf9/hXq3jHUrnSPC95fWbhJ4gu1iM4ywFeR/8ACzfFH/P5F/35WhXA9Q8A6Ffe HfD8lnfrGJmuGkGxtwwVUf0NdPKf3T/7prlfh/rl9r/h2S81CQSTLctGCqheAqnt9TXnF98R/EkV 7cwpdR7FkZQPKXpkigDi2+8frXo/we/5DOof9cB/6FXm+ckmtPRPEOo+Hp5JtOlWN5F2sWUNx+NM D6Worwb/AIWZ4nyP9Ljx/wBcVr2XWbyaz8O3l5CwE0du0ikjvjNSBqUV4N/ws3xP/wA/kX/flaT/ AIWb4n/5+4/+/K07Ae9UV4L/AMLN8T/8/cX/AH5WtXSPi3qcM6rqlvDcQHgtGuxx7+hosB7LXnPx h/5ANh/19f8AsrV3Ol6na6xp8V9ZSiSGQZB9D6H0NcN8Yf8AkA2H/X1/7K1JAeOV9GeC/wDkTdJ/ 691r5zr6M8F/8ibpP/XutUwN2iiipA+YaKKK+sPmTovAn/I6ab/vt/6Ca98rwPwJ/wAjppv++3/o Jr3yvDzL+Kj18B8DOb8e/wDIl6j/ALi/+hCvBa968e/8iXqP+4v/AKEK8Frqy3+G/U58f/EQUGig 16RwHs/wt/5FRv8Ar4b+Qrt64j4W/wDIqN/18N/IV29fM4j+LL1PoMP/AAkFFFFYmwUUUUAeW/GX /U6R/vS/yWvKK9X+Mv8AqdI/3pf5LXlFUtgPcvhX/wAiYn/Xd/6V29cR8K/+RMT/AK7v/Su3qQCv E/i1CE8VwyAcyWy5/AkV7ZXivxbkDeKbeMdUtVz+LGmgOAr2z4TSFvCcqdluW/kK8Tr2v4SoV8KT N2a5b+QpsDynxN/yNOqf9fUn/oRrd+F//I8W/wD1yk/9BrC8Tf8AI06p/wBfUn/oRrd+F/8AyPFt /wBcpP8A0GgD07x74gbw/wCG5JYTi6nPlQn0J6n8B+uK8AZmZizEsSckk8mvTvjFck3emWmeFjeQ j6nH9K8woQF7TNI1DWZ/I0+0kuHHXaOB9T0Fbv8AwrfxT/0Dh/3+T/GvW/BOjxaP4Ws41QCWVBLK 2OWZhmujpXA+ZNW0e+0O8FpqEPlTbQ+3cG4P0pNH/wCQ3Yf9fEf/AKEK6z4r/wDI3j/r3T+ZrktH /wCQ3Yf9fMf/AKEKYHunxE/5EbUfov8A6EK+f6+gPiJ/yI2o/Rf/AEIV8/0kB7Z8Jf8AkUJ/+vx/ /QUrkL34YeIZby5nX7LseRnGZexJPpXYfCT/AJFCb/r8f/0FK7mT/VP9DRcD5Z6ZrY8P+Gr/AMS3 E0Fh5W+Jd7eY23jOKyG+8frXo/we/wCQzqH/AFwH/oVMDPHwp8Scf8en/f7/AOtXr+r2Ut74fu7K Lb50sBjXJ4yRitKkJAGTwPWpA8P/AOFU+JP+nT/v9/8AWo/4VT4k/wCnT/v9/wDWrvNX+J2haXO8 ERlvJUOG8kDaD/vH+lZH/C47L/oET/8Af0f4U9QOSvPhn4ks7Z5/JhmCDJWKTLY+neuPIIJBGCOo r1z/AIXFZf8AQIn/AO/o/wAK8t1S6ivtVu7qGIxRzStIsZP3QTnFNXA7z4S6xJBq8+ku2YZ0MiD0 Yf4j+Vbvxg/5AFh/19f+ytXD/DgkeObHHo4/8dNdx8YP+QBYf9fX/srUuoHjlfRngv8A5E3Sf+vd a+c6+jPBf/Im6T/17rTYG7RRRUgfMNFFFfWHzJ0XgT/kdNN/32/9BNe+V4H4E/5HTTf99v8A0E17 5Xh5l/FR6+A+BnN+Pf8AkS9R/wBxf/QhXgte9ePf+RL1H/dX/wBCFeC11Zb/AA36nPmH8RBQaKDX pHAez/C3/kVW/wCvhv5Cu3rh/haf+KUb/r4b+QruK+ZxP8WXqe/h/wCEgooorE3CiiigDy34y/6n SP8Ael/kteUV6v8AGX/U6R/vS/yWvKKpAe5/Cv8A5Exf+u7/ANK7avBPDvxAv/DelCwt7W3kjDl9 0mc8/Stb/hb+rf8APhZ/+Pf40rAexSSLFG0jsFRRliTwBXzn4s1ca54mvb5TmJn2x/7o4H8qva94 91rX7c200iQWzfeihGN31PU1y9NIAr6A+Hll9j8E2AIw0oaU/iTj9MV4doulza1q9tp8H3pnAJ/u jufwFfSlrbx2lpDbxDEcSBFHsBik2B84+Jv+Rp1T/r6k/wDQjW78L/8AkeLb/rlJ/wCg1heJv+Rp 1T/r6k/9CNbvwv8A+R4tv+uUn/oNMDV+MKEa3p8n8JtyP/HjXnHTFex/FzTHuNFtdQjUn7NIVfHZ W7/mB+deOe1CA+mdDnS50HT5oyCj26EY/wB0VoV4v4K+IiaFZLpupxSSWqE+VLHyyexHcV2n/C0v DOP9dcf9+TUgcJ8V/wDkb1/690/rXI6P/wAhuw/6+Y//AEIVuePNcsvEHiAXlgztD5Kpl12nIzWH o/8AyG7D/r5j/wDQhVID3T4if8iNqP0X/wBCFfP9fQHxE/5EbUfov/oQr5/oQHtvwk/5FCb/AK/H /wDQUrupf9U/+6a4X4Sf8ihN/wBfj/8AoKV3TjcjAdxUgfLLfeP1r0f4Pf8AIZ1D/rgP/Qq84cFX YEcgnNdT4B8S23hvW5JbwN9nnj8tmUZK85BxVMD3+uI+J+tTaV4bWC3cpLeP5e4dQoGT/QfjV8fE LwuQP+Jon/fDf4VyvxjVntdHlXlN0oJ9yFx/I1KA8oq/a6Jq19D51ppl5PF0DxQMwP4gVQr3DQvi B4bj0SzikuxbPHCqNGyHggY7CqA8k/4RjX/+gJqP/gM/+FZk0MtvM8M0bxyodro4wVPoRX0B/wAL C8L/APQUT/vhv8K8R8SXUN94l1G6t33wyzs6NjqCetCA1/hx/wAjxYf8D/8AQTXcfGH/AJANh/19 f+ytXD/Dj/keLD/gf/oJruPjD/yAbD/r6/8AZWo6geOV9GeC/wDkTdJ/691r5zr6M8F/8ibpP/Xu tJgbtFFFID5hooor6w+ZOi8Cf8jppv8Avt/6Ca97HSvA/An/ACOum/77f+gmvfO1eHmX8VHr4D4G c549/wCRL1H/AHV/9CFeC19F69pX9t6Lcaf5vlecAN+M4wQf6V55L8I7gD91qsZ/3oyP61eBxFOl BqTIxlCdSScUeb0V3Fz8LNciBMM1rN7Byp/UVi3PgnxHa536XMwHePD/AMjXoxxNKW0kcDw9Rbo6 bwB4y03R7A6Zf74t0pdZsZXnHB9K9TtbuC8gWa2mSWNujIcg183XFlc2jFbi3lib0kQj+dWdK13U tGm8ywu3i5yU6q31B4rkr4KNRucHqdVHFyprlmtD6Opa880D4n2l4Vg1aMWsp/5arkxk+/cV30E8 VzCssMiyRsMqynINeVUozpu0kelTqwqK8WS0UlL2rM1PLfjL/qdI/wB6X+S15RX03qGj6fqojGoW cVwI87PMXO3PWqX/AAh3h3/oD2n/AH7ppgfONFfR3/CHeHf+gPaf9+6P+EO8O/8AQHtP+/dFwPnG rmnaTf6vcCCwtZJ3P9wcD6ntX0GnhHw+jZXR7P8A79itS3tYLSPy7eCOJB/DGoUfpRcDlPA/gqPw zbtcXJSXUJVwzDpGP7o/qa7GiikB81+Jv+Rp1T/r6k/9CNbvwv8A+R4t/wDrlJ/6DXr03hXQbiZ5 ptKtXldizOU5JPepbLw7o+nXK3Fnp1vBMAQHRMEA07gXLyzgv7Oa1uEDwyqVdT3BrwjxT4F1Hw/c ySRRPcWGcpMgztHo3oa9+7UEBgQQCD2NID5Xor6TuPDWiXTl59KtHY9WMQyah/4Q/wAO/wDQHtP+ /dO4HzlVzR/+Q3Yf9fMf/oQrd+IMGn2niuW202KKKKKNVZIhwG6msfw/C1x4k0yJRy11GP8Ax4Uw PcPiJ/yI+o/Rf/QhXz9X1Dd2dvfWz211Ck0L/eRxkGsz/hDvDv8A0B7T/v3STA574Sf8ijN/1+P/ AOgpXeGqlhp1npcBgsbaO3iLbikYwM+v6VbpAfP3jrw5caHr9zJ5TfY7iQyQyAcc8lfqK5f3r6ku LaG6iMVxDHLGeqOoIP51kt4R8Pucto9nn/rmKdwPnEdRX0H4t8O/8JJ4Z+yxkC4jAkhJ/vAdPx6V a/4Q/wAO/wDQHtP+/dbagAADoOlDYHy9d2dzYXT213C8MyHDI4wRUFfTt7pVhqIAvbKC4x08xAcV n/8ACHeHf+gPaf8Afui4HzlRX0d/wh3h3/oD2n/fuj/hDvDv/QHtP+/dFwPHPhx/yPFh/wAD/wDQ TXcfGH/kA2H/AF9f+ytXYWnhvRrC5W5tNNt4Zl+66JgirOoaXY6rEkV/axXCI25VkXIB9aLgfMdf Rngv/kTdJ/691pf+EO8O/wDQHtP+/da1tbw2lvHb28axwxjaiKOAKGwJqKKKQHzFg+lGx/7jflX0 0saL0RR9BTto9BXqf2m/5TzP7O8z5ssLy70u+ivbUlJ4jlGK5xxjvXV2/wAUPEEI/eJazj/bjI/k RXs+1fQU1oY2HzIp+orKeMhUfvwuaQwk4fDI8ug+Lc4x9o0pD7xykfzFadv8WNLfAnsrmP3GGH86 7eTTbGX/AFlnbv8A70YP9KrSeHNFkzu0qz/CFR/SsnUoP7H4mqp1l9oybb4h+HLkDN8Yj6SIRWvb +INIu8eRqVq+ewlFU5PBfh2XrpUA/wB0YqjN8OfDcoOLN4z6pIaj9y9ror98uzOmkit7mPbIkcqH swBFYV94H8PagCX09I2P8UJ2H9Kzk+HdtaZOm6tqNmeuEl4/KpV0LxXZ/wDHt4jS4X+7cwf1FNWj 8EwevxROf1H4TDltN1A+yTr/AFH+FYkEHi/wTNvSGRrZTlgP3kTD8On6V6EuoeK7If6XpNteqOr2 k20/k1Tw+LLQtsv7W7sH7/aITt/76GRWyxFS1p+8jF0Kd7x0ZS8OePtN1vbBORaXZ48uQ8MfY11w Oa5fUPCnh3xJE06RxeY3Pn2zAHPrxwapW0XiLwqAsjNrGmLwNv8Arox9D1rCcYS1hp5G8ZTjpPVd ztaWqWnanaapbia0lDr3HRlPoR1Bq7WDVtzZO4UUUUDCiiigAooooAKKKKAIbklbSYg4IRiD+FfO TeJtcDMBq15jP/PY19ITJ5sMkecblK5+orys/ByQsT/bK/8Afj/7KmgOC/4SbXf+gtef9/jQfEuu EYOrXmD/ANNjXe/8Kbf/AKDK/wDgP/8AZUf8Kbf/AKDS/wDgP/8AZU9APLndncu7FmY5JJ5Jrvvh b4flvda/teVMW1rkIT/E5Hb6D+ldDpvwisIJhJqF/LdKDny0TywfryTXoNnZ29hax21rCkUEYwqI MAUmwLFFFFIApKK5fx14gl0DQfMtzi4mfy42/u8ZJ/IVUIOclFdSZzUIuTOn3DPWl61wHhHw1Fc6 Uut6rcTzXtwpdZWlIMa+xzW14Q11tV0id7iTd9lmaIzHgOo6N+VXOla9nexEKt7X0udLniqdpqdn fSTx2twkrwPslVTyrehrO1TxPp9rot7eW93DM0CHARgfmPA/WvOtCsdaFjbiwvIrW61KQ3DyPJh3 UHAAHfqx96qnQ5ott2InW5ZJLU9aur62sYhLdTxwoWChnbAye1ThgRkHg9DXk/iSHWdR16y8Myao LxmIkdhAE2deTg84HNdtHBNEYrK88QIGGAI4UWJiOw5JNE6Kik77jhWcm1bY6OiufbxPDD4mm0i4 i8lIoBKLh3AVulWtQ1KGTQbi6s7+3QMhWK4ZvkDdBz9ay5JaGnPE1s0Vh6G1xpfhyF9av45JQCzz MwxgngZ78Vdj1rTZTEI76BjM22PDj5j6Chwd9AU01qTX+o2mmW/2i8mWGLIXe3TJqdHWRAykFSMg jvXnnj2Vta17S/DcDZ3SCWXHb/8AUMn8a9ChiWGFIkGFRQo+gqpw5Yp9WTCfNJroiSiiiszUKKKK ACiiigAooooAKKKKACiiigBMUjKrDBAI9DTqKAKS6VZR3P2mK3SKbu8fylvrjr+NXMcUUtF2KyMy 40iF7k3duTbXmMGWMfe9mH8Qq3BJKRsnQLIByV+63uP8KnoxRfuFrC0UUUDCiiigAooooAKKKKAC iiigAooooAKKKKACiiigBpIGSa8u8V6kfGuoR6Fo9t5xgkLtcFsKMDB/D3ruvFMk0XhfUnt8+aLd sEdRxz+lcB8PbSe68O6sunXCW+ou6oJWHKrj/wDXXXh0oxdXqjkxDcpKn3Nvwrpvi/T7uC0v5rb+ zIV2GPIYle2Mc/nUXjSRptQ07wvpwWBbxw84jAXK59voT+FajaFDomlxXKzzNqSMmZzKxMrkgEYJ 5B9Ksaz4ZlvdestasrpYLy3Gz94m5WXn3H940vaJ1OZh7NqHKjlPFGm2V1r2leG9NhCFEX7Q6/wx gkgH9T+IqKK5t7/xnLqSkLpOhw7YyvC5UEAD6n+VdPH4MaPXZdQF+zLcRbLjK/O574PYGorTwKtv p17YNdKYJXd4QqY2kjALc847VoqsLWv/AF1IdKd72OY0zUmsLDVfGN4M3d27RWaHt/8AWHH5Vesr S507w/YX8tot/e6ldpLcbwWk2Z3AKM5yAM1t/wDCDrP4Z/sy7uQ0yRiOKSNMLHg5yB6k9T3rU0bR LizWCTULpbme3j8qHYu1EX1x6n1qZ1YNaf0ioUpJ6nOeM52t9Gub65tVW6vNttaxuAzRryT9Ceen tXPahbzxaVpHg215uZ2E90c/dJ5x+A5P0r0LxH4fk1qXT5op0iks5vMHmJuU/h68CqR8GhdeXUIr wqrQmKbK5diTksG7E9PbtRTqwUVcU6UnJ2Oc48T+MLbRUJbSdLQb1zxIVwOfx4+lQ3AtNS8ftJbo kGnaWfOuJB90sOp/QD8K6iPwfJZa9cX2mXotobpAk0fl5K+6HsfrUFt4CSCHUrU3h+y3bFlQL8wO ONx7gdcVSqwWz6f8OJ0pvoZPhIvc6je+JZot1xez+RZo3p3P0AHX2NelCsLw9oB0e0gjnnWeWGPy 0KrtVFzk4Hqe5rdFc1aalK6OmjBxjqLRRRWRqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADHVXUqwBUjBB715N4mt/8AhCtVW90O WSBpjh4yQUx6YxRRXXg9ZNM5MVsmdt4dVtWhh1K/leeZR8itgIhx1AA6+5rpR0oorCr8bRvT+G4t GKKKzNAxRRRQAUYoooATFHeiigBaKKKACiiigD//2T== ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image012.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGhAh0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKxrjxb4bs7iS3uvEGlQTxtteKW8jVlPoQTkGgDZ orC/4Tbwp/0M+i/+B8X/AMVU9n4n8P6jdLbWOuaZdXDZ2xQXcbucegBzQBrUUUUAFFFFABRRRQAU UUUAFFFFABRRSEgdaAFopAynoQaWhMAooooAKKKKACiiigAooooAKKKx7rxX4csrmS2u9f0q3njO HilvI1ZT6EE5FAGxRWF/wm3hT/oZ9F/8D4v/AIqprTxV4e1C6S1ste0u5uJDhIobyN3bjPAByeKA NeiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigArhdU+EPg3WNUudRvdOkkurmQySt57jLHrxmu6ooA+W/jb4H0L wbJo/wDYts8AuhL5oaQvnbtx16dTWR8D/wDkqumf7kv/AKAa7r9pf7/hz6T/APslcL8D/wDkqumf 7kv/AKAaAPruiiigAooooAKKKKACiiigAoqta6hZ3zTLa3UUzQOY5RG4bYw/hOOhqzQAhOOa8y8V +KLqa9ktbaVkhRioCHG73NemMMqR614trdjNp+tXAkUnDkjPcdjXmZlOcYJR2PTyyEJTbluhdO1r UrGcSLcSA5zgng/UV6H4Y8ZWXiG5ubAAw6hagNLC38SnGHX1H8q8wSbz3yBgCsnwRqL3PxygNk26 NYXhlK9CoUk5/HH5VGWOTTvsaZooJq259GUUUV6x5AUUUUAFFFFABRRRQAVzGs/D3wnr7zS6joVn JPMcvcKmyUn13rgmunooA+Nfid4KXwN4tfT4HeSymjE9sz/eCEkYPuCCKl+Dn/JWNB/66Sf+inr0 D9pWFReeHp8fMY5kJ9RlSP6/nXn3wc/5KzoP/XST/wBFPQB9jUUUUAFFFFABRRRQAlFZniG/OmeH r+9VtrQwOyn3xx+teYeHPi1cQbbfXIjOnT7RGAGH1XofwxUSmouzOqjg6taDnTV7HsVFUNK1nT9Z tRcafdRzxnrtPI9iOoq9kDnNWtTmlFxdmtRaK4vxN8R9J0LfBbsL29HHlxt8qn/ab+grD8A+OtQ1 7xNc2upSrtmj3QRqMKhU8gfUHv6VHPG9jqjgazpOrayR6jRRRVnIFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHz9+0v9/wAOfSf/ANkrhfgf/wAlV0z/ AHJf/QDXdftL/f8ADn0n/wDZK4X4H/8AJVdM/wByX/0A0AfXdFFFABRRRQAUUUUAFZXiTXLfw54d v9XuSPLtYi+CfvHsPxOB+NahIAyelfNfxy+IsOt3Q8M6TOJLK2fddSocrLIOigjqB/P6UAdj+z1d TX2ha/d3Dbpp9R8x29WKAmvZK8U/Zt/5FXWf+v0f+gCva6AErL1jQrXWbdklULNtISUDlT/Ue1at JUyhGatJXRUZyg7xdmeG638OPH9xI9rZ3mlfZXOPNiLRsR75yR+Fdj8NvhlB4Gjlu7mdbrVbhdjy qMIi8HaueevU98CvQqKIQjBWirBOcpu8ndhRRRVEhRRRQAUUUUAFFFGaACiiigD5+/aX+/4d+k// ALJXnXwc/wCSs6D/ANdJP/RT16L+0v8Af8O/Sf8A9krzn4PuE+K+gk9PNcfnG4oA+x6KKKACiiig AoooNAHDfFW9+y+DJIQcG5lSP8Adx/lXhFey/Eyw1HxBqOl6RpsDSsoeWU/wpnAUk9ujU3RPhFYw Ikur3D3MvUxRHag/Hqf0rmqQlOWh9DgMVRwuGXO9XrY8m0/UrzS7lbmxuZIJh/EjYz7H1rf1f4g+ INYsVtJblYo9uJDAuwyfU/0GBXtlp4R8P2QAg0ezBH8TRBm/M81bk0TS5E2vptoygYwYVI/lTVGS VrmdTNaE5qTp3aPl+tDQtSbR9dsr9Sf3Mqs3uueR+Wa921H4eeGtRRgdOS3c9Ht/3ZH4Dj9K888R /CnUNOR7jSpTewLyYyMSAfyP+eKh0pR1R3Uszw9dezlpfue0wypPCksbBkdQykdwakr58074h+Jd GhjtFmR44AIxHPFkqBxjsa6G0+Ml8mBeaXBJ6mJyv6HNaqtHqeRUyjEJ+7qj2Kkrz7T/AIt6RezR QS2V5FLIwUYCuMk49c/pXoIORWkZJ7HBWoVKLtUVhaKKKoyCiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooA+fv2l/v+HPpP8A+yVwvwP/AOSq6Z/uS/8AoBruv2l/v+HP pP8A+yVwvwP/AOSq6Z/uS/8AoBoA+u6q6hqFppdjNe306W9tCu6SVzgKKtV82ftBeL57vX4/C8Eh S1s1WW4AP+skYAgH6KR+dAHR3Xxl1/xTrraR4A0VbjH/AC83I7f3sZAUfU1vQ6L8XpofNm8T6PBI RnylttwHtnbXJ/s8+JdJigu/DrQCHU5nM6zf891AHy+xXk49zXv1AHg+tfEv4h/D3UY4fFGl2F/a yH93PCCgkHsw6H2Ir0Pwd8TNE8aadPLYeYl9bxmSWyf/AFgx/d/vDtkU34t6TDq3wz1lJEBe3h+0 RN3VkOePwyPxr5M8Pa7d+G9es9WspCk1vIH4P3h3U+xHFAHr3jjxl8SPE8ctjpvhvU9L018qyxws ZZF9GbHA9h+teKXtndadeSWl7BJBcRnDxSDDKcZ5Ffd9ldJfWNvdx/6ueJZF+hGR/Ovjz4tf8lU8 Qf8AXwP/AEBaAOo+EvjXXfC+i39vpPhK51qOa4DvLFIyiM7QNpwjfWu+f4xeLkbDfDPUAf8Arq// AMaqH9m3/kVdZ/6/R/6AK9roA8ab4w+LkiMrfDS/CAZJ85//AI1Vyx+MF1fWENyNFjhaQZKNOW28 9PuivWDXgHiK5gu/EmozW4HlG4cDHQ4OCfxIJrkxdWVOCcTswVKFSbUlc7FPilfuHMWhfaXVSwhg kO9z6Dis2/8AjXqmlWzXF/4C1S2gXrJK5VR267areBY/+J/byn/noFFdf8Yo1f4V61uH3URh9Q61 OCrSqxfN0HjaMKUkoq1zz3/hpZM8eGGx73n/ANhXrOteN9G8OeHbfWNYuBbpcRK8cI+Z3JAO1R36 9elfEo616j4P8I698XtcF9q13JHploiQvPt6KoAEcY6ZwOT2zk9a7TiOg1v9o7U5Z2TQ9Ht4IQeJ Lpi7n3wMAfrWPD+0L4wimDSwabKg6oYSM/iGr6E0PwR4c8O2a22naRaxqBguyB3b3LHJNYPjj4U+ H/FmmzeTZQWOpqpMNzAm35vRgOGB/OgCl4A+MmkeMp0066i/s7VWHyRM25JT/sN6+x/WvTK+CZEu dM1B4yWhubaUqSpwUdT6/UV9j/D/AMVDxJ8P7HW7uRVkWJluWPADJkMT+WfxoA2vEPiHTPC+kTap qtwILaPj1LN2VR3JrwHXv2g9e1C8Nv4c06K1iZtsbSL5sr/h0H05riviX49ufHHiKSUOy6bbMUtI c8bc/ePuf/rV6n+z74NtBpk3iq6iWS6eRobUsP8AVqPvMPck4/D3oAxIdY+OssYvVgvTEPm2NaxD I/3SN1avhf49X1rqq6X4004W53BHuY4yjRn1dD29x+Rr3uuP+IHgHTfHGhywTRImoohNrdAfMj4O AT3U9xQB5T+0bcw3cPhm5t5UlhlSZ45EOVZTswQa86+En/JVPD//AF8H/wBAasPV7zVYYI/D2pM2 NLmlRIn6xMSAy/TK1ufCT/kqnh//AK+D/wCgNQB9l1zHjHx5ofgmyE2q3B85wTFbRDdJJ9B2HueK n8aeKbbwd4Xu9YuQGMa7YY8/6yQ/dX/PYV8ipNqnxC8c263tw0t7qVysZc9EUnsOwAzx7UAevW3x o8aeLL97Xwl4WidV7yEyFR6s2VVa1pvEHxp0qH7Zd+HdOu4VGXihKswH0V8/lmvUtA0DTvDWjwaX plusNvEAOBy5xyzHuT61pkcUAeXeDvjdoniG8TTdVgfSNSZtgSVsxs3TbuwMH2IFdd4w8Q6p4esI LjSvD9xrTySbXigfaUGPvdDXmXx78C2kujnxXYwCO8gdVu9owJEPAY+4OOfQ+1Vvgp8UpruaHwrr s5kkIxY3Lnk4H+rY9/Y/h6UAX9V+N+r6EqSar4Cu7MSHarTTlQx64yUrPi/aSM0yRReFXaR2Cqov OpPQfcr1Xx54Uh8ZeErvSZNomYb7eQ/wSD7p/ofY18X3dpc6dfzWtzG8NxBIUdGGCrA80AfVelfE bxTqGrWlpP8AD3ULWCaVUkuHlJESk8sfk7da9Lrz34Q+Nl8X+D4kuJQ2p2AEFwCeXAHyv+I/UGvQ SQBknigDyXUPi14o0mykvb/4dX1tbRjLyyXOFX6nZVPSvjZrmu273GleAb28hRtjPDcFgD6Z2Vg+ M9cv/i541h8H+HpSNGtn3XNyvKuR1c/7I6AdzzXuPh/QrDw3oltpOnRCO2gXaPVj3Y+pJ5oA84u/ D134+0GbWZdAl0LWY5Cq28rZ+0KADk8DnkgH2ryySJ4ZXilRkdCVZWGCCO1fVprx34seGltbqPXL ZMJMdlwB2bs34/0rnrU9OZHu5Tjmpexm9OhzHw/07+0fGmnoRlIX89v+A8j9cV9EjpXkXwb08Nda jqLD7iLCh+pyf5CvXauirRObN6vPiOXsLRRRWp5YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFAHz9+0v9/w59J//AGSuF+B//JVdM/3Jf/QDXdftL/f8OfSf/wBkriPg Ym/4q6dzjEUx/wDHDQB9cV86fGv4ba7feLZfEGj6fPfQXaJ5yW6F3R1UL90ckEAdPevouq95eW2n 2kt3dzxwW8SlnkkbCqPUmgDwL4KfDXXNN8Tf8JBrVjLYxW8bLBFONru7DGdvUADPWvoWvEPE/wC0 Pp1nK9t4c09r5wcfaLjKRk+wHJH5Vz0HxH+L+vL5umaOywt91odPO0/Rnzn86APafiK4T4c+IWbo LGX/ANBr4nr2fxNqfxfl8Jal/b1qY9KaLbcl4o1IUkenPXFeMd6APuLwWxfwL4edjlm022JPv5S1 8o/Fr/kqniD/AK+B/wCgLX1b4J/5ELw5/wBgy2/9FLXyl8Wv+SqeIP8Ar4H/AKAtAHsH7Nv/ACKu s/8AX6P/AEAV7XXin7Nv/Iq6z/1+j/0AV7XQBl+ItUTRPDepam5GLW2eUZ7kKcD88V83aBK8+h2s 0jFndSzMe5JJNepfHvWv7M+HbWaPiXUJ0hxn+AfM38gPxryzwwpk0GwQdWTH6muDMP4aPQy7+Iz0 bwdGIdQ0/PBaTJ/Gum+MH/JK9c/65L/6GtYOhKE1ixUdBKoFb3xf/wCSV65/1yX/ANDWscqd4Sfm a5qrVIryPjoV9weCdOtNK8FaPbWcKxRfZI3wO7MoYk+pJJr4fr7q8M/8ipo//XjD/wCgCvVPKNWi iigD4h8dKqePteVRhRfzYH/AzXpfhLU5bD9m7xKyOQzXTQr7BxGp/QmvNfHv/JQPEH/X/N/6Ga7r RWC/s269k9dTUD/yHQB5H3r62+BTl/hZYggfLNKP/HzXyTX1r8CP+SW2f/Xeb/0KgD0qiiigD5M+ O2nxWPxOuniAAuoI52A/vEYJ/wDHax/hJ/yVTw//ANfB/wDQGrf/AGgP+Smv/wBekX9awPhL/wAl T8P/APXwf/QGoA739o3X3n1zTdBjb91bRfaJFB6u+QPyA/8AHq4D4WX+naV8RNLv9Vuo7a0gLu0s nQHacfrV340XDXHxW1ksT8hjjH0EaimfCXwnpnjLxk+maqJTbLaPNiJ9pLAqBz/wKgD6R/4Wt4F/ 6GWy/wDHv8KP+Fr+Bf8AoZbL82/wrBX4BeBlbJt75h6G6P8ASpP+FDeA/wDnxu//AALf/GgBnjT4 h+CNZ8E63p8XiCzlmnspViQbvmk2kr2/vYr5WtLuaxvYbu2cxzQuJI3U8hgcg19Xp8C/AaDH9nXD f71y/wDjT/8AhRvgP/oFzf8AgS/+NAHY+HNV/t3w1puq7Qpu7aOYgdiQCa8U+P3gPBXxdp8PpHfK o/BZP6H8K900rTLXRdLttNsYzHa2yCOJCScKO2TT7+xt9SsLiyu4llt7iMxyIwyGUjBFAHxr8PPG E3grxbbakpZrVv3V1GP4oyefxHUfSvavi58Rt2nW3hnwxMbm/wBVRS7253FY36KMfxMD+X1rxHx9 4RuPBfiu50uXc0BPmW0h/wCWkRJwfr2PuK3fgzq+j6V8QbWXWUUmVDDbTyHiGQ8AnPqPlz2zQB9C fDPwJB4G8NJbsEfUbgCS7mHduyj2HT8zXbUUUAFYvirTF1fw1f2RXJeIlf8AeHI/UCtqmkZB+lJq +hUJOMlJdD5t8M+J77wvqIuLdi0LHE0BPDj+h969/wBC16y8Qaal7ZSblPDIfvI3oR6182X0axah cxr91ZWUfQE1oeHPEV94b1Jbu0fKniWIn5ZF9D/jXJTqcrs9j6nHYCOJh7SGkvzPpikrO0PV49c0 i31GFJI0mXO11wR/j9a0q60fKyi4tp7hRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFAHz9+0v9/w59J//AGSuL+BH/JVrD/rhP/6Aa7b9pdT/AMU4/Y/aB/6LrifgR/yV aw/64T/+gGgD60ZgoJJwByTXyR8U/iVe+MdZmsrWdo9Dt5CsMSnHmkfxt6+w7Cvpfx1PNbeBNdmg z5q2Uu3H+6a+Ih1oA+ifgh8NtObRoPFWq263FzMxNpFIMpGoON+O7Eg/QV7oBiuM+E15Be/DDQ2g IIjg8pgOzKSCK7SgDivi5/ySvX/+uC/+hrXxrX1L8fPEUWn+CBokbhrzVJFUIOWEaMGJx9QB+NfL fegD7g8E/wDIheHP+wZbf+ilr5S+LX/JVPEH/XwP/QFr6t8E/wDIheHf+wZbf+ilr5T+Lalfirr4 Ix+/U/mi0Aev/s2/8irrP/X6P/QBXtdeI/s2yKfDWtRA/Mt4rH6FB/ga9uoA+aP2i9a+1eK9P0hG yllbeY4/23P/AMSB+dReB4vM0vTz2WMsfzNcP8SNTbVviNr10TlRePEn+6h2D9Fr0TwDHjw3bSnu gUfma83NHaienlSvWO60T/kN2X/XVa2vi+6j4X62hYbzCCFzyQHXJ/UfnXLf2tBof/E1uQzQ2n71 lTqQOcCuMvp/E3i3w74p8b6vH5GmSaebSxhPGFM0bfKO4+Xlu5PtWeUfw36l5v8AxY+h4xX3V4Z/ 5FTR/wDrxh/9AFfCvevurwz/AMipo/8A14w/+gCvWPJNWiiigD4i8e/8lA8Qf9f83/oZrstO3/8A DN+rbc4/thM49MJXG+Pf+SgeIP8Ar/m/9DNew/Cjw+nij4Ja9o7EBri5kEbH+FwiFT+YFAHz5X1p 8CP+SW2f/Xeb/wBCr5Su7SexvZrS5jaOeCQxyIw5VgcEV9Nfs76gLnwHdWeRutb1hj2ZQQf5/lQB 69RRSHgUAfKPx9fd8UJ1xjZawj68Z/rWH8Jf+Sp+H/8Ar4P/AKA1O+LOuRa/8SNVurdg0ETi3Rx0 YINpP5g034Sf8lU8P/8AXwf/AEBqANL442bWnxU1JiMLPHFKp9QUAP6qa0v2emA+JMgJwTp8oHv8 yV1/7Rfhl5rbT/EkEZYQj7NckDopOUJ9s5H4ivNfg5q8ej/E3S5Jm2x3Ba2JJ4y4wP1xQB9hUUUU AFRzTxW8LzTSJHEgyzuwUKPUk9Kkrx/42eJJZrez8D6QTLqerSIJVQ8rHu4B9Mn9AaAPXIZ4rmJZ YJEljYZV0YMD9CKoa/rtj4b0S61bUZfLtrdCx9WPZR6knio/D+k2/hrwzY6XGyiGygCM54HA+Zj+ OTXiur3N78bfHa6Rp0kkfhbS33TTjpIehb6nkL6DJoAxbHwpr/xr1LVvE15MbS0RGisFYZUsOVjH +yM8t6mvJLyzuNNvp7S6iaG5gkMciN1VgcEV91abptppOm2+n2UKw2tugjjjXoAK8V+PPw9+0258 W6ZD++iAW+RR95egf8Oh9vpQB0XwY+If/CVaH/ZOoS51axQAsx5nj6BvqOh/A969U618KeH9dvfD Wu2urWEmy4tn3D0Yd1PsRxX2f4T8TWXi7w7bavYt8kq4kjzkxOPvKfpQBt1HPKsEEkjnCopYn2FS VyXxG1ldI8JXIVsT3Q8iMfXr+maUnZXNKNN1Kigup4DcSGa5llPV3Lfmc16L4D+HTaiYtV1mMrac NDA3WX0J9B7d6rfC3w7p2s6jcXV6PNezKlID90k5wx9enSvbgABgDFc9Kmn7zPezLMJU/wBxT07s SONYkVEUKqjAUDAFPoorpPnQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AK4zxB8UvCnhnV5NL1S+kiu4wpZVhZgARkcgV2dVpbCzncyS2kEjnqzxgn9RQB80fG7x3oHjOHRF 0S6ec2rTGXdGyY3BMdev3TXLfCnxDp3hfx9aapqszRWkcUqs6oWIJQgcD3r6+/srTv8Anwtf+/K/ 4Uf2Vp3/AD4Wv/flf8KAPPrn40/D+8tpbabUJXhmQxuptnwykYI6V87eN/Bl54Q1Yo0cj6bcDzLK 62nbLGeRz/eAIyK+yv7K0/8A58LX/vyv+FF9plhqdmbS+s7e5tiMGKaMMv5GgD5G8A/FLWPAQlt7 eOK7sJm3vbSkjDeqkdDXoV5+0lLJZlLHw6EuyMK0txuQH6AAn869AvPgn4Eu3Z/7IaEntDO6j8s1 paH8LvB3h+4W4stFha4U5WWfMrKfUbs4PvQBwnw28Eat4h1hvHPjbfNdSDNnbTLjaMY3Fewx90fj Xz/4h0e40DxBfaXcoySW0zJ8wxkA8H8RzX3VisPXfB3h3xMQ2saRa3bqMCR0w4HpuGDj8aAOL8E/ FLwhD4D0mO91m3tbiztI4JYZchwUULwO+cZ49a8V+KUF3retTeMrfTLiHRb+Ty4J5Fx5mxQu4j+E NjjPXFfRFj8KPA+n3K3EPh61aRTkedukA/BiRXU3WnWV7YtZXVrDNaMu1oZIwyEemDxQB8tfBfx7 ZeDNcu7fVXMen6gqBpQMiJ1zgn2+Yg/hXuGt/F/wnplrmyv11a8k4htbH94zsegyOB/P2pZPgx4D kmMn9hquTnaszhfyzW9ongjwz4cfzNJ0W0tpf+eoTdJ/30cn9aAPjPXobyHXb1dQtJLS6aZnkgkG GQsd2D+dep+DNQNr4as4zGXBTIwe+TXufiH4f+GPFVwtxq+lRTXCgL5yko5HoSMZ/GksPAHhvTbe OC108IkYwuXYkfiTXJjMO68OVHXg8QqE+Znmdtbw3lxFJrbRx6cGBmjkO1Nmfm3H0xW38SvF3hS+ +Gerabpeu6VJKYVWG3guEJIDLwqg+ld1L4O0O4heGayEkTqVdGY4YHqDzWZ/wqnwL/0LVl+Tf41O Cw86EWpFY3EQryTjc+Ma+wfDXxI8GL4d0u3k8R2Ec0VpEjpJJsKsEAI5xV3/AIVT4F/6Fmy/Jv8A Gj/hVPgX/oWrL8m/xrtOI6f+0bL+zDqX2qH7CIvP+0bxs8vGd2emMc5rnj8TPBIJ/wCKn03/AL/i t8aVYrpH9ki1j+weT9n+zkZXy8bdv0xxXP8A/CsvBH/Qsab/AN+RQB8j+L7yHUPGWs3ltIJIJ7yV 43U5DKWODXtvwK8V+H9E8FXVrqms2NlO16ziO4nVCVKqM4J9q9M/4Vl4I/6FjTf+/Ipp+GPggqR/ wjGnYPpFigDyn4oeDNL8bzT+IvBN7Z6jfQqDf2lnKHZxzhwB/F2x3x69fN/APjvUfh5rskqwmS2l wl3aP8pYDuPRhzX1jofhLQfDTTNo2mQWRmAEhiz82OnU1n+JPhz4V8VMZdT0qI3BGPtEP7uT8SOv 45oAyLP41eBbqzWdtY+zsRkxTQuHHtwCP1rzvx18cZNaifQvB1vcbrn90bop+8fPG2NRyCfU8+3e unP7OvhEzb/t2rhf7nnR4/8AQM11/hj4aeFfCUwuNN01TdAYFzO3mSD6E9PwoA+ZfGPw+vfBeg6R eanL/p2oM7PbjpEAAQCe7c81V+Gl/aaX8RdFvb64jt7WGYtJLIcKo2sOTX17rPhnRPEQhGsaZb3o hz5YmTdtz1xWT/wrLwT/ANCxpv8A35FAFe+8a+AvEFnLpFxr+m3EN4vktF5wJbdxge/pXzj8Qfhz qvgHV/OjEk2mNJutrxAfl5yFY9mH69q+lYvhj4KhuUuIvDlkkqMHVlBG0g5BHNdPc2tveW7291BH PC4w8cihlYe4PWgDyn4d/GnSNZ02Cx8Q3kVhqkShGlnYJFNj+LceAfUH8K9JPiPQxAZzrOn+SBky fak2/nmuO1b4J+B9VkaRdNeyduSbSQoP++eR+lYi/s6eEVl3m/1hlz9wzR4/9AzQBd8W/GzQdLia 00B/7Z1WT5IUtwWjDHplh976LnNYXgbQ4vDN+/jn4iajDa6vqDMLZLttpjBHJwejY4A7CvRfDXw6 8LeFGEul6XELkcfaJf3kn4Men4YrX1jQdJ16BI9V021vUjJaNbiIOFJ7jNAHiXxZ+KdtrMcXhfw1 qMJguiFvL7ftjCkj5Q3p/ePpx612PgvX/h54L8P2uj2fiXTpJSQZZQ+TLIepOPyHoKraJbeArjUp 9H1Xwzo1rqMErRAtaoElweCCRwfauxT4e+DQQ6+GNJBHIItU/wAKSaexpUpTpu0kdMrBlDKcgjIN Y/iPXtD0HT/M167ht7SYmL98CQ+RyuADnithVCgKBgDgCqGq6HpWuwJBq2n217EjblS4jDhT6gGm Znxd4vstIsPEt3FoN/He6Wzb7eRM8Kf4TkDkdK6f4SfEFvBXiDyLyRv7HvCFuB18pu0gHt39vpX0 n/wrvwZ/0K+k/wDgIn+FVb/wb4A0u1e5vfD+iwwr1Z7ZB/SgaTbsi3pvxA8J6zP5Gn67ZzzbS+wN g7QMk846CvHvHfig+JtcLRE/YrfKQA9/Vvx/liq3ibUtBuL3Z4d0Oy063TI86G3WOSUHg5I6L7fn XP1y1al9EfS5Zl/sf3tXfp5Hd/Ce/wDsvi425Py3UDJj/aGCP5H8690r5o8MTz2PibTbqOOQ+XOp bapPy5wf0Jr6XXpWlF+7Y4M5glXUl1QtFFFbHkBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQ3N1BZwPPczRwwoMs8jB VH1JoAmorAtPGvhm+uEt7XXbCWVzhFWdfmPoPWt8UAFFY2peKtE0e6FrfajDHckbhAuXkx67VBOK l0rxFo+tmRdN1G3uXj++iN8yfVeo/GgDTJAGSeBUNpd29/ax3VrKssEg3I69GFec/FL4maf4c0e8 0qwuUm1qdDEEjOfs4IwWY9jjoOtX/hx4m0NfBHh/T21ey+2/Zkj8gzrv3em3Oc0Ad6eleTto+p/E rxm2qSXd1Z+FbE+TbrDKyG8IPzMMEHaT39BxXpOr3+m2Gmyy6tcw29ow2O0r7QQe2azLPxn4Yklh s4NUtonbCwxyAxbvQLuAz+FAG9HDHFbrAi7Y1UIAD0GMV4T8a9ItvC+n6XPo0l5aSXE7iVhezNuA AP8AExxXvXUV4p+0X/yB9D/6+JP/AEEUAexacS2mWhJJJhQkn6CrVVdN/wCQVaf9cE/9BFUb7xTo Wm3ZtbzVrSG4AyYmkG8D6DmgDYoqhpmtaZrMTS6Zf292inDGGQNtPocdKuswVSzEADkk9qAHUVzE vxE8HwXn2STxJpwmztK+eMA+hPQVd1nxVonh/SF1TUdRhis3x5cgO7zCegUDr+FAG1RWRo3iXSNf 0Uavp17HLYnOZT8oXHUHPTHvVX/hOfC2R/xPrDBbbu84bc+melAHQ0h4BpsUiTRrJE6ujDKspyCP UUSNtjY+gzQB4B8Rooz4oe+g/wBVeLu/4EpKN+q1X0Xx7r+iKscN2Zrcf8spxuA+ncfnRqU39reF 3uc5eyv5M+yTfMP/AB5TWFZafeajMIbO2lnk9I1Jx/hXE21K6PsqVOnKioVUnbTU9OtPjL8oF5o5 3d2hm4P4EcfnVt/jLp+3KaVck/7TqBXno0PT9N+bWtSRZB1tLPEsn0LfdX8zTh/wjeqDyI4pdJmH Ec0khlR/9/up9xxVe0n3OV4HCN3UHb5nTaj8YNTnUpYWEFr6O7GRv6CuF1PWdR1mfztRu5Lh+248 D6DoKXU9GvtJdftMX7p/9XMh3RyD1VhwaXRdOOq6vb2udsZbdK/9xByx/AA1DlKTszso0MNRjz00 j1H4ceC7CXw+NQ1SxhuJblt0QmQNtQcDr68n8q76HQtKtxiLTbVP92Ff8Kg8MX9vqXh+0ubWPy4C pWNPRVJA/QVr11wiklY+VxNepOrJyb3GJFHGMIiqPQDFSUUVZy3uFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABrxj xBqR8afGux8JTMW0bTsy3EGflmkVN3zeoB2jH1r2c14L4biey/aY1WKfIaUzsme4ZA4/SgD1/XPC +l65oU2lT2cIhdCsZVAvlN2ZcdCPauF+EnirU9V0nVtC1BzNqejsYo5H6uvKgMfUFSM/SvVT0rA1 rWdL8NWGpXzRRiW2tjcypGgBcZIXJ924596APP8A4M2XiS31PxDceIdKmgluJRIbq5iKySPk5Ck9 V+nFY3xDuP7B+OXh+/sG8madYRcbBjzAXKEH1yOK0fBdhqPxUhutf8R6reR2PntFb6dZzmKNcAZJ xyeuK4zx5omn+H/i3oljpwkEQNu7CSVpDkyerEmgD0f462tunw8mnW3iWU3UWXCAMeT3re+G+lae fAHh+5NhbGf7Ijeb5K7s+ucZzWP8eP8Akmsn/X1F/M10nw2/5Jv4f/68koA4XxzZeKbv4v8Ah+W2 0qW+0i2KFN0ReBSch2c9AQORn0FbvxrtLeb4aXssqL5kEkbxNjlW3AcenBNYWv8AinVvGPxM/wCE G0fUJdMsbcsLy7tziV9q5YA9ufl/WqfxT8CaJ4d8AXN7bPeyXQljUSXF28m7J54JwaAO7+FOp3Gq /DjSbi6kaSVUaIu3UhWIH6AVw/7Rf/IH0P8A6+JP/QRXV/Bb/kl2m/78v/oZrlP2i/8AkD6H/wBf En/oIoA7Lx34ok8J/DT7fbEC8khjgtyezsBz+AyfwqH4RaTBbeArPUHUS3uolrm4uHG55CWOMk89 BXP/ABttpZvhdpkyAlIZoWf2BQj+ZrsvhfKs3w10FlxxbBTj1BIoA89+KFy/gH4gaL4n0oeSt2pS 9hThZgpGcjoSQevqAai+OfjS6aPTPDOjzMo1GNZpnQ4LoxAROOx5J/D3p37Rkitb6BAADI0krD1x hR/WuO+J1nNonjvwrdXgIiSytMk/9MyNwoA9k0v4Q+E7Twumk3OlwXEzRYmu2X96XI5YN1HPQCvE /Dfh62b4iX/gTXpZbiFFubbTzJIdkEpGUkC+4Gcepr6qRg6BlOVIyCO9fNkSHV/2nna0+ZYb4l2X sI0w36jFAFGLRNR0LXdJ+Gt3fJJBdXyXF8LZjtfdgBMkA42rn6t7V9Ky6Rp82mtpz2UBs2j8sw7B t24xjFeEeI43sv2ldPmmACTXEDKW6YKhf5g19C0AeJ/CTXLnSPGeteBrmdpbW3llazLnJXa2Co9i vOPY16t4lvPsHhrUbnOClu5B98cfrXiPg+Nr79o7VZ4RmOGW5ZyOwA2/zIr0n4rah9k8INbg4e6l WP8AAfMf5frUydo3N8NT9pWjHuzyDRdYh0yK9gurMXdvdRqrRFyo3KwKnI5p174l1C7gNtE0dnaf 8+9qvlp+OOW/EmseiuHmex9r7CHNzNah15pxRhGHx8pJUH3GP8abWwlr5ng+W5xzFfKpPsyH/AUJ XKnJQtci0zXr3TEaFSk9o/37acb42/DsfcYrSk1XRrbSryTSoJ7e+vFEDwudyRRnltjdecAYPvXN UU1JkSoQk7nuHwk1AXPhaS1J+e1mK4/2W5H65/Ku/rwv4VayNO8TGykbEV6mwZ6bxyv9R+Ne6Cuu k7xPlMzouliJdnqLRRRWh54UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwvi/wTc33iHTvFegSQw65YHBSXhLhMYK sR0OCwz713VFAHKza14qltvLtvCbRXbceZcX0JgQ+uVYsR7bR+FIPBxvPC+p6bq14bm91VD9qulX bhsfKFHZV4wPz6murooA8R8LeEvid4FNxpukLpV5p8sm8PNJgKem7HBHQcc1N4l+FGvXd7pWvW93 BqGuRT+dfGZvLWUgqVVP7qqBjH417RRQBwnirwxrXjfwXfWGoC1sbuRkktoI5DIsbLz8z4Gc+w49 6q+C9N8caT4cstBu7TT7RbU7Ptv2jzWMYbOBGBjOOMk/hXotFAHjXiX4beJtP+IDeL/B01u80shl eCd9uGYYYc8EHJPtmtLUPBXivxxo9yviy5s7aRYWFlZ2uTGk2OJJD39AO2TXqdFAHnnw70PxX4c0 Sz0O/tbKC2tpXd7lLjzGlUknaE2jHJ6k9B0rD+KPhnxZ46trK2s9CWAWkzvvkvIyHBGBgA8V6/RQ BysdhdeItBn0LX9Da1tHthEX+0pJuIx029CMZz7VzPhjSvGfw+tpdFt9JTX9IWRntpYbqOGWIE5w yuQD+B6mvUKKAPMj4J1Xxh42tfEXiq2is7KxQC001ZRKxIOdzsOOvOBnoKofGuPTdbtrDw5DYz3/ AIkmJksY7cgGMfxFieApA6e3bFeuV4B8R/EGoeAfjPb+JfsX2m1nshEqs20OvRgGwcEHB/GgDX0V vjLYeGotG/sWw8xE8qK9nuoy8S9BkBiCQPY/jXT/AA3+GkXgtZ9QvrgXut3efPuMcKCclVz6nknv XCt+0tFtO3ws+e2b4f8Axuui8JfHjRPEWqQ6dfWMumTzsEid5BJGzHgAtgEZ+lAG98RPh+fFqWuo adOtprdgwa2nP3Wwc7W/HkHtTo9c8emxa3k8HRC/27BdLqMXkFv7+3O/Htiu5FFAHDfDzwAPB9vc 3l7Ot1rN+xe6nUfKMnO1fbPJPc1x/wAX9U8/W7TTkb5baLew/wBpj/gB+deyyyLDE0jkBVBJJ7AV 8y+IdTbWfEF9fkkiaVinsvRR+WKxrStGx6+TUees5voZtFFFch9UFdtotmLr4Wa+wXLxXMcgP025 /QmuJr1j4d2Rvfh5rltjPnPIAPfyxj9a0pq7scOYT5KSl5r8zyeipPKH/PVPzP8AhR5Y/wCeqfr/ AIVmdqYkE0ltPHPCxSSNg6sOoI5Br6S8La9D4h0G3voyA5G2VB/C46j+v4181sMHGQ3uK6rwJ4sb wxq+JiTYXBCzL/d9GH0/lWtKfKzzMzwnt6XNH4kfQtFRQzx3EKSxOrxuNyspyCDUtdh8k9AooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8V8d6vceO/H8fw5sIrZLWL5 727liEjphQx2Z+6QCBnrk+le1V4b400fWvA3xPHj7SbGTUNPuBi8hiBLJlQrZx0BwGB9RzQB19j8 FPA1nbCJtKa5YDBlnmYsffggD8BXmPxh+F2k+E9Lt9f0DzbdPtCxS27OWAJBIZc8jkYx7ivQ4fjx 4Lktw8kl/FLjmFrVi2fTI4/Wsq4Gr/F/WtPD6Zc6b4QsphcM10u2S8cdAF9MH9Tz0oA9V0eSWXRL CSfPmvbxs+eu4qM1epqgKoUAADgAUpOBQBx3xK1oaT4TmjR8T3n7hMdcEfMfyz+deA12nxM13+1/ E720T5t7IeUPQv8AxH+n4VxdcVWV5H1+V4f2NBN7vUKKKKzPSCvb/hJHjwlM2B81w38hXiFe8/Cy Ly/BELf35ZG/XH9K2o/EeTnLth/meJara/YdXvLXGBDM6D6AmqddV8QbWKz8b6inlviRlkBDAZ3K Ce3rmuZ3Rf3JP++x/hWUlZ2O+hPnpRl3RHRXqfw+8A2eo2DanrFqZIphi3hZiOP73GOvau1/4V34 U/6BEf8A38f/ABrSNGTVzgrZvRpTcLN2PN/AHj5tEddM1N2awY4jkPJhP/xP8q9rhmjnhWWJ1eNx uVlOQR6g1zf/AArvwr/0CI/+/j/41uabpdppFoLWxjMUAOQm9mA+mScfSuimpRVmeFja1CtLnpJp 9S7RRRWhwhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRiiigCD7Hbeb5v 2eLzM53bBnP1qeiigBK57xn4gXw74cuLoMPtDjy4B6uf8Ov4V0NcB4v8Gav4u1lC95Ba6dbjEQIL sSfvHHA9uvapm3bQ6MLGm6qdV2ijxBmaR2dySzHJJ7mkr23T/hFokGGvLi5umHUbtin8uf1rqdP8 J6FpeDaaZbow6MU3N+Zya5lQk9z6CpnVCOkE2fPVjoOramR9j065mB6MsZx+fSqM0MlvM8MyFJEY qyt1BHUV9VBABgAAfSvJ/ir4U2t/b9nHwcLdKo/J/wCh/CnOjyq6Jwub+1q8k1ZM8qr6H+HcPleB NMBH3kZvzYn+VfPFfTPha3+y+FdLhI5S2jB+u0UUN2LPJfuox8zyr4v2vleI7W5A4mt8E+6k/wCN YPgjwvJ4m1tEcEWUGHnb1Gfu/U/416D8WNJm1KDR/ssZknNwYFUd9wz/AOy11nhTw7D4b0OGyjwZ T880gH33PU/0qvZ3qX6GCx/ssDGMfiehsxRJBEkUahUQBVAHAA7U+loroPBCiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClooAKKKKACobm2iu 7aW3mQPFIpR1YZBB6ipu9JQCdtUfOviXwrPoXihNOVWaG4kH2Z/7yk4A+o6V9DW8Yht44l+6ihR+ Aqjqmh2eryWclymZLSZZomHUEdvpWkBgVnCHK2duKxjxEIKW6GtGjlSyKxU5UkdD6in0UVocQUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q== ------=_NextPart_01DA0281.C88420B0 Content-Location: file:///C:/B04A9D81/02PAULOTORRES-Revisionsistematicadelasaplicacionesdevanguardia_archivos/image013.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADeAfwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACio554raF5p5FjiQbmdzgAV59rPxZ060kaLTLZ7xhx5rHYn4dz+lAHotFeMP8X9bLEx2 Ngq+jK5P/oQpv/C3te/589N/79v/APF07Ae00V4t/wALe17/AJ89N/79v/8AF1NafFnXZ7yCFrTT gskiqcRvnBOP79FgPY6KjllSCF5pG2xopZjjOAOTXM/8LI8Kf9BT/wAgSf8AxNIDqqKydG8S6Tr5 lGmXfnmHG/8AdsuM9PvAela1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFUNW1mw 0Oz+16jP5MG4Ju2M3J9gCaxP+FkeFP8AoKf+QJP/AImgDqqKqabqVpq1jHe2Uvm28mdr7SM4OOh5 q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQ3NxDaW7zzyLHEg3 MzHAAoE3bULi4itbeS4nkWOKMbmZjgAVW0vVrLWbJbuxnEsROM9CD6Edq8e8Z+NJvENwbW1LR6ch +VehlP8AeP8AQVleG/El54b1AXEB3QsQJYSeHH+Poa9GOXydPme/Y4JY6KqW6H0LRWdo+sWmuadH eWcm5GHKnqh9D71oV57TTszvTTV0LRRRSGFFFFABRRRQAUUVz/jXVTo/hO+uUbbKyeVGfRm4z+HX 8KAPLfiH4wl1vUpNOtJSNOt22/Kf9a46k+o9PzriKOpqa1tZr27htbdC80zhEUdyTiqAhor3LQPh po2m2kbahCt9dkZdpPuA+gH+Nb//AAifh7/oCaf/AOA6/wCFK4HzdVnTf+Qpaf8AXdP/AEIV9Ef8 In4e/wCgJp//AIDr/hSr4W0BHV00WwVlOQRbrkH8qLgW9W/5A19/17v/AOgmvmKvqWfyvIk87b5W 0793TbjnNcln4e/3ND/79p/hQmBzPwb/ANbq3+7H/wCzV6vWLoR8Olpv7CWxBwPN+yqo+mcfjW1S AKKKzrnXdJs2K3OpWkTDqrTKCPwzQBo0Vjf8Jb4f/wCgxZ/9/RR/wlvh/wD6DFn/AN/RQBs0VBa3 dvfWyXFrMk0L52uhyDzis5/FOgxyNG+rWiupIZTKMgjtQBsUVjf8Jb4f/wCgxZ/9/RR/wlvh/wD6 DFn/AN/RQBs0VkxeJ9CncJHq9mzHoPOArVDBhkEEHuKAFooooAKKjmnht4zJNKkaDqzsAP1rMfxT oMbFW1iyB9pgaANeisb/AIS3w/8A9Biz/wC/oqS38S6Ld3CQW+qWssznCIsgJJoA5r4r/wDInr/1 8p/I14hX0xrP9kixH9si1NrvH/HyAV3duveufz8Pf7mh/wDfCf4U0wJ/hz/yI9h/wP8A9CNdVVLS /wCz/wCz4/7LEAs+fLEAATrzjHvSX+r6dpZQX17Dbl8lRI2M4pAXqKxv+Et8Pf8AQYs/+/oo/wCE t8P/APQYs/8Av6KANmisdfFegOwC6xZZP/TYCtOG4huYxJBKkqHoyMGB/EUAS0UUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUVgeIPF+l+Hk23MvmXBGVgj5Y/X0/GvNNW+JmtXrstnssouwQbm/M/4V00c JVq6paHPVxNOno3qe05oz7186yeItambc+rXpP8A13b/ABq3Y+NPEFg4aPU55B/dmbzB+tdDy2pb Ro51mEL7Hv56V4n468WXesX8unoslvZwOVMTDDOwPVh/IV1vhz4mWt+6W2rItrO3AlU/u2Pv/dq9 4z8GQ+IrY3tkETUFXKsOko9D/Q1FCKw9X98i60nXp/umeJ0VJPBLa3EkE8bRyxkqysMEGo691NNX R4225s+HPEd54b1EXFuS0THEsJPDj/H3r3TRtZs9c06O9spAyN95T1Q9wfevnKtjw54jvPDeoC4t mLRNxLCTw4/x964sXhFVXNHc7MLiXTfLLY+haKz9G1mz13T0vLOQMjfeU9UPofetCvCacXZnsppq 6FooopDCiiigArzn4wXJTQ7G3B4kuCxH+6v/ANevRq8s+MhO3Rx2Jl/9koW4HlNd18KdPW78VPcu uVtYS6+zE4H6Zrha9R+Daj7RqzfxBYx+rVTA9YoooqQCiiigCnq3/IGvv+veT/0E18xV9O6t/wAg a+/695P/AEE18xU0B6l8G/8AW6t/ux/+zV6heXUFjaS3VzII4YlLu57AV5f8G/8AW6t/ux/+zVf+ LmrPb6XaaXGxBuXMkmD1Veg/M/pR1A43xV4/1LXriSG2lktdPBwsaNhnHqxHX6dK5DvRXpvgj4cW 2padHqmsiQxyjMMCnblf7zHrz6U9gPMqK+gR8PPCwH/ILT/vtv8AGl/4V54X/wCgWn/fbf40XAT4 d/8AIh6X/uyf+jGrwrV/+Q1f/wDXxJ/6Ea+k9P0+20uxjsrOIRW8WdiAk4yST19zXzZq/wDyGr// AK+JP/QjSQFOium8CaFZ+IfEJsr4SeT5LP8AI205BH+Nemf8Kp8N+l3/AN/v/rU7geG11/gzxvd+ H72O3uZnl0xzh42OfL/2l9PpVnx94Ig8MJb3ljNI9rM/llJSCyNjPXuMA/lXD0bgfU6ssiK6kFWG QR3Fct428YxeFrJUiVZb+Yfuoz0Uf3m9v51d8GTtceDdKlkOW+zhST7cf0rw/wAXas+teJ727ZiU EhjiHoinA/x/GkgKWp6xqGs3Jn1C7kncngMeF9gOgqjU9jZT6jfQ2dqheeZgiKO5r17TfhJpUVqv 9o3NxPcEfN5bBEB9uM0wPGq3vBP/ACOuk/8AXwK9U/4VT4b9Lv8A7/f/AFqs6b8OdB0rUYL62Fz5 0Db03S5GfypXAp/Fj/kT1/6+U/ka8Qr2/wCLH/Inr/18p/I14hTQHv8A8Of+RH0//gf/AKEa5D4y f8fOk/7kn81rr/hz/wAiPp//AAP/ANCNaur+HNK11om1K0E5iBCZYjGevQ0gPmuivoL/AIV54W/6 BSf99t/jR/wrzwt/0C0/77b/ABp3A+fa0tG17UdBvFubC4aMg/MmfkcehHevVfEvwz0iTSZ59Kha 2u4kLqoclXwM4INeMUbgfSXhzXYPEWiwahCNpb5ZEz9xx1Fa9eUfBy8fzNUsiTswkqj0PIP9Pyr1 epYBRRRQAUUUUAFFFFABRRRQAnSvPfGnxAXT2k03SXV7rpJOORH7D1P8qd8QPGZ01G0nTpMXbr+9 lU/6oHsPc/pXkRJJyTk16eDwfN789jzcXi+X3ID5ppbiZ5ZpGkkc5Z3OST65plFamieHtR8QXPk2 MBYD78jcKn1NevKUYRu9EeYoyk7LVmXRXr+lfCzTLdFbUZpbqXuqnYn6c/rV28+Gnh64iKwwy2z4 4eOQn9DmuJ5jRTsdawNVq54nXeeCPHT6W6abqcjPZMcRyMcmH2/3f5VjeJ/B1/4akDv+/tGOFnUc fQjsa5yt5Rp4mn3RjGVShPsz2vxj4Ot/EloL6xKLfKuUdcbZh6E/yNeMXEEtpcPBcRtHLGxV1YYI Ndt4H8cPpLpp2pSFrFjhJDyYT/8AE/yrsfGPg+38SWgvrLYt+q5Rx92YdgT/ACNcVOrPCz9nU+Ho zqqU44iPtKe54pRUlxbzWtxJBPG0csbFWVhgg1HXqJpq6PPaa3Njw74ivPDmoi5tiWibAlhJ+Vx/ j6GvdNG1mz13T0vLOQMjD5lPVD6H3r5zrX8O+Irzw5qAubZi0bcSwk/K4/x9DXFi8Iqq5o7nXhcU 6b5ZbH0NS1m6LrVnr2nJeWbhlb7ynqjehrRrwmnF2Z7UZKSuhaKKKQwrzH4xwk2Glzf3ZXT8wD/S vTq434m6eb7wbNIgy9rIsw+g4P6H9KEB4RXo/wAH7pY9av7UnmWAOB67W/8Ar15xWr4b1l9A1+11 FQSsbYkUfxIeCPyqmB9KUVWsb621Kzju7OZJYJBlWU/55qzUgFFFFAFPVv8AkDX3/XvJ/wCgmvmK vp3Vv+QNff8AXvJ/6Ca+YqaA9S+Df+t1b/dj/wDZqzfi5KX8UW0fZLVf1ZjWl8G/9bq3+7H/AOzV n/F6Ap4jtJsfLJbAZ9wx/wARR1A89rqYviJ4mghSKO/VURQqqIUwAOg6Vy1eg2XwqvNQsYLu31a1 aGZA6HY3Q0wMr/hZPin/AKCI/wC/Kf4Uf8LJ8U/9BEf9+U/wrd/4U9qP/QUtf++GpP8AhT2o/wDQ Utf++Go0A9S0W4lu9EsbmZt0ssCO5xjJIBNfOOr/APIav/8Ar4k/9CNfSOl2jWGlWlm7BmgiWMsO hIGK+btX/wCQ1f8A/XxJ/wChGkgR1vwn/wCRxP8A17P/ADFe4V4f8J/+RxP/AF7P/MV7hQwPPfi/ /wAivZ/9fq/+gPXjFez/ABf/AORXs/8Ar9X/ANAevGKaA+gPCEpg+HVlKOqWrMPwzXz/ANeT1r6B 8GxCb4fWER/jt2X8ya+f2VkcowwynBHvQgO5+E9qk/i15WAJgtmdc9iSF/kTXt9eF/C6/jsvGCxS MFF1E0QJ9eGA/wDHa90pMAooopAcN8WP+RPX/r5T+Rrw+vcPix/yJ6/9fKfyNeH1SA9/+HP/ACI+ n/8AA/8A0I07xf4ztfCtsilPPvZRmOHOOP7xPYfzpvw5/wCRH0//AIH/AOhGvHvGmoSal4u1GZ2y qTNEnPRVOB/LP40rAalz8T/E08paO4hgXskcIIH55NQ/8LJ8U/8AQRH/AH5T/CsPRdGu9e1SLT7M L5smTljgKAMkmu4Hwe1LHOqWuf8AcanoBgt8R/FDqVbUAQRg/uU/wrletejv8INRjjZzqdrhQSfk avOSMEj0NAHo3we/5Dmo/wDXsP8A0IV7FXjvwe/5Dmo/9ew/9CFexUmAUUUUgCiiigAooooAKxPF Oup4f0Ka8ODKfkhU/wATnp/j+FbVeQfFTVGuNbg05T+7t49zD/bb/wCtj866MLS9rVUXsYYmr7Om 2tzhZ55bq4knncvLIxZmY8knvUdFaOh6RPrmrwWEHBkPzPjhVHU19E2oRu9keCk5Oy3Zp+EvCVx4 lvcndFYxn97Lj/x0e/8AKvbtO0200qzS1s4ViiQcBR19z6mk0zTLbSNPisrRAkUa4HqT6n3q7Xz2 JxMq0vI9zD4dUo+YUUUVzHSQXdpBfW0ltcxLLDINrIwyCK8S8Y+DZ/DlyZ4A0unyN8j90/2W/wAe 9e6VBdWsN7bSW1xEskMg2sjDIIrow+JlRldbHPXw8asfM+Z67vwR45fSJE03UXLWLHCOTkwn/wCJ /lWf4y8Gz+HbozwBpNOkb5H7xn+63+PeuYghluZ0hhjaSWQhVRRkk17cvZ4ind7Hjx9pQqW6ntPj DwfbeJrMXtkUW+CZR1+7KOwJ/ka8XuLea0uJLeeNo5Y2KsjDBBr3jwbo97omgx219ctLIfmEZ5EQ /ug96z/G/g2LXrRru1QLqMS5BAx5o/un39DXnYbFeyl7OTvE78RhvaR9olZnidFOdGjkZHUq6nDK eoPpTa9o8o2vDXiO68N6mtzCS0LECaHPDr/j6GvedO1C31SwhvLWQPDKu5T6ex96+bK7r4beJW07 UxpVzJ/ot037vJ4STt+fT8q87HYZTj7SO6O7B4hxlyS2Z7JRRRXiHsBUVzbx3drLbzKGilQo6+oI walooA+a/EWiT+HtansJwcK2Y3I4dD0NZVfRfifwrY+KLEQ3I8udMmGdR8yH+o9q8c1j4f8AiDSJ WxZvdwA8S24L5H+6ORVJgYuna1qeksW0++nt89QjkA/UdDWr/wAJ74o/6C835L/hWG1ldoSr2syk dQYyKb9luP8An3l/74NGgG9/wnvij/oLzfkv+FWLHx14ll1C2jfVZijSqpGF5BI9q5n7Lcf8+8v/ AHwatada3A1O0Jglx5yfwH+8KNAPo7Vv+QNff9e8n/oJr5ir6d1UE6PegDJMD/8AoJr5n+y3H/Pv L/3waSA9N+Df+t1b/dj/APZq2fipoj6hoEd/AhaWycswA/5Znr+RAP51k/B+KSKXVfMjdMrHjcCP 71epOiyIyOoZWGCpGQRR1A+WK7Xwh8Qrjw3b/YbqA3VkDlAGw0eeuPUe1a3iv4XXMVxJd6ColgY5 NsThk/3Seo/WuBudI1KzkKXOn3UTDs8TD+lPcD1j/hb+kd7C8/8AHf8AGj/hb+j/APPjef8Ajv8A jXj/ANluf+feX/vg0v2S4/54S/8AfBosgPpPRNWi13R7fUoEdIpwSqv1GGI/pXzlq/8AyGr/AP6+ JP8A0I17t8PlZPAumKylWCyZBGD/AKxq8P1a1uDrN8RBKQbiT+A/3jSQHT/Cf/kcT/17P/MV7hXi fwrgmj8XlnidR9mfllI7ivbKGB578X/+RXs/+v1f/QHrxivafi5G8vhmzEaMx+2Lwoz/AAPXjn2W 4/595f8Avg0ID6A8Cf8AIkaV/wBcv6mvH/Hmivoviq6XaRBcMZ4TjghjyPwORXsXgZWTwVpasCrC LkH6mpvE3hmy8T6d9luvkkXmKZRloz/Ue1AHzpFK8MqSxOySIQyspwQR3r0bTfi9e29ssV/pyXci jHmpL5ZP1GDzXOaz4C1/R5WzZSXUI6S26lwR7gcisBrO6U4a2mB9DGaegHp//C5k/wCgE3/gV/8A YVf0X4pprGtWmnDSDEbiQJv+0btvvjaM14/9luP+feX/AL4Nb3gu2nTxnpTNDIFE4yShpaAemfFf /kT1/wCvlP5GvEK9x+KiPJ4RVURmP2lOFGexrxP7Lcf8+8v/AHwaaA96+HP/ACI2n/8AA/8A0I14 t4ntns/FGqQOCCtzIRnuCxIP5EV7V8PEZPBFgrqVYb8gjH8RrF+IXgWbWpBqulqGvFXbLD080DoR 7j9aS3A8z8La+3hrXYtREPnKFKOmcEqfQ16WPi/pGBmwvAfT5f8AGvJbjS9QtJTFcWNzE46q8TD+ lRfZLj/nhL/3waegHrsvxc0h4nQWN5llI/h/xrx0nLE+pqT7Lcf8+8v/AHwaX7Lcf8+8v/fBoA9B +D3/ACHNR/69h/6EK9iryD4Qwyxa1qBkjdQbYYLKR/EK9fpMAooopAFFFFABRRRQAV4H46Zn8aak W7SAD6bRXvleKfE3TmtPFJudp8u6jVwf9ocEfoPzrvy6SVWxw49N07nGV6n8JtOQWt9qTAF2cQKf QAAn+Y/KvLK9V+E2oRmwvdOLASLL5wHqCAD/ACH516GPv7F2OHB29qrnpNFFFeAe4FFFFABRRRQB BdWsN7bSW9zEskMg2sjDIIrn/D3gjTfD17PdRZmldj5ZkH+qX0Hv7109JVKpJJxT0ZDhFtNrVC4o ooqSzx/4n6CtjqcWqQJiO7JEgA4Eg7/iP5GuBr3H4kWyz+DLlyPmhdHX2+YD+RNeHV7+AqOdLXoe HjIKFXTqFKjtG6uhIZTkEdjSUV2bnKfQ3hjVRrXh2zvSR5jJtk/3xwf1FbFec/CW8MmnX9mTxFIs ij/eBH/stei181iIclVxPoKE+emmLRRRWJsFFFFACEA9QKNq/wB0flS0UAJtX+6Pyo2r6D8qWigA pNq+g/KlooAQADoKWiigAoxRRQAm1fQflRtX0H5UtFACAAdKNq+g/KlooATAHQCloooAQgHqKNq/ 3R+VLRQAYxRRRQAUmAeoFLRQAm1f7o/KjaPQUtFACEA9RRtX+6PypaKAADHSiiigBCAeoo2r/dH5 UtFACbV/uj8qNq/3R+VLRQAgAHQCloooAKKKKACiiigBKWiq95eQWFrJc3UqxQxjczscAUJX0E3b Vj5p4raIyzSpHGOrOwAH4muf8aeHR4i0No4gPtcP7yA+p7j8f8K8v8YeMbjxJdGKItFp8bfu4+7/ AO03+Haug8C+OzF5ek6vLmP7sFw5+76K3t6Gu9YSrSiqq3XQ4niqdSTpvZnnEkbwyNHIhR0JVlYY II7Vc0fVrnRNThvrVsSRnkHow7g16j458Drq6NqmmIBeqMyRjpMPX/e/nXkLo0bsjqVZTgg8EGvU o1oYiH5o86rSlRl+R9DeH/EFn4i05bq1bDDiSIn5kb0P+Na1fOeh63eaBqCXlm+COHQ/ddfQ17r4 e8QWfiLT1urVsMOJYifmRvQ/415GKwrou62PUw2JVVWe5sUUUVxnWFFFFABRRRQAUUUlAHH/ABLu 1t/B8sRPzXEiRr+e4/yrxKu7+KGtC+1mLTomzFZg78Hq56/kP61wle/gKbhR16nh4yfPVdugUUUV 2nKei/CRiNT1JexhUn8zXrNeYfCO2ONUuiOD5can8yf6V6fXz2OaddnuYNWooKKKK5DqKGs6pFou k3GozI7xwLuZU6nnH9a4r/hb+kf8+F5/47/jXQePv+RH1T/rmP8A0IV89U0gPZf+Fv6R/wA+F5/4 7/jR/wALf0j/AJ8Lz/x3/GvGqKdgPZf+Fv6R/wA+F5/47/jVu0+K3h64cJMLq2J/ikjBH/jpNeH0 UWA+n7HUbPU7YXFjdRXER/ijbOPr6Var5o0TXr/w/frd2MxUg/OhPyuPQivoLw/rlt4h0eHULbgP w6E8ow6g0rAabMFUsxAA6knpUX221/5+Yf8Av4Ko+Jv+RX1X/r1k/wDQTXzZuPqfzoSuB9SRzRTZ 8qVHx12sDipK8w+DhJtdXyc/PF/Jq9PpAFFFFABRRRQAUUUUAQG8tQSDcwgjqC4p0dzBK22OaN29 FYGvmjVif7ZvuT/x8Sf+hGut+FJJ8YHJP/Hs/wDMU7Ae31zvijxfaeFRbfareaXz923y8cYx6/Wu iryv4ydNJ/7af+y0gND/AIW/pH/Phef+O/413tpcLd2cFygIWWNXAPUAjNfLtfTWif8AIC0//r2j /wDQRTYF+iiikAUUUUAFFFFABWV4g1yDw7pL6jcRySRoyqVTGeTjvWrXG/FH/kSLj/rrH/6FQBm/ 8Lf0j/nwvP8Ax3/Guw8P65B4h0iPUbeN445GZQsmM8HHavmqvePhh/yI1r/10k/9CNNoDsaKKKQB RRRQAUUUUAQXd3BY2kt1cyCOGNdzuegFeIeMPGFx4kuzFEWi0+M/u4+7H+83v7dq9ymhjnheKVFe NxtZWGQRXjPjbwTJoUrX1irPpznkdTCfQ+3vXfgHSU/f36HDjVUcPd2OLozRRXunjnpPgTx35Pl6 Tq8v7v7sE7H7v+y3t6Gtfxx4HXVkfU9MQLegZkjHSYev+9/OvH69I8CeO/IMek6tL+6PywTsfu+i sfT3rzcRh5Upe2o/NHdQrxqR9lV+TPOHVo3ZHUqynBBGCDWhomt3mgail5Zvgj76Ho49DXp/jjwO mrRvqWmIFvgMvGOkw/8Aiv515LFaXE94tpHC7XDNsEYHOfTFdFKtTr09fmYVKM6M9D6A8PeIbPxF py3Vq2HHEkRPzRt6H/GtiuR8FeEF8OWpnnbffzLiQg/Kg/uj1+tddXg1VBTahse3ScnBOe4UUUVm aBRRRQAVz/i7xFF4d0Z58g3MgKQIe7ev0HWtHVtVtdG0+S9vJAkSDp3Y9gPU14N4i1658Raq95cH CjiKMdEX0/8Ar12YPDOrK72RyYrEKlGy3MyWWSeZ5pWLSOxZmPUk9TTKKK99K2h4m4UUVp+HdIk1 zXLWxQHa75kI/hQck/lSlJRi5McU5OyPX/h3pp0/wlAzriS5JmP0PT9APzrrKjiiSGFIo1CoihVA 7AU+vmKk3Obl3PoqceSKj2FoooqCzm/H3/Ij6p/1zH/oQr56r6F8ff8AIj6p/wBcx/6EK+eqaA6j wJ4dtPEutTWd48qxpAZAYyAchgO/1r0P/hUmg/8APxe/99j/AArk/hF/yNVz/wBejf8AoS17VQwP PJ/hDo7xkQ3t5G/ZiVYflivNvE/hW+8L3qw3OJIZOYpkHyv/AIH2r6MrmfHukpq3hG9UqDLboZ4z 3BUZP5jIoTA+fK9B+E+staa7LpbsfJu0LKD2df8A62fyFefVqeGrs2PibTLkHGy5TOPQnB/QmmwP oy+tI7+xns5SwjnjaNivXBGK4r/hUmg/8/F7/wB9j/Cuq8Ru8fhrU3RirrayEMpwQdpr53/tnVP+ glef9/2/xpID37w14UsfC6XCWUkzicqW81gcYzjGB71vV5r8I7y5u7bVTc3M0xV4tvmOWxw3TNek O6xozuwVVGSxOABSAdRXkvij4pzmd7XQNqRqcG6dQS3+6DwB7muEuPEmt3Tl5tWvGJ9JmA/IGnYD 6Vor5j/tnVP+glef9/2/xo/tnVP+glef9/2/xosB9OUV8x/2zqn/AEErz/v+3+NfR+ksX0axZiWY 28ZJPUnaKTQHJXHwr0O5uZZ3nvA8rl2w4xknPpWj4f8AAel+HNS+3Wctw0pQpiRgRg/hXjGq6vqa avequo3YUTyAATNgDcfeup+F+oXt14sMdxeXEyfZ3O2SVmGcj1NMD2evK/jJ00n/ALaf+y1L8W72 6tDpf2a5mh3eZu8uQrn7vpXllxeXV3t+03M023p5jlsfnQkBBX01on/IB0//AK9o/wD0EV8y1cXV 9SRFRNRu1VRgATsAB+dNoD6dorxz4Wahe3XieZLi7uJkFsx2ySlhnI9TXTfFa6uLTw5avbzywsbo AtG5UkbW9KkDvaK+Y/7Z1T/oJXn/AH/b/Gj+2dU/6CV5/wB/2/xp2A+nKK+ZP7a1UHP9p3mf+u7f 41taN8QNf0idCbx7qAH5obg7sj6nkUWA+ga434o/8iRcf9dY/wD0Kt3w/rtp4i0mO/tCQG4dD1Ru 4NYXxR/5Ei4/66x/+hUuoHhFe8fDD/kRrX/rpJ/6Ga8Hr3j4Yf8AIjWv/XST/wBDNUwOxoooqQCi iigAooooAKjlhjnieKVFeNxhlYZBFSUUCPFfG3gmTQ5WvrFGfTnPI6mE+h9veuLr6alijnieKVFe NxhlYZBFeNeNvBEmhytf2CM+nsfmHUwn0Pt717ODxnN7lTc8rFYTl9+GxxVBoor0zzj0fwL47+zm PSdWlJiPywTsfu/7Le3vXosWiabFqz6rHaxi7kXa0gHX3+vvXznXofgnx/8AYVj0zV5GNuPlinPJ j9m9vftXlYvCNXnS+aPSwuKWkKh63RUcUsc0ayRurowyrKcgipK8g9UKKKKACs/V9Ys9EsXu72UI i9B3Y+gHc1j+JPG+m+H0aIOLi9xxBGeh/wBo9v5143reu3+v3pub6Xcf4EHCoPQCu3DYOVV3eiOP EYuNPSOrLXifxRd+Jb8ySkpbIT5MIPCj1Pqaw6KK9yEIwjyx2PHlNzd5BRRRVkhXs3w58NHStLOo XKYu7sAgEconYfj1/KuP+H/hI6xejUbyP/QYGyoP/LVx2+g717OBgYFeRj8Tf91H5np4HD/8vJC0 UUV5R6YUUUUAc34+/wCRH1T/AK5j/wBCFfPVfQvj7/kR9U/65j/0IV89U0B3/wAIv+Rquf8Ar0b/ ANCWvaq8V+EX/I1XP/Xo3/oS17VQwCq98gksLlD0aJgfyNWKq6nMtvpV3MxwqQuxP0U0gPmFhhiP Q1JbMUu4XHVZFI/Ooickn1qezQyX1vGOrSKP1qwPovxGc+E9TPrZyf8AoJr5tr6T8SDb4U1MelpI P/HTXzZUoD1n4N/8eur/AO/F/Jqv/FbXHsNFh02Bysl6x8wj/nmOo/EkfrVD4N/8eur/AO/F/Jqw vizcNL4tjiJ4itlAH1JNHUDg66Xw14I1TxOrTW/lwWqnaZ5c4J9AB1rmgCxAHU9K+nNI0+LStItb GEAJDGF47nufxPNNsDzD/hTl3/0F4f8Avyf8a5jxd4Pl8JtaiS7S4+0BiNqFcYx/jX0HXlHxj/1m lfST+lJMDy2vpzR/+QJp/wD17R/+givmOvpzR/8AkCaf/wBe0f8A6CKGB836v/yGr7/r4k/9CNdb 8KP+RwP/AF7P/MVyWr/8hq+/6+JP/QjXW/Cj/kcD/wBez/zFN7Aek+LfBsPiw2vm3b2/2fdjYgbO cev0ryvxv4Oh8Jiz8q8kuPtG7O9AuMY/xr3uvK/